Computer Vision

Jia-Bin Huang, Virginia Tech

Golconda, René Magritte, 1953

https://en.wikipedia.org/wiki/Ren%C3%A9_Magritte

Administrative stuffs

* HW 1 posted, due 11:59 PM Sept 19

* Anonymous feedback from students
e Repeat students’ questions and answers
* Turn on some light in the classroom
* Post frequently asked questions for HWs

Previous class: Image Filtering

e Sometimes it makes sense to think of n
images and filtering in the frequency
domain

* Fourier analysis

e Can be faster to filter using FFT for large
images (N logN vs. N2 for auto-correlation)

* Images are mostly smooth
 Basis for compression L

« Remember to low-pass before sampling //\\

Spatial domain

intensity image

FFT FFT Inverse FFT

log fit magnitude

Frequency domain

Fourier Transform

Teases away fast vs. slow changes in the image.
| | 1 i1l IIIIIII‘
U0 il
W AR - |

I-|
=Z%

Slide credit: A Efros Image as a sum of basis images

Extension to 2D

Discrete Fourier Transform 13

In Matlab, check out: imagesc(log(abs(fftshift(fft2(im)))));

Phase vs. Magnitude

Use random
magnitude

Inverse FFT

Intensity image

i

10 'v R 5 G i “‘»_— 5

1 Y i
G 5 : 2

2 2 S e
3 5 300 e e o
4 400 e
5 500 fad s by

0
6! 600 it
7 700 f

5 SR

Magnitude ~ Phase

8

8

8

8

8

Today’s class

* Template matching
* Image Pyramids
* Compression

* Introduction to HW1

Template matching
* Goal: find @ in image

* Main challenge: What is a
good similarity or distance
measure between two
patches? DT, 11)

e Correlation

e Zero-mean correlation

e Sum Square Difference

* Normalized Cross Correlation

Matching with filters
* Goal: find @ in image

 Method O: filter the image with eye patch
h[m,n]=> g[k,1] f[m+k,n+1]
k|

Jus | g : f = image
TR e .
=28 & g = filter

What went wrong?

Input Filtered Image

Matching with filters
* Goal: find @ in image

* Method 1: filter the image with zero-mean eye

h[m,n]=>_(glk,11-g) (f[m+k,n+I])

mean of template g

|npu Filtered Image (scaled) Thresholded Image

Matching with filters
* Goal: find @ in image

* Method 2: Sum of squared differences (SSD)

h[m,n]= > (glk,11- f[m+k,n+I])?
|
s E :;ﬁ‘;"'--__,. : ¥ |

Inpu 1- sqrt(SSD) Thresholded Image

Matching with filters

Can SSD be implemented with linear filters?

h[m,n] = Z(g[k,l]— fm+k,n+1])°

h[m,n]:Z:(g[k,I])2 —ZZg[k,I]f[m+k,n+I]+ Z:(1E[m+k,n+l])2

Constant Filtering with g Filtering with box filter

Matching with filters

 Goal: find in image What’s the potential
downside of SSD?
 Method 2: SSD

h[m,n] = Z(g[k,l]— f[m+k,n+1])°

Input 1- sqrt(SSD)

Matching with filters

* Goal: find ®¥ in image
e Method 3: Normalized cross-correlation

mean template mean image patch

l |
> (glk.11-g)(f[m+k,n+11-f,)

h[m,n] = <

(Z(g[k,ll—g)ZZ(f[m+k,n+|]— f_m,n)zj

Matlab: normxcorr2 (template, im)

Matching with filters

e Goal: find @ in image
e Method 3: Normalized cross-correlation

Normalized X-Correlation Thresholded Image

Matching with filters

e Goal: find @ in image
* Method 3: Normalized cross-correlation

Normalized X-Correlation Thresholded Image

Q: What is the best method to
use?

A: Depends
e Zero-mean filter: fastest but not a great matcher
* SSD: next fastest, sensitive to overall intensity

 Normalized cross-correlation: slowest, invariant to
local average intensity and contrast

Q: What it we want to find larger or
smaller eyes?

A: Image Pyramid

Review of Sampling

Gaussian

Fiter Low-Pass Sub-sample Low-Res
Image |) >

Filtered Image Image

Gaussian pyramid
ESES &S %‘

7/

L

Source: Forsyth

Template Matching with Image
Pyramids

Input: Image, Template
1. Match template at current scale

2. Downsample image
 In practice, scale stepof1.1to0 1.2

3. Repeat 1-2 until image is very small

4. Take responses above some threshold, perhaps with
non-maxima suppression

Laplacian filter

P

unit impulse

R IR e

L Lo
erer et ettt ety

Gaussian

Laplacian of Gaussian

Source: Lazebnik

Laplacian pyramid

512

256

128

Source: Forsyth

Creating the Gaussian/Laplacian Pyramid

Image = G, Smooth, then downsample

Downsample
(Smooth(Gl)

G, - Smooth(Upsample(G,)) \

G, - Smooth(Upsample(G;))

Downsample
Smooth(G
(G,

* Use same filter for smoothing in each step (e.g., Gaussian with o = 2)
Downsample/upsample with “nearest” interpolation

Hybrid Image in Laplacian Pyramid

High frequency = Low frequency

Reconstructing image from Laplacian pyramid

Image = L, + Smooth(Upsample(G,))

G, = L, + Smooth(Upsample(G,))
G; = L; + Smooth(Upsample(L,))

Use same filter for smoothing as in desconstruction
Upsample with “nearest” interpolation
Reconstruction will be lossless

Major uses of image pyramids

* Object detection
e Scale search
* Features

» Detecting stable interest points
* Course-to-fine registration

* Compression

Coarse-to-fine Image Registration

1. Compute Gaussian pyramid M
: : : I\
2. Align with coarse pyramid ’E.\ 1=
: : L o \
3. Successively align with finer /
py fam |d S medium E \ \ I=1
N\
* Search smaller range ;j / \ \
Wt
Why is this faster? fue ;20 1=0
‘H
R e S S

Are we guaranteed to get the same
result?

