Thinking in Frequency

Computer Vision

Jia-Bin Huang, Virginia Tech

Dali: "Gala Contemplating the Mediterranean Sea" (1976)

Administrative stuffs

- Course website: <u>http://bit.ly/vt-computer-vision-fall-2016</u>
- Office hours Jia-Bin (440 Whittemore Hall)
 - Monday at 1:00 PM 2:00 PM (final project) sign up <u>here</u>
 - Friday at 3:00 PM 4:00 PM (lectures, HW discussions)
- MATLAB tutorial session by Akrit
 - Friday 3-4 PM, Whittemore Hall 340A
 - Bring your laptop with MATLAB installed
- HW 1 will be posted tomorrow (Sept 2). Due date: Sept 19.

Previous class: Image Filtering

- Linear filtering is sum of dot product at each position
 - Can smooth, sharpen, translate (among many other uses)
- Gaussian filters
 - Low pass filters, separability, variance
- Attend to details:
 - filter size, extrapolation, cropping
- Noise models and nonlinear image filters

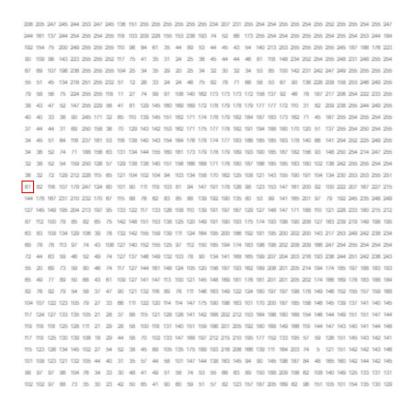
1	1	1	1
9	1	1	1
	1	1	1

Today's class

- Review of image filtering in spatial domain
 - Application: representing textures
 - Noise models and nonlinear image filters
- Fourier transform and frequency domain
- Frequency view of filtering
- Image downsizing and interpolation

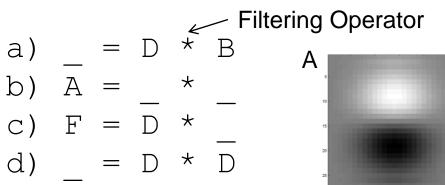
Demo

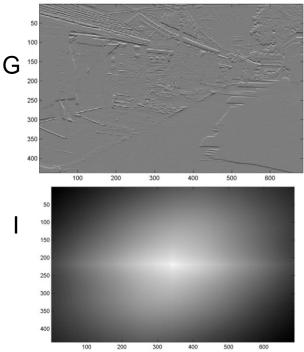
<u>http://setosa.io/ev/image-kernels/</u>

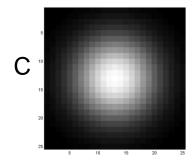


Review: questions

Fill in the blanks:





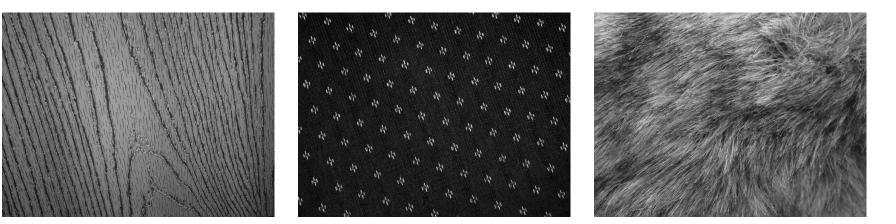


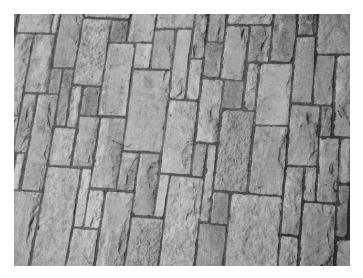
Slide: Hoiem

Application: Representing Texture

Source: Forsyth

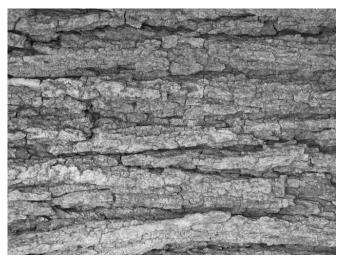
Texture and Material





http://www-cvr.ai.uiuc.edu/ponce_grp/data/texture_database/samples/

Texture and Orientation



http://www-cvr.ai.uiuc.edu/ponce_grp/data/texture_database/samples/

Texture and Scale

http://www-cvr.ai.uiuc.edu/ponce_grp/data/texture_database/samples/

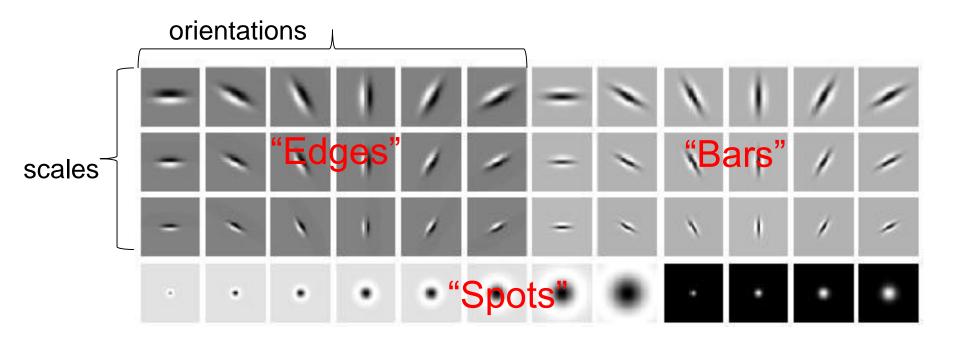
What is texture?

Regular or stochastic patterns caused by bumps, grooves, and/or markings

How can we represent texture?

Compute responses of blobs and edges at various orientations and scales

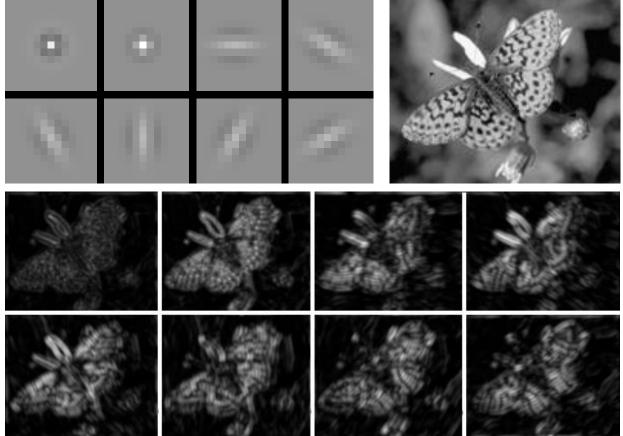
Overcomplete representation: filter banks



Code for filter banks: www.robots.ox.ac.uk/~vgg/research/texclass/filters.html

Filter banks

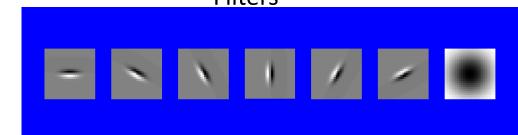
 Process image with each filter and keep responses (or squared/abs responses)

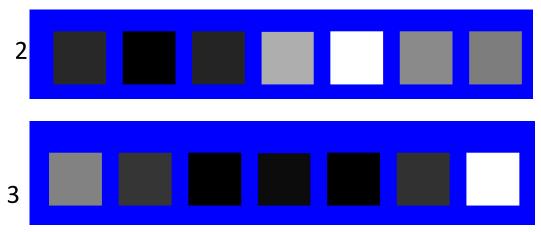


How can we represent texture?

