Edge Detection

Computer Vision
Jia-Bin Huang, Virginia Tech

Many slides from D. Hoiem and K. Grauman



Administrative Stuffs

* HW 1 posted, due 11:59 PM Sept 19
e Submission through Canvas

* Questions about HW?
* Ask me/TA after classes
* Post questions on Piazza (no emails)
» Attend office hours



Previous three classes: Image Filtering
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Today’s class

* Detecting edges

* Finding straight lines

* Binary image analysis




Why finding edges is important

* Cues for 3D shape

e Group pixels into objects or
parts

* Guiding interactive image
editing

* Vertical vanishing
point
i85 (at infinity)
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Origin of Edges

surface normal discontinuity

. < depth discontinuity
AO ‘/;(\ surface color discontinuity
\a_______../érl illumination discontinuity
\'\___________.-’)

Edges are caused by a variety of factors

Source: Steve Seitz



Closeup of edges




Closeup of edges




Closeup of edges




Closeup of edges




Characterizing edges

e An edge is a place of rapid change in the image

intensity function

image

intensity function
(along horizontal scanline)

first derivative
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edges correspond to
extrema of derivative
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Effects of noise

e Consider a single row or column of the image
— Plotting intensity as a function of position gives a signal
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Where is the edge?

Source: S. Seitz



Effects of noise

e Difference filters respond strongly to noise

* Image noise results in pixels that look very different
from their neighbors

* Generally, the larger the noise the stronger the response

e What can we do about it?

Source: D. Forsyth



Solution: smooth first

Sigma = 50

*
Signal

«©
Kernel
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Convolution
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To find edges, look for peaks in

Source: S. Seitz



Derivative theorem of convolution

e Differentiation is convolution, and convolution is
associative: d d

—(f*xg)=f x—
dx( 0) 9

e This saves us one operation:

Sigma = 50
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Source: S. Seitz



Derivative of Gaussian filter
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Tradeoff between smoothing and localization

1 pixel 3 pixels 7 pixels

 Smoothed derivative removes noise, but blurs
edge. Also finds edges at different “scales”.

Source: D. Forsyth



Desighing an edge detector

e Criteria for a good edge detector:
* Good detection:
 find all real edges, ignoring noise or other artifacts
* Good localization
» detect edges as close as possible to the true edges
* return one point only for each true edge point

* Cues of edge detection

e Differences in color, intensity, or texture across the boundary
* Continuity and closure
* High-level knowledge

Source: L. Fei-Fei



Canny edge detector

* This is probably the most widely used edge
detector in computer vision

* Theoretical model: step-edges corrupted by
additive Gaussian noise

e Canny has shown that the first derivative of the
Gaussian closely approximates the operator that
optimizes the product of signal-to-noise ratio and
localization

A computational approach to edge detection

J Canny - IEEE Transactions on pattern analysis and machine ..., 1986 - ieeexplore.ieee.org
Abstract-This paper describes a computational approach to edge detection. The success of

the approach depends on the definition of a comprehensive set of goals for the computation

of edge points. These goals must be precise enough to delimit the desired behavior of the ...
Cited by 24439 Related articles All 24 versions Import into BibTeX Save More

J. Canny, A Computational Approach To Edge Detection, |IEEE Trans. Pattern
Analysis and Machine Intelligence, 8:679-714, 1986.

Source: L. Fei-Fei


http://ieeexplore.ieee.org/xpls/abs_all.jsp?isnumber=4767846&arnumber=4767851&count=16&index=4

Example

g

input image (“Lena”)



Derivative of Gaussian filter
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Compute Gradients (DoG)

X-Derivative of Gaussian Y-Derivative of Gaussian Gradient Magnitude



Get Orientation at Each Pixel

* Threshold at minimum level

 Get orientation

theta = atan2(-gy, gx)




Non-maximum suppression for
each orientation
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Source: D. Forsyth

At g, we have a
maximum if the
value is larger than
those at both p and
at r. Interpolate to
get these values.




