
Image Pyramids and Applications

Computer Vision

Jia-Bin Huang, Virginia Tech Golconda, René Magritte, 1953

https://en.wikipedia.org/wiki/Ren%C3%A9_Magritte

Administrative stuffs

• HW 1 posted, due 11:59 PM Sept 19

• Anonymous feedback from students
• Repeat students’ questions and answers

• Turn on some light in the classroom

• Post frequently asked questions for HWs

Previous class: Image Filtering
• Sometimes it makes sense to think of

images and filtering in the frequency
domain
• Fourier analysis

• Can be faster to filter using FFT for large
images (N logN vs. N2 for auto-correlation)

• Images are mostly smooth
• Basis for compression

• Remember to low-pass before sampling

* =

Spatial domain

Frequency domain

FFT FFT

=

Inverse FFT

Fourier Transform
Teases away fast vs. slow changes in the image.

Slide credit: A Efros Image as a sum of basis images

Extension to 2D

in Matlab, check out: imagesc(log(abs(fftshift(fft2(im)))));

Phase vs. Magnitude

Magnitude Phase

Intensity image

FFT

Inverse FFT

Use random
magnitude

Inverse FFT

Use random
phase

Today’s class

• Template matching

• Image Pyramids

• Compression

• Introduction to HW1

Template matching
• Goal: find in image

• Main challenge: What is a
good similarity or distance
measure between two
patches? D() ,)
• Correlation

• Zero-mean correlation

• Sum Square Difference

• Normalized Cross Correlation

Matching with filters
• Goal: find in image

• Method 0: filter the image with eye patch

Input Filtered Image

],[],[],[
,

lnkmflkgnmh
lk



What went wrong?

f = image
g = filter

• Goal: find in image

• Method 1: filter the image with zero-mean eye

Input Filtered Image (scaled) Thresholded Image

)],[()],[(],[
,

lnkmfglkgnmh
lk



True detections

False
detections

mean of template g

Matching with filters

• Goal: find in image

• Method 2: Sum of squared differences (SSD)

Input 1- sqrt(SSD) Thresholded Image

2

,

)],[],[(],[lnkmflkgnmh
lk



True detections

Matching with filters

Can SSD be implemented with linear filters?
2

,

)],[],[(],[lnkmflkgnmh
lk



Matching with filters

 
lklklk

lnkmflnkmflkglkgnmh
,

2

,

2

,

)],[(],[],[2)],[(],[

Constant Filtering with g Filtering with box filter

• Goal: find in image

• Method 2: SSD

Input 1- sqrt(SSD)

2

,

)],[],[(],[lnkmflkgnmh
lk



What’s the potential
downside of SSD?

Matching with filters

• Goal: find in image

• Method 3: Normalized cross-correlation

Matlab: normxcorr2(template, im)

mean image patchmean template

5.0

,

2

,

,

2

,

,

)],[()],[(

)],[)(],[(

],[

















 



lk

nm

lk

nm

lk

flnkmfglkg

flnkmfglkg

nmh

Matching with filters

• Goal: find in image

• Method 3: Normalized cross-correlation

Input Normalized X-Correlation Thresholded Image

True detections

Matching with filters

• Goal: find in image

• Method 3: Normalized cross-correlation

Input Normalized X-Correlation Thresholded Image

True detections

Matching with filters

Q: What is the best method to
use?
A: Depends

• Zero-mean filter: fastest but not a great matcher

• SSD: next fastest, sensitive to overall intensity

• Normalized cross-correlation: slowest, invariant to
local average intensity and contrast

Q: What if we want to find larger or
smaller eyes?