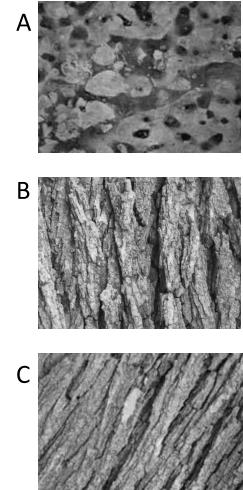
- Measure responses of blobs and edges at various orientations and scales
- Idea 1: Record simple statistics (e.g., mean, std.) of absolute filter responses

Can you match the texture to the response?

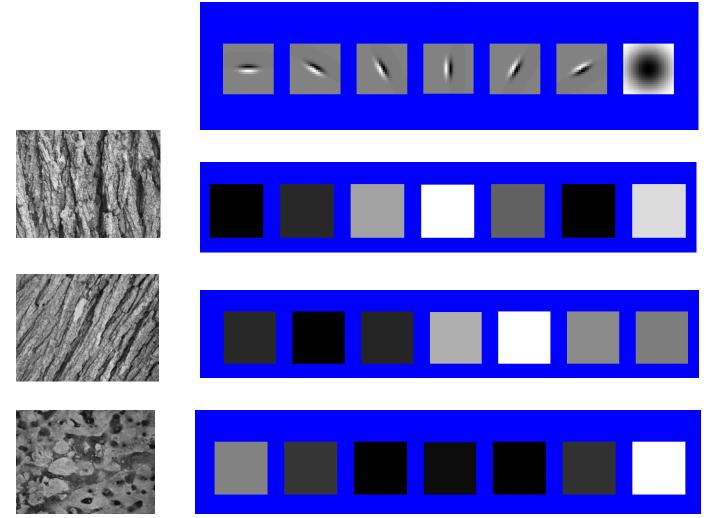




Mean abs responses



Representing texture by mean abs response

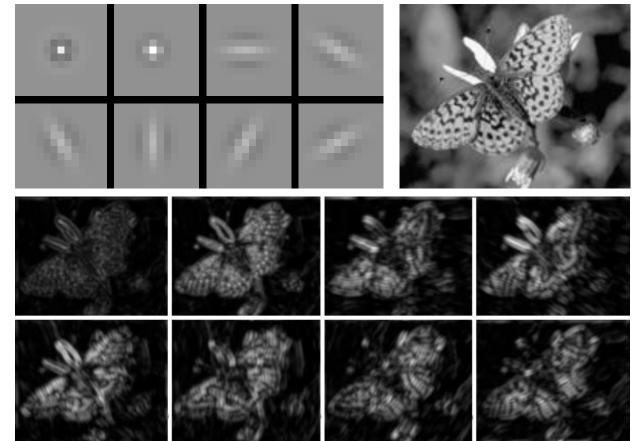


Mean abs responses

Representing texture

weeks)

 Idea 2: take vectors of filter responses at each pixel and cluster them, then take histograms (more on this in coming



Denoising and Nonlinear Image Filtering

Original

Salt and pepper noise

Impulse noise

Gaussian noise

- Salt and pepper noise: contains random occurrences of black and white pixels
- Impulse noise: contains random occurrences of white pixels
- Gaussian noise: variations in intensity drawn from a Gaussian normal distribution

Reducing salt-and-pepper noise

3x3

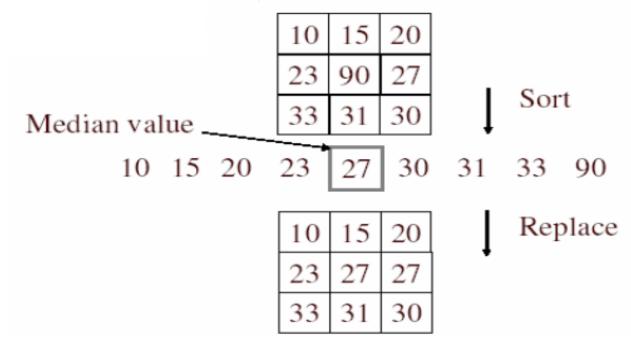
5x5

7x7

• What's wrong with Gaussian filtering?

Alternative idea: Median filtering

• A **median filter** operates over a window by selecting the median intensity in the window



• Is median filtering linear?

Source: K. Grauman

Median filter

- Is median filtering linear?
- Let's try filtering

A
 B

$$\hat{e}$$
 1
 1
 \hat{u}
 \hat{e}
 0
 0
 \hat{u}
 \hat{e}
 1
 1
 \hat{u}
 \hat{e}
 0
 1
 0
 \hat{u}
 \hat{e}
 1
 1
 2
 \hat{u}
 \hat{e}
 0
 1
 0
 \hat{u}
 \hat{e}
 1
 2
 \hat{u}
 \hat{e}
 0
 1
 0
 \hat{u}
 \hat{e}
 2
 2
 \hat{y}
 \hat{e}
 0
 0
 0
 \hat{y}
 \hat{e}
 2
 2
 \hat{y}
 \hat{e}
 0
 0
 0
 \hat{y}
 \hat{e}
 2
 2
 \hat{y}
 \hat{e}
 0
 0
 \hat{y}
 \hat{w}
 2
 2
 \hat{y}
 \hat{e}
 0
 0
 \hat{y}