Bilinear Interpolation

http://en.wikipedia.org/wiki/Bilinear interpolation



http://en.wikipedia.org/wiki/Bilinear_interpolation

Sidebar: Interpolation options

* imx2 = imresize(im, 2, interpolation_type)

* ‘nearest’
e Copy value from nearest known
* Very fast but creates blocky edges

e ‘bilinear’

* Weighted average from four nearest known ‘

pixels ~
* Fast and reasonable results ‘ I
* ‘bicubic’ (default) ‘I

* Non-linear smoothing over larger area ’

* Slower, visually appealing, may create negative
pixel values

Examples from http://en.wikipedia.org/wiki/Bicubic interpolation



http://en.wikipedia.org/wiki/Bicubic_interpolation

Before Non-max Suppression




After non-max suppression




Hysteresis thresholding

* Threshold at low/high levels to get weak/strong edge pixels

* Do connected components, starting from strong edge pixels
N I\\ v




Hysteresis thresholding

* Check that maximum value of gradient value is
sufficiently large

e drop-outs? use hysteresis

* use a high threshold to start edge curves and a low
threshold to continue them.

Source: S. Seitz



Final Canny Edges




Canny edge detector

1. Filter image with x, y derivatives of Gaussian
2. Find magnitude and orientation of gradient

3. Non-maximum suppression:
* Thin multi-pixel wide “ridges” down to single pixel width

4. Thresholding and linking (hysteresis):
* Define two thresholds: low and high

* Use the high threshold to start edge curves and the low
threshold to continue them

* MATLAB: edge (1mage, ‘canny'’)

Source: D. Lowe, L. Fei-Fei



Effect of o (Gaussian kernel spread/size)

fa

original Cannywith o0 = 1 Canny with 0 = 2

The choice of 6 depends on desired behavior

e large o detects large scale edges
e small o detects fine features

Source: S. Seitz



Learning to detect boundaries

image human segmentation gradient magnitude

* Berkeley segmentation database:
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping /segbench/



http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

pB boundary detector

Texture

Boundary Processing Region Processing

Martin, Fowlkes, Malik 2004: Learning to Detection Natural Boundaries... Figure from Fowlkes



http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/papers/mfm-pami-boundary.pdf
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Results

Pb (0.88)




Results
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http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/bench/html/108082-color.html

Global pB boundary detector
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Edge Detection with Structured Random
Forests (Dollar and Zitnick ICCV 2013)

e Goal: quickly predict whether each pixel is
an edge

* |nsights
* Predictions can be learned from training data
* Predictions for nearby pixels should not be
independent
: " 0DS = 0.72, 60Hz
* Solution
* Train structured random forests to split data
into patches with similar boundaries based on
features
* Predict boundaries at patch level, rather than
pixel level, and aggregate (average votes) S darine
in patch

http://research.microsoft.com/pubs/202540/DollarlICCV13edges.pdf



http://research.microsoft.com/pubs/202540/DollarICCV13edges.pdf

Edge Detection with Structured Random
Forests - Algorithm

1. Extract overlapping 32x32 patches at
three scales

2. Features are pixel values and pairwise
differences in feature maps (LUV
color, gradient magnitude, oriented
gradient)

3. Predict T boundary maps in the
central 16x16 region using T trained = Qmpg) P
decision trees P
1 Q@ £

4. Average predictions for each pixel AR ATt
across all patches 20 | ops=0.72, 60Hz




Edge Detection with Structured Random
Forests - Results

BSDS 500
ODS OIS AP FPS
Human 80 .80 -
Canny 60 .64 58 15
Felz-Hutt [11] 61 64 56 10
Hidayat-Green [ 1 6] 627 - 20
BEL [Y] 667 - 1/10
aPb + GPU [¢] JoT - 112}
oPb [1] 1 J4 .65 1/240
gPb-owt-ucm [ 1] g3 g6 73 1/240
Sketch tokens [ 1] a3 J5 T8 1
SCG[31] 74 Je 77 1/280
SE-SS, T=1 g2 J4 .77 60
» SE-58, T=4 T3 a5 .77 30
SE-MS, T=4 74 J6 78 6

