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Administrative stuffs

• HW 1 posted, due 11:59 PM Sept 19

• Anonymous feedback from students
• Repeat students’ questions and answers

• Turn on some light in the classroom

• Post frequently asked questions for HWs



Previous class: Image Filtering
• Sometimes it makes sense to think of 

images and filtering in the frequency 
domain
• Fourier analysis

• Can be faster to filter using FFT for large 
images (N logN vs. N2 for auto-correlation)

• Images are mostly smooth
• Basis for compression

• Remember to low-pass before sampling
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Fourier Transform
Teases away fast vs. slow changes in the image.

Slide credit: A Efros Image as a sum of basis images



Extension to 2D

in Matlab, check out: imagesc(log(abs(fftshift(fft2(im)))));



Phase vs. Magnitude

Magnitude Phase

Intensity image

FFT

Inverse FFT

Use random 
magnitude

Inverse FFT

Use random 
phase



Today’s class

• Template matching

• Image Pyramids

• Compression

• Introduction to HW1



Template matching
• Goal: find       in image

• Main challenge: What is a 
good similarity or distance 
measure between two 
patches? D()   ,     )
• Correlation

• Zero-mean correlation

• Sum Square Difference

• Normalized Cross Correlation



Matching with filters
• Goal: find       in image

• Method 0: filter the image with eye patch

Input Filtered Image
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What went wrong?

f = image
g = filter



• Goal: find       in image

• Method 1: filter the image with zero-mean eye

Input Filtered Image (scaled) Thresholded Image
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True detections

False 
detections

mean of template g

Matching with filters



• Goal: find       in image

• Method 2: Sum of squared differences (SSD)

Input 1- sqrt(SSD) Thresholded Image
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True detections

Matching with filters



Can SSD be implemented with linear filters?
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• Goal: find       in image

• Method 2: SSD

Input 1- sqrt(SSD)
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What’s the potential 
downside of SSD?

Matching with filters



• Goal: find       in image

• Method 3: Normalized cross-correlation

Matlab: normxcorr2(template, im)

mean image patchmean template
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Matching with filters



• Goal: find       in image

• Method 3: Normalized cross-correlation

Input Normalized X-Correlation Thresholded Image

True detections

Matching with filters



• Goal: find       in image

• Method 3: Normalized cross-correlation

Input Normalized X-Correlation Thresholded Image

True detections

Matching with filters



Q: What is the best method to 
use?
A: Depends

• Zero-mean filter: fastest but not a great matcher

• SSD: next fastest, sensitive to overall intensity

• Normalized cross-correlation: slowest, invariant to 
local average intensity and contrast



Q: What if we want to find larger or 
smaller eyes?

A: Image Pyramid



Review of Sampling

Low-Pass 
Filtered Image

Image

Gaussian
Filter Sub-sample

Low-Res 
Image



Gaussian pyramid

Source: Forsyth



Template Matching with Image 
Pyramids

Input: Image, Template
1. Match template at current scale

2. Downsample image
• In practice, scale step of 1.1 to 1.2

3. Repeat 1-2 until image is very small

4. Take responses above some threshold, perhaps with 
non-maxima suppression



Laplacian filter

Gaussian
unit impulse

Laplacian of Gaussian

Source: Lazebnik



Laplacian pyramid

Source: Forsyth



Creating the Gaussian/Laplacian Pyramid

Downsample
(Smooth(G1))

G1 - Smooth(Upsample(G2))

Image = G1

L1

G2

… GN = LN

G2 - Smooth(Upsample(G3)) 

L2

G3 - Smooth(Upsample(G4)) 

L3

G3

• Use same filter for smoothing in each step (e.g., Gaussian with 𝜎 = 2)
• Downsample/upsample with “nearest” interpolation

Downsample
(Smooth(G2))

Smooth, then downsample



Hybrid Image in Laplacian Pyramid
High frequency  Low frequency



Reconstructing image from Laplacian pyramid
Image = 

L1

L4

L2

G3 = L3 + Smooth(Upsample(L4)) 

L3

• Use same filter for smoothing as in desconstruction
• Upsample with “nearest” interpolation
• Reconstruction will be lossless

G2 = L2 + Smooth(Upsample(G3)) 

L1 + Smooth(Upsample(G2)) 



Major uses of image pyramids

• Object detection
• Scale search

• Features

• Detecting stable interest points 

• Course-to-fine registration

• Compression









Coarse-to-fine Image Registration

1. Compute Gaussian pyramid

2. Align with coarse pyramid

3. Successively align with finer 
pyramids
• Search smaller range

Why is this faster?

Are we guaranteed to get the same 
result?



Applications: Pyramid Blending



Applications: Pyramid Blending



Pyramid Blending

0

1

0
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0
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Left pyramid Right pyramidblend

• At low frequencies, blend slowly

• At high frequencies, blend quickly



Image representation
• Pixels: 

• great for spatial resolution, poor access to 
frequency

• Fourier transform: 

• great for frequency, not for spatial info

• Pyramids/filter banks: 

• balance between spatial and frequency 
information



How is it that a 4MP image (12000KB) can be 
compressed to 400KB without a noticeable change?

Compression



Lossy Image Compression (JPEG)

Block-based Discrete Cosine Transform (DCT)

Slides: Efros



Using DCT in JPEG 

• The first coefficient B(0,0) is the DC component, 
the average intensity

• The top-left coeffs represent low frequencies, the 
bottom right – high frequencies



Image compression using DCT
• Quantize 

• More coarsely for high frequencies (which also tend to have smaller 
values)

• Many quantized high frequency values will be zero

• Encode
• Can decode with inverse dct

Quantization table

Filter responses

Quantized values



JPEG Compression Summary

1. Convert image to YCrCb

2. Subsample color by factor of 2
• People have bad resolution for color

3. Split into blocks (8x8, typically), subtract 128

4. For each block
a. Compute DCT coefficients

b. Coarsely quantize
• Many high frequency components will become zero

c. Encode (e.g., with Huffman coding)

http://en.wikipedia.org/wiki/YCbCr
http://en.wikipedia.org/wiki/JPEG

http://en.wikipedia.org/wiki/YCbCr
http://en.wikipedia.org/wiki/JPEG


Lossless compression (PNG)
1. Predict that a pixel’s value based on its 

upper-left neighborhood

2. Store difference of predicted and actual 
value

3. Pkzip it (DEFLATE algorithm)



Three views of image filtering

• Image filters in spatial domain
• Filter is a mathematical operation on values of each patch

• Smoothing, sharpening, measuring texture

• Image filters in the frequency domain
• Filtering is a way to modify the frequencies of images

• Denoising, sampling, image compression

• Templates and Image Pyramids
• Filtering is a way to match a template to the image

• Detection, coarse-to-fine registration



HW 1 – Hybrid Image

• Hybrid image = 

Low-Freq( Image A ) + Hi-Freq( Image B )



HW 1 – Image Pyramid



HW 1 – Edge Detection

x-direction y-direction

Derivative of Gaussian filters



Things to remember

• Template matching (SSD or Normxcorr2)
• SSD can be done with linear filters, is sensitive 

to overall intensity

• Gaussian pyramid
• Coarse-to-fine search, multi-scale detection

• Laplacian pyramid
• More compact image representation

• Can be used for compositing in graphics

• Compression
• In JPEG, coarsely quantize high frequencies



Thank you 

• See you this Thursday

• Next class:
• Edge detection