 Median(A) = 1
 Median(B) = 0
 Median(B) = 0
 Median(A)
 Median(B)
 \hat{w}
 \hat{w}

$$Median(A+B) = 2$$

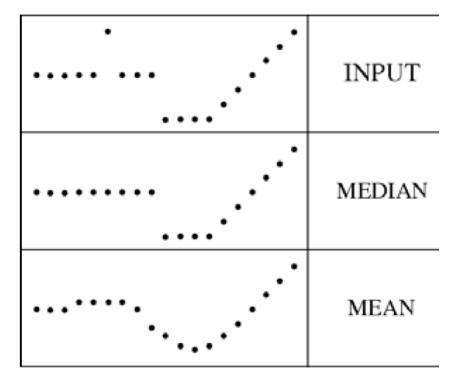
Violate linearity

 $filter(f_1 + f_2) = filter(f_1) + filter(f_2)$

Median filter

- What advantage does median filtering have over Gaussian filtering?
 - Robustness to outliers

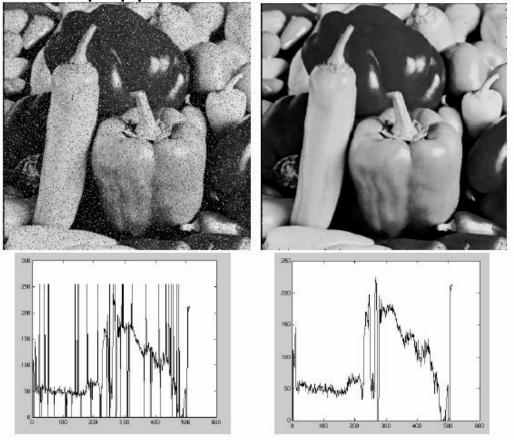
filters have width 5 :



Source: K. Grauman

Median filter

Salt-and-pepper noise Median filtered



MATLAB: medfilt2(image, [h w])

Source: M. Hebert

Gaussian vs. median filtering

3x3

5x5

7x7

Gaussian

Median

Other non-linear filters

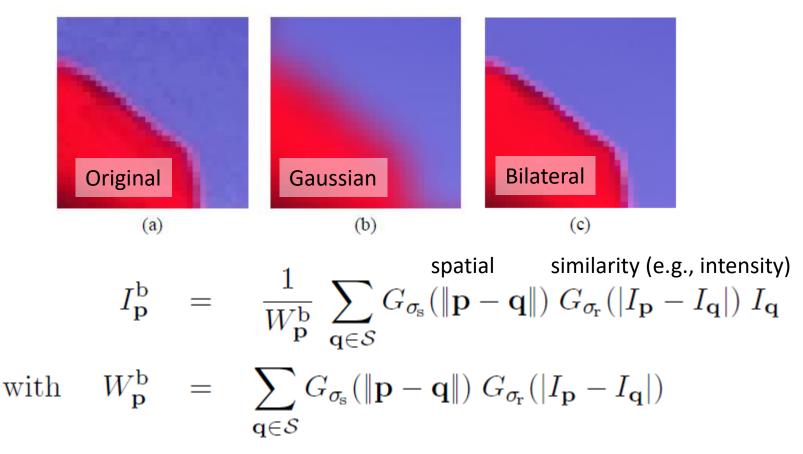
- Weighted median (pixels further from center count less)
- Clipped mean (average, ignoring few brightest and darkest pixels)
- Bilateral filtering (weight by spatial distance *and* intensity difference)

Bilateral filtering

Image: <u>http://vision.ai.uiuc.edu/?p=1455</u>

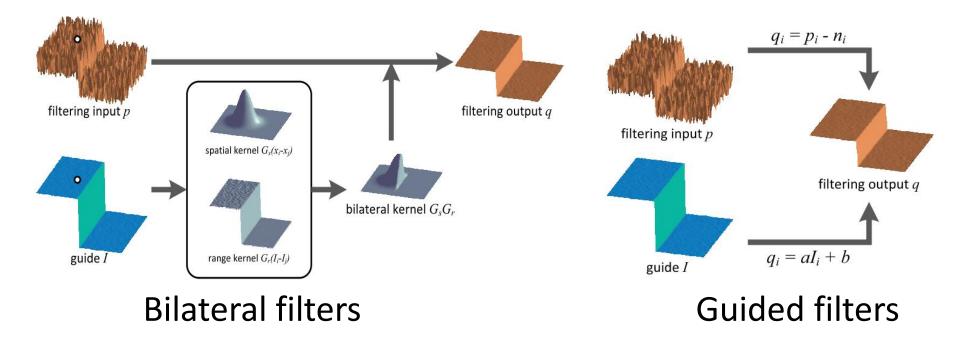
Bilateral Filters

Edge preserving: weights similar pixels more



Carlo Tomasi, Roberto Manduchi, Bilateral Filtering for Gray and Color Images, ICCV, 1998.

Guided Image Filters

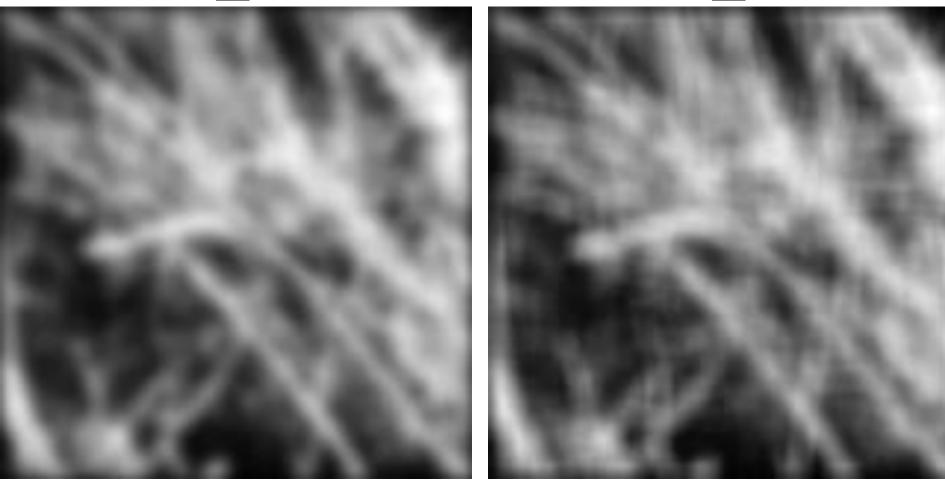


B = imguidedfilter(A,G);

Kaiming He, Jian Sun, Xiaou Tang, Guided Image Filtering. PAMI 2013

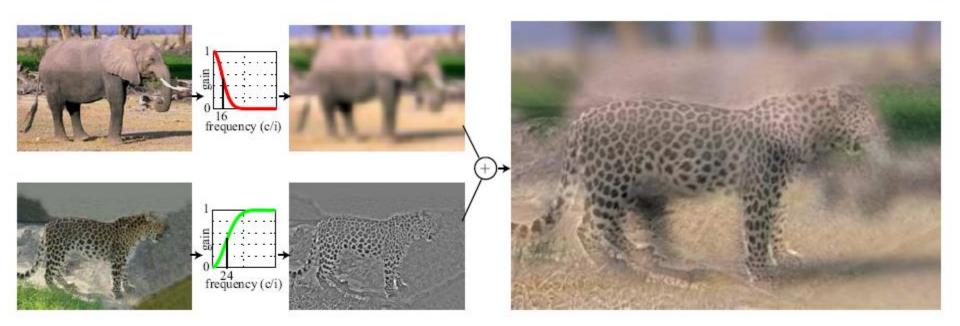
Why does the Gaussian give a nice smooth image, but the box filter give edgy artifacts?