S

NYU Depth dataset edges

ODS OIS AP FPS
gPb [1] (rgb) S 52 37 1/240
SCG [1] (rgb) 23 57T 46 1/280
SE-S5 (rgh) 58 59 53 30
SE-MS (rgb) .60 61 .56 6
gPb [1] (depth) A4 46 .28 1/240
SCG [71] (depth) 53 54 45 1/280
SE-SS (depth) 57 S8 54 30
SE-MS (depth) 58 59 57 6
gPb [1] (rgbd) 53 54 40 1/240
SCG [71] (rgbd) 62 .63 .54 1/280
SE-SS (rgbhd) 62 63 .59 25
SE-MS (rgbd) 64 65 .63 5




Edge Detection with Structured Random Forests




Crisp Boundary Detection using Pointwise
Mutual Information (Isola et al. ECCV 2014)
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Pixel combinations that are unlikely to be together are edges

Algorithm: Kernel density estimation Spectral clustering
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http://web.mit.edu/phillipi/www/publications/crisp boundaries.pdf



http://web.mit.edu/phillipi/www/publications/crisp_boundaries.pdf

Crisp Boundary Detection using Pointwise
Mutual Information

Input image gPb SE Our method Human labelers
el R
il
Algorithm ODS|OIS| AP SEERSE 5
Canny [14] 0.60 [0.63]0.58 | _ iz giean: LT o9 -
Mean Shift [36] 0.64 | 0.68]0.56 L7 ' 7Sl ' ﬂ{ "/?)\ o
NCuts [37] 0.64 | 0.68]0.45 ff\\ il
Felz-Hutt [38] 0.61]0.64]0.56 !
gPb [1] 0.71 10.74|0.65 \
gPb-owt-ucm [1] 0.73 10.76|0.73 |
SCG [9] 0.740.76 | 0.77 “\\
Sketch Tokens [7] 0.73 10.75|0.78 T =mny
SE [8] 0.74]0.76|0.78 4/ o
Our method — SS, color only| 0.72 [ 0.75]0.77 — Sy ——
Our method — SS 0.73 10.760.79
Our method — MS 0.74|10.77|0.78 | J}
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o e




Holistically-Nested Edge Detection

Input image X
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o ALLLLILED Weighted-fusion layer Error Propagation Path 7 { ) | ‘ )
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* ! Side-output layer Error Propagation Path

Xie and Tu, Holistically-Nested Edge Detection, ICCV 2015



https://github.com/s9xie/hed

Holistically-Nested Edge Detection
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Xie and Tu, Holistically-Nested Edge Detection, ICCV 2015



https://github.com/s9xie/hed

State of edge detection

* Local edge detection is mostly solved
* Intensity gradient, color, texture

* Work on RGB-D edge detection is currently more active

 Some methods take into account longer contours, but
could probably do better

e Often used in combination with object detectors or
region classifiers



Finding straight lines




Finding line segments using
connected components

1. Compute canny edges
—  Compute: gx, gy (DoG in x,y directions)
—  Compute: theta = atan(gy / gx)

2. Assign each edge to one of 8 directions

3. For each direction d, get edgelets:
— find connected components for edge pixels with directions in {d-1, d,
d+1}
4. Compute straightness and theta of edgelets using eig of x,y
2"d moment matrix of their points

) Larger eigenvector
M Z(X—ﬂx) Z(X—ﬂx )(y—ﬂy) [V, 2] = eig(M)

I la) TE0 RS
conf =4,/ 1,

5. Threshold on straightness, store segment



Canny lines = ... =2straight ec




Binary images

|

Slide credit: Kristen Grauman
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Binary image analysis: basic steps

* Convert the image into binary form
* Thresholding

* Clean up the thresholded image

* Morphological operators

* Extract separate blobs

* Connected components

* Describe the blobs with region properties

Slide credit: Kristen Grauman



Binary images

* Two pixel values
* Foreground and background
* Mark region(s) of interest

1 11O ]1 L1 (0] 1
1111011 (011011
1l1]j1l1lojojo}l1l
glojojolofoljol1
] 1 I 10110711
glojojrjoji1jo}]1
1{1Jol1]lololol1
111joj1joj1111]11

Slide credit: Kristen Grauman



Thresholding

e Grayscale -> binary mask

e Useful if object of interest’s intensity distribution is
distinct from background

a1 if Fli =T
Friz, j]_l 0 otherwise.
. L1 if T<Fi AT,
Frlz, f]l 0 othevwise.
.4 1 i Fli jleZ
Flt, f]_1 0 otherwise.
 Example

http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/FITZGIBBON/simplebin
ary.html

Slide credit: Kristen Grauman


http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/FITZGIBBON/simplebinary.html

Thresholding

e Given a grayscale image or an intermediate matrix
—> threshold to create a binary output.