Applications: Pyramid Blending

plications: Pyramid Blending

Pyramid Blending

* At low frequencies, blend slowly
* At high frequencies, blend quickly

1 -

level k (Ipi.\;uIQ\ X level k| Ip.i.\'.n:IQ\
0 L
1

NYawa T- Y ava
Eve / / V X |L"r'..|l-.|/ / l\/
L\ ok |

A VA [T
ST a7
A A A W A A AW
[T 77V (7777

Left pyramid blend Right pyramid

Image representation

e Pixels:

* great for spatial resolution, poor access to
frequency

* Fourier transform:
* great for frequency, not for spatial info

* Pyramids/filter banks:

* balance between spatial and frequency
information

Compression

How is it that a 4MP image (12000KB) can be
compressed to 400KB without a noticeable change?

Lossy Image Compression (JPEG

EEEEEREEEEE)

|
¢
,.
++
E

|
|
|
|
|
B
|
|
|
|

.I

- ey
]

o EN e E
i
E=n

|
u
e
]
]
||
m
]
-
=
]
=]
=

Block-based Discrete Cosine Transform (DCT)

Slides: Efros

Using DCT In JPEG

* The first coefficient B(0,0) is the DC component,
the average intensity

* The top-left coeffs represent low frequencies, the
bottom rlght - hlgh frequenues

— T
W W

T "(‘7

Image compression using DCT

* Quantize

. Mcl)re ():oarsely for high frequencies (which also tend to have smaller
values

* Many quantized high frequency values will be zero

* Encode

e Can decode with inverse dct

Filter responses

u

—

27.24
10.25

—24.56
—14.76

[41538 —30.19 —61.20
447 —-21.86 —60.76
_ —46.83 737 77.13
G= —48.53 12.07 34.10
1212 —6.55 —13.20
—T7.73 291 2.38
—1.03 0.18 0.42
i 017 014 —-1.07
Quantized values
[26 -3 —6
0o -2 -4
-3 1 5
-3 1 2
B = 1 0 0
0 0 0
0 0 0
0 0 0

—3.95
—5.94
—2.42
—4.19

!

56.13
13.15
—2891
—10.24
—1.88
—2.38
—0.88
—1.17

OO O O O = D
oo o oooaoo—

—20.10

oo o oo ooo

—7.09
9.93
6.30
1.75
0.94

—3.02

—0.10

co oo oo oo
L 1

—239 046]
—8.54 4.88
542 —5.65
183 195 | |"
—2.79 3.14
430 185
412 —0.66
050 1.68 |

16
12
14
14
18
24
49
72

Quantization table

11
12
13
17
22
35
64
92

10
14
16
22
37
%3]
78
95

16
19
24
29
56
64
87
98

24
26
40
91
68
81
103
112

40
58
57
87
109
104
121
100

51
60
69
80
103
113
120
103

61
55
96
62
77
92
101
99

JPEG Compression Summary

1. Convert image to YCrCb

2. Subsample color by factor of 2
 People have bad resolution for color

3. Split into blocks (8x8, typically), subtract 128

4. For each block

a. Compute DCT coefficients

b. Coarsely quantize
Many high frequency components will become zero
c. Encode (e.g., with Huffman coding)

http://en.wikipedia.org/wiki/YCbCr
http://en.wikipedia.org/wiki/JPEG

http://en.wikipedia.org/wiki/YCbCr
http://en.wikipedia.org/wiki/JPEG

Lossless compression (PNG)

1. Predict that a pixel’s value based on its
upper-left neighborhood

2. Store difference of predicted and actual
value

3. Pkzip it (DEFLATE algorithm)

Three views of image filtering

* Image filters in spatial domain

* Filter is a mathematical operation on values of each patch
* Smoothing, sharpening, measuring texture

* Image filters in the frequency domain
* Filtering is a way to modify the frequencies of images
* Denoising, sampling, image compression

* Templates and Image Pyramids

* Filtering is a way to match a template to the image
* Detection, coarse-to-fine registration

—
-

HW 1

" 4-'-\\ :
A -
5
o '_

Hybrid Image

¥

* Hybrid image =

Low-Freq(Image A) + Hi-Freqg(Image B)

HW 1 —Image Pyramid

X-direction y-direction

Things to remember

* Template matching (SSD or Normxcorr2)

e SSD can be done with linear filters, is sensitive
to overall intensity

e Gaussian pyramid
* Coarse-to-fine search, multi-scale detection

 Laplacian pyramid
* More compact image representation R
e Can be used for compositing in graphics |

* Compression
* In JPEG, coarsely quantize high frequencies

QEE [l
LAl M
i w i

=
=

Thank you

* See you this Thursday

* Next class:
* Edge detection