Box filter



Slide credit: Derek Hoiem

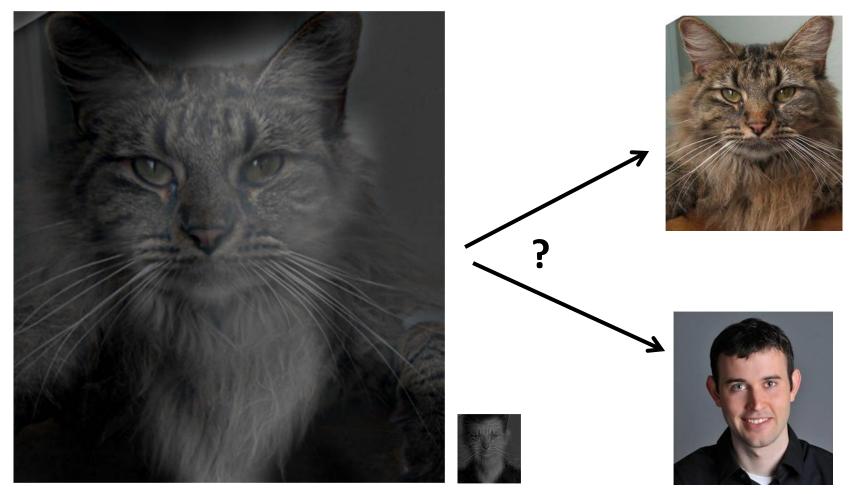
Hybrid Images



• A. Oliva, A. Torralba, P.G. Schyns, <u>"Hybrid Images,"</u> SIGGRAPH 2006

Slide credit: Derek Hoiem

Why do we get different, distance-dependent interpretations of hybrid images?



Slide credit: Derek Hoiem

Why does a lower resolution image still make sense to us? What do we lose?

Slide credit: Derek Hoiem

Image: <u>http://www.flickr.com/photos/igorms/136916757/</u>

Thinking in terms of frequency

Jean Baptiste Joseph Fourier (1768-1830)

had crazy idea (1807):

Any univariate function can be rewritten as a weighted sum of sines and cosines of different frequencies.

- Don't believe it?
 - Neither did Lagrange, Laplace, Poisson and other big wigs
 - Not translated into English until 1878!
- But it's (mostly) true!
 - called Fourier Series
 - there are some subtle restrictions

...the manner in which the author arrives at these equations is not exempt of difficulties and...his analysis to integrate them still leaves something to be desired on the score of generality and even rigour.

Fourier, Joseph (1768-1830)

French mathematician who discovered that any periodic motion can be written as a superposition of sinusoidal and cosinusoidal vibrations. He developed a mathematical theory of heat sin *Théorie Analytique de la Chaleur (Analytic Theory of Heat)*, (1822), discussing it in terms of differential equations.

Fourier was a friend and advisor of Napoleon. Fourier believed that his health would be improved by wrapping himself up in blankets, and in this state he tripped down the stairs in his house and killed himself. The paper of Galois which he had taken home to read shortly before his death was never recovered.

SEE ALSO: Galois

Additional biographies: MacTutor (St. Andrews), Bonn

© 1996-2007 Eric W. Weisstein

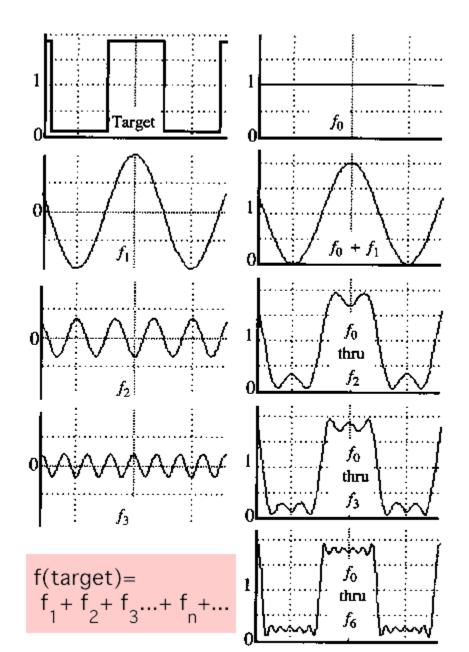
How would math have changed if the Slanket or Snuggie had been invented?

A sum of sines

Our building block:

 $A\sin(\omega x + \phi)$

Add enough of them to get any signal f(x) you want!



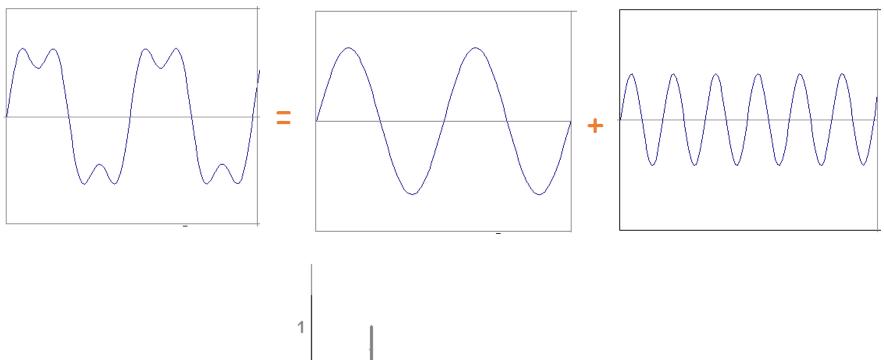
0.3

0

f

2f

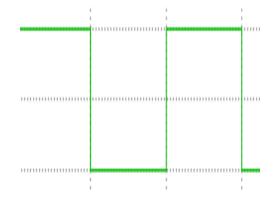
• example : $g(t) = \sin(2\pi f t) + (1/3)\sin(2\pi(3f) t)$