Example: edge detection

Gradient magnitude fg pix = find(gradient mag > t);

Looking for pixels where gradient is strong.

Slide credit: Kristen Grauman



Thresholding

e Given a grayscale image or an intermediate matrix
—> threshold to create a binary output.

Example: background subtraction

Looking for pixels that differ significantly
from the “empty” background.

Slide credit: Kristen Grauman fg pix = find(diff > t);



Thresholding

e Given a grayscale image or an intermediate matrix
—> threshold to create a binary output.

Example: intensity-based detection

B

—>

-1

i

fg pix = find(im < 65);

Looking for dark pixels

Slide credit: Kristen Grauman



Thresholding

e Given a grayscale image or an intermediate matrix
—> threshold to create a binary output.

Example: color-based detection

fg pix = find(hue > tl & hue < t2);

Looking for pixels within a certain hue range.

Slide credit: Kristen Grauman



A nice case: bimodal intensity
histograms

frequency

background

H abject

frequency

I

grey level

Ideal histogram,
light object on
dark background

Actual observed
histogram with
noise

pixel value

Images: http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/OWENS/LECT2/node3.html

Slide credit: Kristen Grauman



Not so nice cases

",
e

Two distinet modes Overlapped modes

Slide credit: Shapiro and Stockman



lssues

 What to do with “noisy” binary
outputs?
* Holes
e Extra small fragments

* How to demarcate multiple regions
of interest?
* Count objects
 Compute further features per object

Slide credit: Kristen Grauman



Morphological operators

* Change the shape of the foreground regions via
intersection/union operations between a scanning
structuring element and binary image.

* Useful to clean up result from thresholding
 Basic operators are:

e Dilation
 Erosion

Slide credit: Kristen Grauman



Dilation

* Expands connected components
* Grow features
* Fill holes

Before dilation After dilation

Slide credit: Kristen Grauman



Erosion

* Erode connected components
* Shrink features

* Remove bridges, branches, noise

Before erosion After erosion

Slide credit: Kristen Grauman



Structuring elements

* Masks of varying shapes and sizes used to perform
morphology, for example:

...............................

e Scan mask across foreground pixels to transform the
binary image

>>help strel

Slide credit: Kristen Grauman



Dilation vs. Erosion

At each position:

* Dilation: if current pixel is foreground, OR the
structuring element with the input image.

Slide credit: Kristen Grauman



Example for Dilation

Input image

—

Structuring

Element

Output Image

Slide credit: Adapted by Kristen Grauman from T. Moeslund

g(x)=f(x)®SE




Example for Dilation

Input image 1 10 |0 |0

Structuring Element|{1 |1 |1

Output Image 1 |1

Slide credit: Kristen Grauman



Example for Dilation

Input image 1 10

0
4

Structuring Element 1 (1 |1

.

Output Image 1 |1

Slide credit: Kristen Grauman



Example for Dilation

Input image

Structuring Element

Output Image

Slide credit: Kristen Grauman
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1
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Example for Dilation

Input image 1 10 |0 |0

Structuring Element 1

Output Image 1 |1 |0 |1

H<:|H<:I—‘

Slide credit: Kristen Grauman




Example for Dilation

Input image 1 10 |0 |0

Structuring Element

Output Image 1 |1 |0 |1

H<:|H<:I—‘

Slide credit: Kristen Grauman




Example for Dilation

Input image 1 10 |0 |0

Structuring Element

Output Image 1 |1 |0 |1

H<:H<:H

Slide credit: Kristen Grauman




Example for Dilation

Input image 1 10 |0 |0

Structuring Element

Output Image 1 |1 |0 |1

Slide credit: Kristen Grauman



Example for Dilation

Input image 1 /0 (0 |0 (1 |1 (1 |0

1
4

Structuring Element 1 |1

.