A: Image Pyramid

Review of Sampling

Low-Pass
Filtered Image

Image

Gaussian
Filter Sub-sample

Low-Res
Image

Gaussian pyramid

Source: Forsyth

Template Matching with Image
Pyramids

Input: Image, Template
1. Match template at current scale

2. Downsample image
• In practice, scale step of 1.1 to 1.2

3. Repeat 1-2 until image is very small

4. Take responses above some threshold, perhaps with
non-maxima suppression

Laplacian filter

Gaussian
unit impulse

Laplacian of Gaussian

Source: Lazebnik

Laplacian pyramid

Source: Forsyth

Creating the Gaussian/Laplacian Pyramid

Downsample
(Smooth(G1))

G1 - Smooth(Upsample(G2))

Image = G1

L1

G2

… GN = LN

G2 - Smooth(Upsample(G3))

L2

G3 - Smooth(Upsample(G4))

L3

G3

• Use same filter for smoothing in each step (e.g., Gaussian with 𝜎 = 2)
• Downsample/upsample with “nearest” interpolation

Downsample
(Smooth(G2))

Smooth, then downsample

Hybrid Image in Laplacian Pyramid
High frequency  Low frequency

Reconstructing image from Laplacian pyramid
Image =

L1

L4

L2

G3 = L3 + Smooth(Upsample(L4))

L3

• Use same filter for smoothing as in desconstruction
• Upsample with “nearest” interpolation
• Reconstruction will be lossless

G2 = L2 + Smooth(Upsample(G3))

L1 + Smooth(Upsample(G2))

Major uses of image pyramids

• Object detection
• Scale search

• Features

• Detecting stable interest points

• Course-to-fine registration

• Compression

Coarse-to-fine Image Registration

1. Compute Gaussian pyramid

2. Align with coarse pyramid

3. Successively align with finer
pyramids
• Search smaller range

Why is this faster?

Are we guaranteed to get the same
result?

Applications: Pyramid Blending

Applications: Pyramid Blending

Pyramid Blending

0

1

0

1

0

1

Left pyramid Right pyramidblend

• At low frequencies, blend slowly

• At high frequencies, blend quickly

Image representation
• Pixels:

• great for spatial resolution, poor access to
frequency

• Fourier transform:

• great for frequency, not for spatial info

• Pyramids/filter banks:

• balance between spatial and frequency
information

How is it that a 4MP image (12000KB) can be
compressed to 400KB without a noticeable change?

Compression

Lossy Image Compression (JPEG)

Block-based Discrete Cosine Transform (DCT)

Slides: Efros

Using DCT in JPEG

• The first coefficient B(0,0) is the DC component,
the average intensity

• The top-left coeffs represent low frequencies, the
bottom right – high frequencies

Image compression using DCT
• Quantize

• More coarsely for high frequencies (which also tend to have smaller
values)

• Many quantized high frequency values will be zero

• Encode
• Can decode with inverse dct

Quantization table

Filter responses

Quantized values

JPEG Compression Summary

1. Convert image to YCrCb

2. Subsample color by factor of 2
• People have bad resolution for color

3. Split into blocks (8x8, typically), subtract 128

4. For each block
a. Compute DCT coefficients

b. Coarsely quantize
• Many high frequency components will become zero

c. Encode (e.g., with Huffman coding)

http://en.wikipedia.org/wiki/YCbCr
http://en.wikipedia.org/wiki/JPEG

http://en.wikipedia.org/wiki/YCbCr
http://en.wikipedia.org/wiki/JPEG

Lossless compression (PNG)
1. Predict that a pixel’s value based on its

upper-left neighborhood

2. Store difference of predicted and actual
value

3. Pkzip it (DEFLATE algorithm)

Three views of image filtering

• Image filters in spatial domain
• Filter is a mathematical operation on values of each patch

• Smoothing, sharpening, measuring texture

• Image filters in the frequency domain
• Filtering is a way to modify the frequencies of images

• Denoising, sampling, image compression

• Templates and Image Pyramids
• Filtering is a way to match a template to the image

• Detection, coarse-to-fine registration

HW 1 – Hybrid Image

• Hybrid image =

Low-Freq(Image A) + Hi-Freq(Image B)

HW 1 – Image Pyramid

HW 1 – Edge Detection

x-direction y-direction

Derivative of Gaussian filters

Things to remember

• Template matching (SSD or Normxcorr2)
• SSD can be done with linear filters, is sensitive

to overall intensity

• Gaussian pyramid
• Coarse-to-fine search, multi-scale detection

• Laplacian pyramid
• More compact image representation

• Can be used for compositing in graphics

• Compression
• In JPEG, coarsely quantize high frequencies

Thank you

• See you this Thursday

• Next class:
• Edge detection