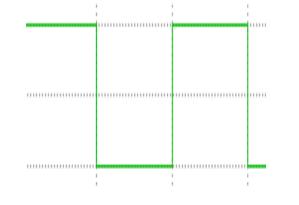


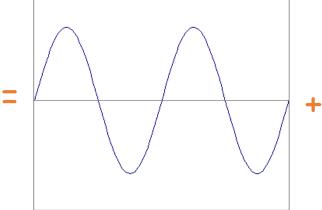
frequency

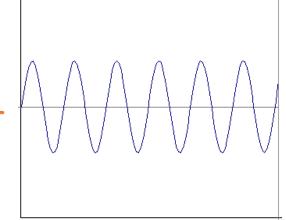
3f

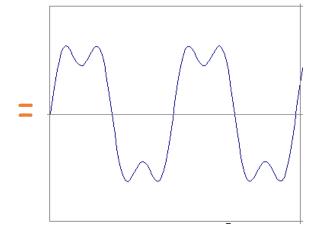
Slides: Efros

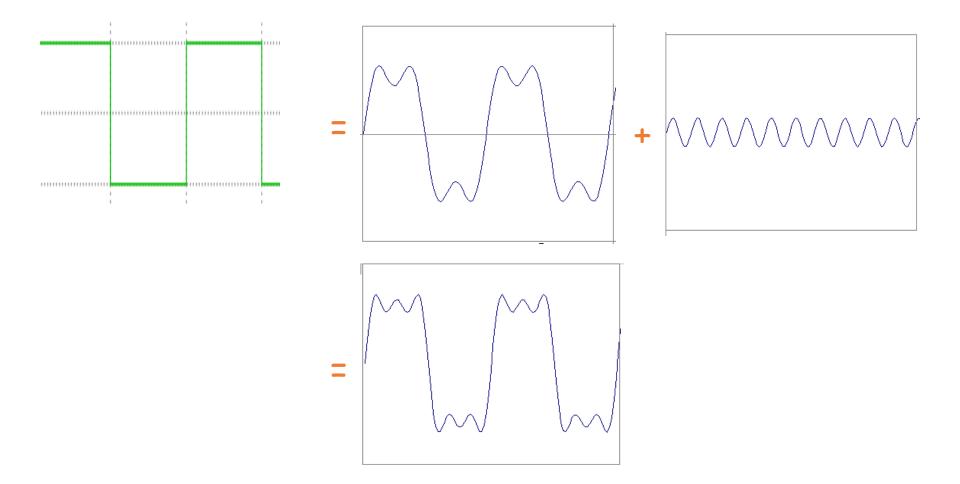


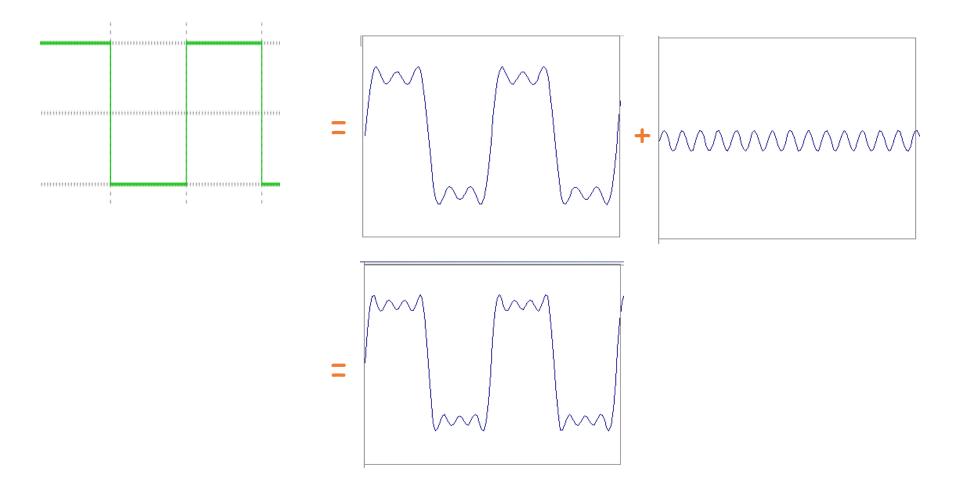


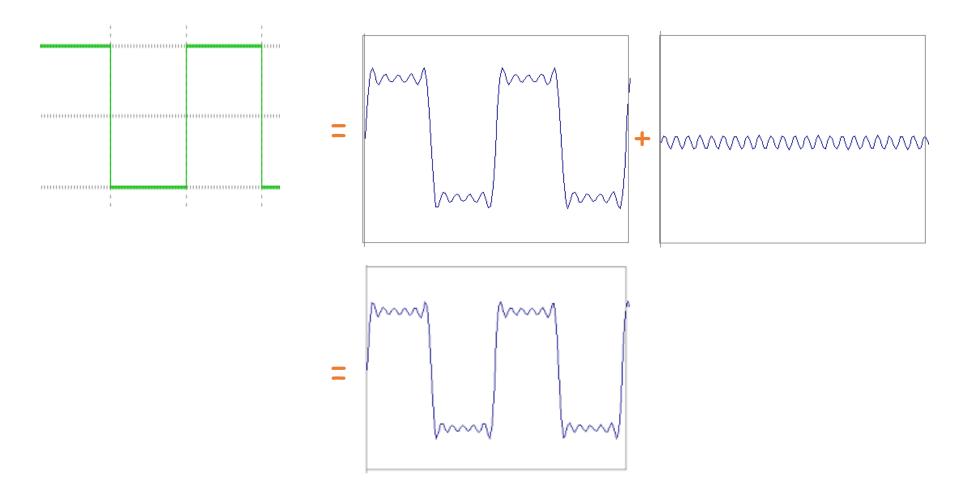


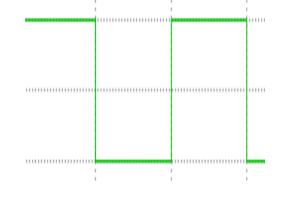


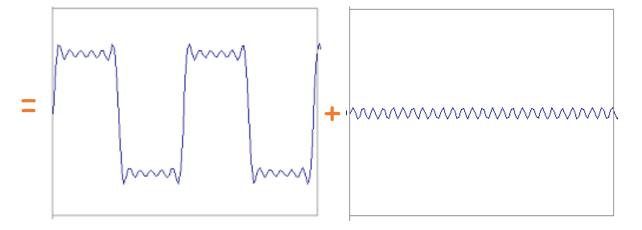


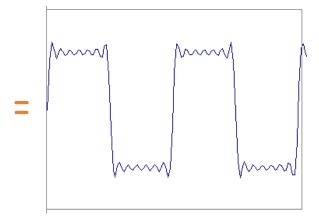


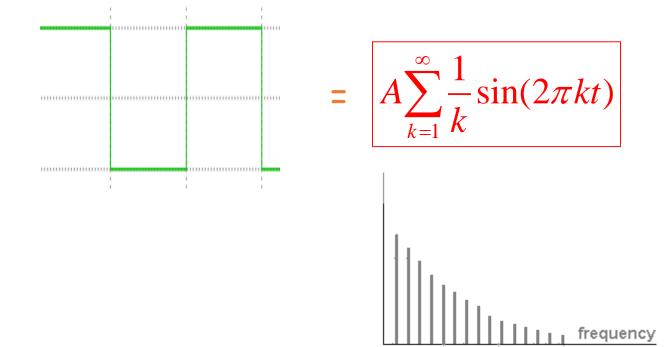






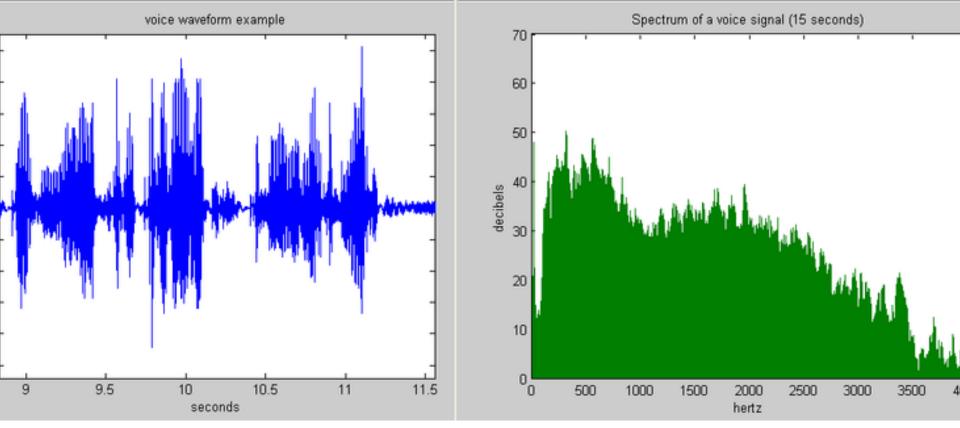






Example: Music

We think of music in terms of frequencies at different magnitudes



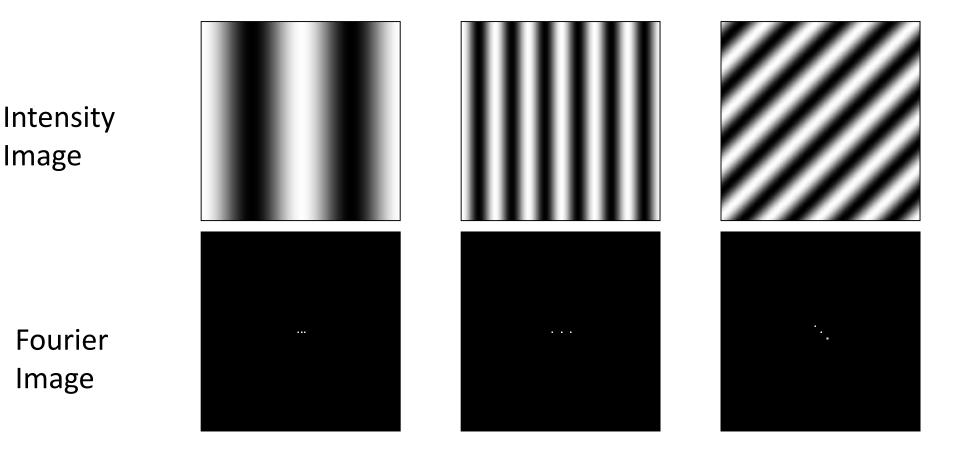
Other signals

 We can also think of all kinds of other signals the same way