Output Image 1 /1 (0 (1 (1 (1 (1 |1

Note that the object gets bigger and holes are filled.

>> help imdilate
Slide credit: Kristen Grauman



2D example for dilation

N




Dilation vs. Erosion

At each position:

 Dilation: if current pixel is foreground, OR
the structuring element with the input image.

* Erosion: if every pixel under the structuring
element’s nonzero entries is foreground, OR
the current pixel with S.

Slide credit: Kristen Grauman



Example for Erosion (1D)

Input image

1
4

1

1

Structuring Element

Output Image

Slide credit: Kristen Grauman

g(x) = f(x)OSE

.




Example for Erosion (1D)

Input image

Structuring Element

Output Image

Slide credit: Kristen Grauman

0
4

1

g(x) = f(x)OSE

.




Example for Erosion

Input image 1 10

0
4

Structuring Element 1 (1 |1

.

Output Image 0O |0

Slide credit: Kristen Grauman



Example for Erosion

Input image

Structuring Element

Output Image

Slide credit: Kristen Grauman

0
4

1

.




Example for Erosion

Input image 1 10 |0 |0

Structuring Element 1

OutputImage [0 |0 (0 |O

O<:H<:I—‘

Slide credit: Kristen Grauman




Example for Erosion

Input image 1 10 |0 |0

Structuring Element

OutputImage [0 |0 (0 |O

H<:|H<:I—‘

Slide credit: Kristen Grauman




Example for Erosion

Input image 1 10 |0 |0

Structuring Element

OutputImage [0 |0 (0 |O

O<:H<:|H

Slide credit: Kristen Grauman




Example for Erosion

Input image 1 10 |0 |0

Structuring Element

OutputImage [0 |0 (0 |O

o<:|4<:o

Slide credit: Kristen Grauman




Example for Erosion

Input image 1 10 |0 |0

Structuring Element

OutputImage [0 |0 (0 |O

O<:H<:|H

Slide credit: Kristen Grauman




Example for Erosion

Input image 1 /0 (0 |0 (1 |1 |1

Structuring Element

Output Image [0 [0 |O |0 |0 (1 |O

H<:H<:H

Note that the object gets smaller

Slide credit: Kristen Grauman >> help imerode




2D example for erosion




Opening

* First erode, then dilate
* Remove small objects, keep original shape

Before opening After opening

Slide credit: Kristen Grauman



Closing

* First dilate, then erode
* Fill holes, but keep original shape

Before closing After closing

Applet: http://bigwww.epfl.ch/demo/jmorpho/start.php

Slide credit: Kristen Grauman



http://bigwww.epfl.ch/demo/jmorpho/start.php

Morphology operators on grayscale images

* Dilation and erosion typically performed on binary
Images.

* If image is grayscale:
* Diation: take the neighborhood MAX
* Erosion: take the neighborhood MIN

o< \ .
R .4 ‘

3 2
0 Y
P < A

original dilated eroded

Slide credit: Kristen Grauman



lssues

* How to demarcate multiple regions
of interest?
* Count objects
 Compute further features per object

Slide credit: Kristen Grauman



Connected components

124

* |dentify distinct regions of “connected pixels

1({1jop1rj1y11091 Lj1jofj1j1y110]2
L{frjojirjojp1rjoj}il L1 |jof1joj1jo]2
111 y1jo0p0f(01)1 Lj1 | 1j1jojpojo|2
glojojojojpolo)l gjojojojojoqjo) 2
rjirjrfrjofjrjoji1 31331 3]0]4]0]2
glojojrjop1j0oj1 OjJojofajoj4jo]2
Lfrjojrjojojol]i1 S50 3jojojo]2
1({1joyp1jo0p111]1 alsa|ojp3jolzyz2)2
a) binary image b} connected components labeling

¢) binary image and labeling, expanded for viewing

Slide credit: Shapiro and Stockman



Connectedness

* Defining which pixels are considered neighbors

]
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4-connected

Slide credit: Chaitanya Chandra

¢

§

'
=)
)

8-connected




Connected components

 We'll consider a sequential
algorithm that requires only 2
passes over the image.