Cats(?) Hi, Dr. Elizabeth? Yeah, Uh... I accidentally took the Fourier transform of my cat... Meow!

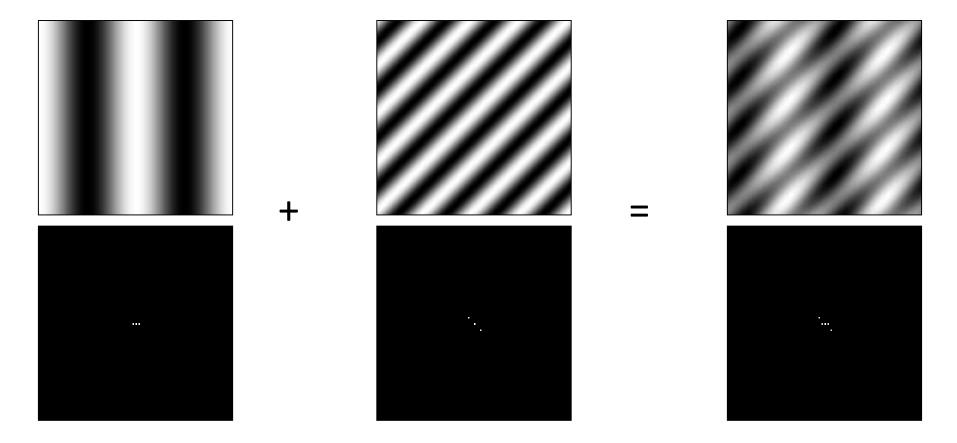
xkcd.com

Fourier analysis in images



http://sharp.bu.edu/~slehar/fourier/fourier.html#filtering

Signals can be composed



http://sharp.bu.edu/~slehar/fourier/fourier.html#filtering More: http://www.cs.unm.edu/~brayer/vision/fourier.html

Fourier Transform

- Fourier transform stores the magnitude and phase at each frequency
 - Magnitude encodes how much signal there is at a particular frequency
 - Phase encodes spatial information (indirectly)
 - For mathematical convenience, this is often notated in terms of real and complex numbers

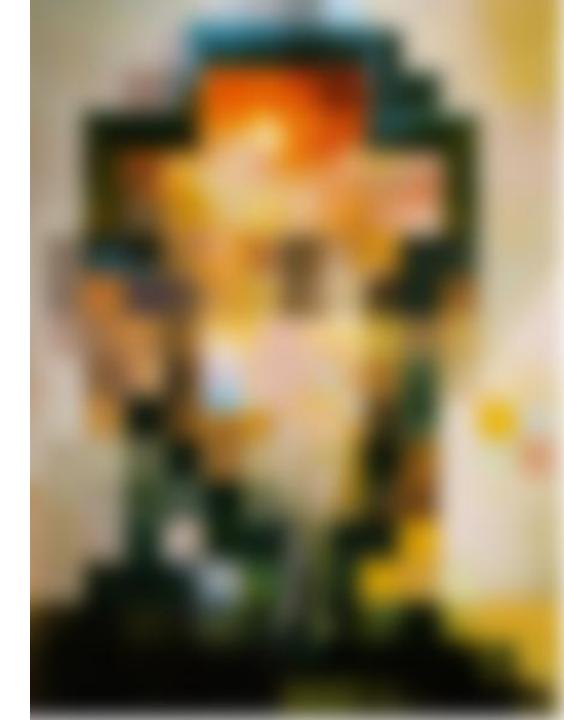
Amplitude:
$$A = \pm \sqrt{R(\omega)^2 + I(\omega)^2}$$
 Phase: $\phi = \tan^{-1} \frac{I(\omega)}{R(\omega)}$

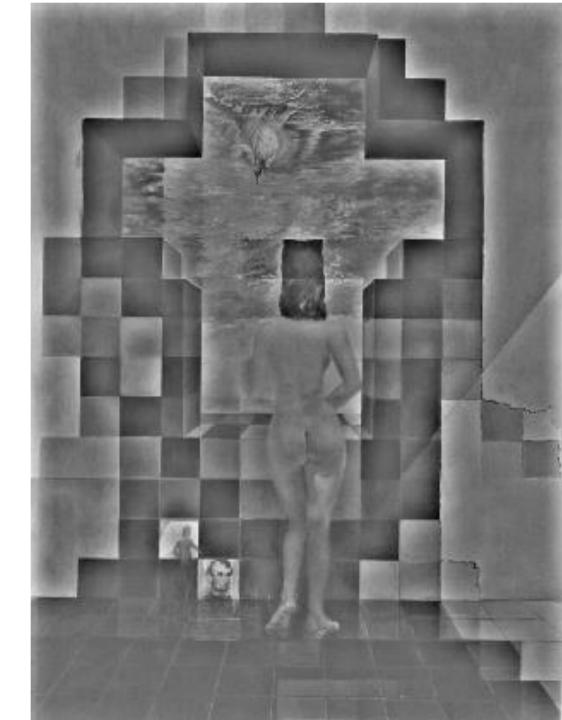
Euler's formula:
$$e^{inx} = \cos(nx) + i\sin(nx)$$

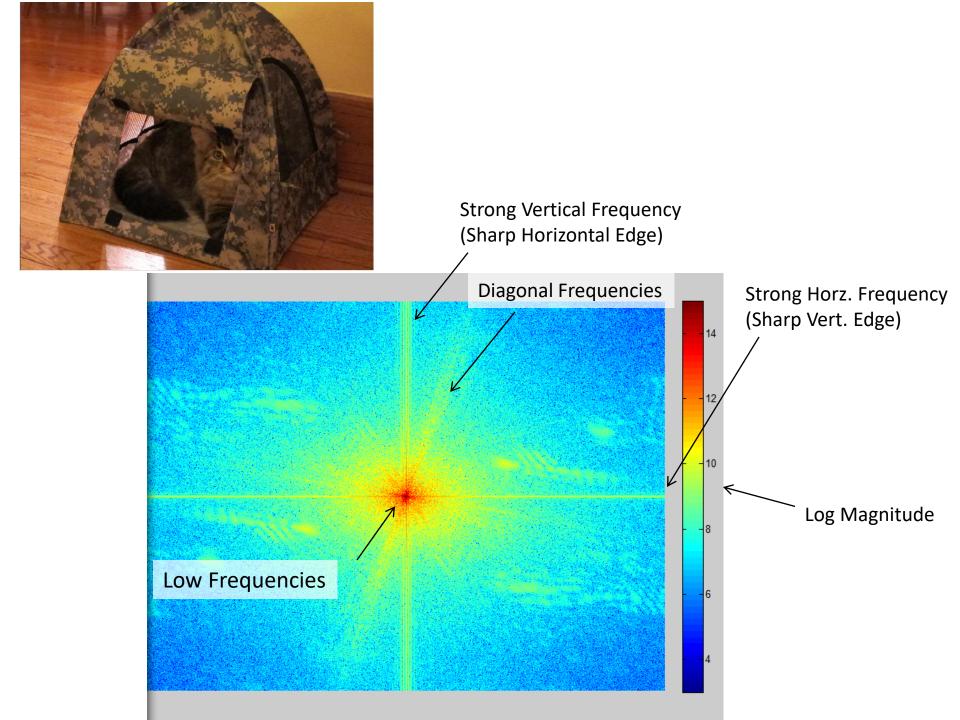
Salvador Dali invented Hybrid Images?

Salvador Dali

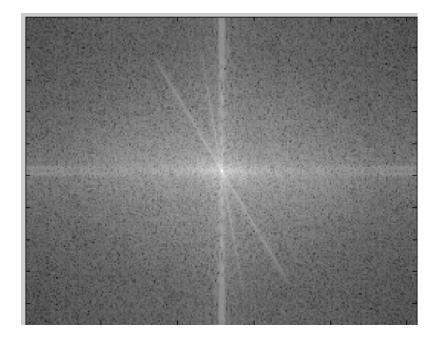
"Gala Contemplating the Mediterranean Sea, which at 30 meters becomes the portrait of Abraham Lincoln", 1976





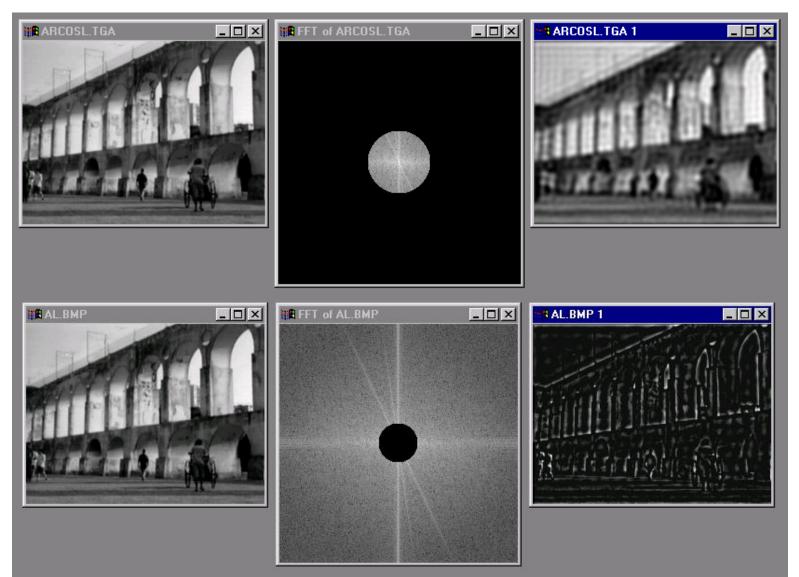


Man-made Scene



Can change spectrum, then reconstruct

Low and High Pass filtering



Computing the Fourier Transform

$$H(\omega) = \mathcal{F}\left\{h(x)\right\} = Ae^{j\phi}$$

Continuous

$$H(\omega) = \int_{-\infty}^{\infty} h(x) e^{-j\omega x} dx$$

Discrete

$$H(k) = \frac{1}{N} \sum_{x=0}^{N-1} h(x) e^{-j\frac{2\pi kx}{N}} \quad k = -N/2..N/2$$