* Input: binary image

e Output: “label” image, where
pixels are numbered per their
component

* Note: foreground here is
denoted with black pixels.

Slide credit: Kristen Grauman



Connected components

Slide credit: Pinar Duygulu

connected
components
of 1’s from
thresholded
image

connected
components
of cluster
labels



Region properties

e Given connected components, can compute simple
features per blob, such as:
* Area (num pixels in the region)

* Centroid (average x and y position of pixels in the region)
* Bounding box (min and max coordinates)

 Circularity (ratio of mean dist. to centroid over std)

A1=200

Slide credit: Kristen Grauman



Circularity

. a second measure uses variation off of a circle
circularity(2):
Cy="F
TR
where g and og? are the mean and variance
of the distance from the centroid of the shape
to the boundary pixels (rz, ck).
mean radial distance:
1 K21 -
pr= g & ll(rsc) = (7,3
k=0

variance of radial distance:
LY
K o

0= [l(r&s ) = (7,0 = prl?

[Haralick]

Slide credit: Shapiro & Stockman



Binary image analysis:
basic steps (recap)

* Convert the image into binary form
* Thresholding

* Clean up the thresholded image

* Morphological operators

* Extract separate blobs

* Connected components

* Describe the blobs with region properties

Slide credit: Kristen Grauman



Matlab

N = hist(Y,M);
L = bwlabel (BW,N);
STATS = regionprops (L, PROPERTIES) ;

. '"Area’

. '"Centroid'

. 'BoundingBox'

. 'Orientation?,
* IM?2 = imerode (IM, SE

) ;
e IM?2 = 1mdilate (IM, SE
e IM2 = 1imclose (IM, SE
e TM2 = 1mopen (IM, SE);

) 7
) 7

4

Slide credit: Kristen Grauman



Example using binary image analysis: OCR

Re CAPTG HA' Digitizing Books One Word at a Time

HOME L3
= VWHAT IS5 reCAPTCHA Fﬂw ln g
DIGITIZATION ACCURACY
R
WHATIS A CAPTCHA Type the two words: =]
SECURITY ol re CAPTCHA

GET reCAPTCHA

1Y ACCOUNT

= The words above come from scanned books,
Submit
EMAIL PROTECTION By typing them, you help to digitize old texts.
RESOURCES

reCAPTCHA is a free CAPTCHA service that helps to digitize hooks, newspapers and old time radio
shows. Check out ocur paper in Science akout it (or read more helow).

ACAPTCHA is a program that can tell whether its useris a human or a computer. Youve probably
seen them — colorful images with distorted text at the bottom of Web registration forms. CAPTCHAS
are used by many websites to prevent abuse from “bots,” or automated programs usually written to
generate spam. Mo computer program can read distorted text as well as humans can, so bots
cannot navigate sites protected by CAPTCHAS.

[Luis von Ahn et al. http://recaptcha.net/learnmore.html]
Slide credit: Kristen Grauman



Example using binary image analysis:
segmentation of a liver

Extract Largest
Region

CORINN tract Largest
s 4 Region

»

Slide credit: Li Shen Application by Jie Zhu, Cornell University



Example using binary image analysis:
Bg subtraction + blob detection

University of Southern California
http://iris.usc.edu/Projects/detect/detection-result.ntml

Slide credit: Kristen Grauman



Binary images

* Pros
* Can be fast to compute, easy to store
e Simple processing techniques available
* Lead to some useful compact shape descriptors

* Cons
* Hard to get “clean” silhouettes
 Noise common in realistic scenarios

e Can be too coarse of a representation
* Not 3d

Slide credit: Kristen Grauman



OpenCV Demo



Things to remember

* Canny edge detector =
smooth = derivative = thin = threshold = link

* Pb: learns weighting of gradient,

color, texture differences

More recent learning approaches give at least as
good accuracy and are faster

e Straight line detector =

canny + gradient orientations = orientation binning
- linking = check for straightness
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* Binary image analysis
thresholding, dialation, erosion




Next classes: Correspondence and Alignment
* Detecting interest points

* Tracking points

* Object/image alignment and registration
* Aligning 3D or edge points oy
* Object instance recognition
* Image stitching