Fast Fourier Transform (FFT): NlogN

The Convolution Theorem

• The Fourier transform of the convolution of two functions is the product of their Fourier transforms

$$\mathbf{F}[g * h] = \mathbf{F}[g]\mathbf{F}[h]$$

• The inverse Fourier transform of the product of two Fourier transforms is the convolution of the two inverse Fourier transforms

$$F^{-1}[gh] = F^{-1}[g] * F^{-1}[h]$$

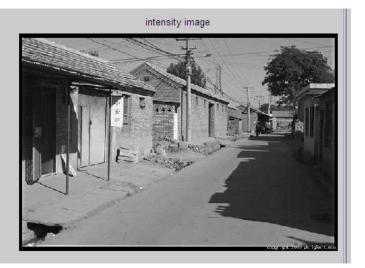
• **Convolution** in spatial domain is equivalent to **multiplication** in frequency domain!

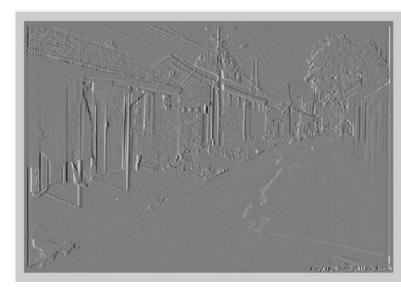
Properties of Fourier Transforms

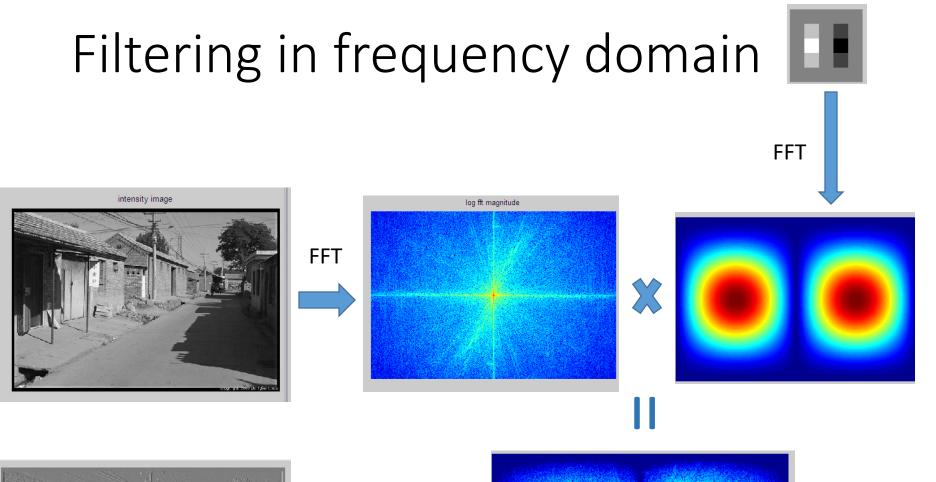
- Linearity $\mathcal{F}[ax(t) + by(t)] = a\mathcal{F}[x(t)] + b\mathcal{F}[y(t)]$
- Fourier transform of a real signal is symmetric about the origin
- The energy of the signal is the same as the energy of its Fourier transform

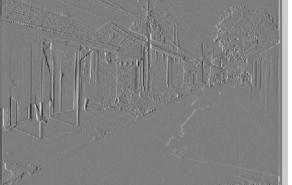
Filtering in spatial domain

1	0	-1
2	0	-2
1	0	-1

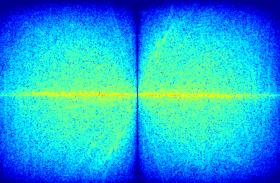








Inverse FFT



FFT in Matlab

• Filtering with fft

im = ... % "im" should be a gray-scale floating point image [imh, imw] = size(im); fftsize = 1024; % should be order of 2 (for speed) and include padding im_fft = fft2(im, fftsize, fftsize); % 1) fft im with padding hs = 50; % filter half-size fil = fspecial('gaussian', hs*2+1, 10); fil_fft = fft2(fil, fftsize, fftsize); % 2) fft fil, pad to same size as image im_fil_fft = im_fft .* fil_fft; % 3) multiply fft images im_fil = ifft2(im_fil_fft); % 4) inverse fft2 im_fil = im_fil(1+hs:size(im,1)+hs, 1+hs:size(im, 2)+hs); % 5) remove padding

• Displaying with fft

figure(1), imagesc(log(abs(fftshift(im_fft)))), axis image, colormap jet

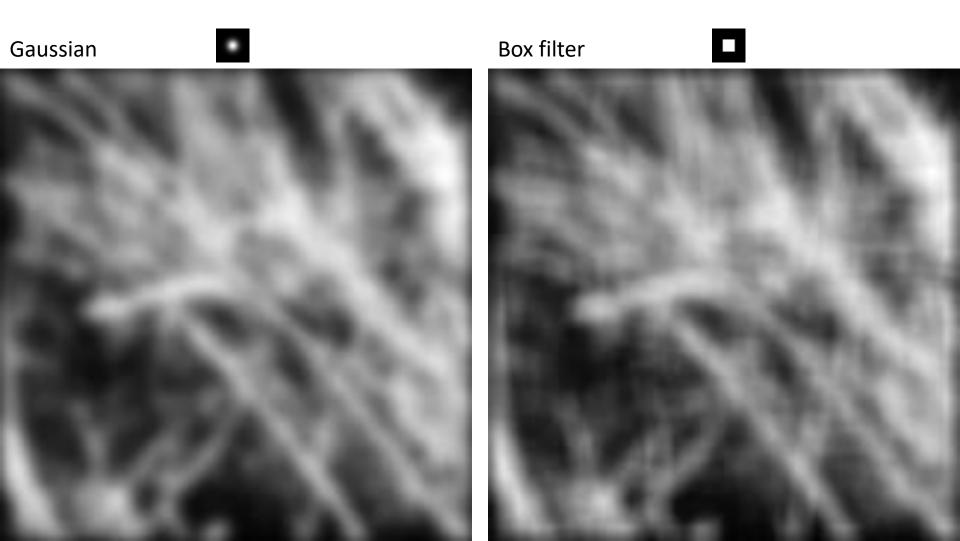
Questions

Which has more information, the phase or the magnitude?

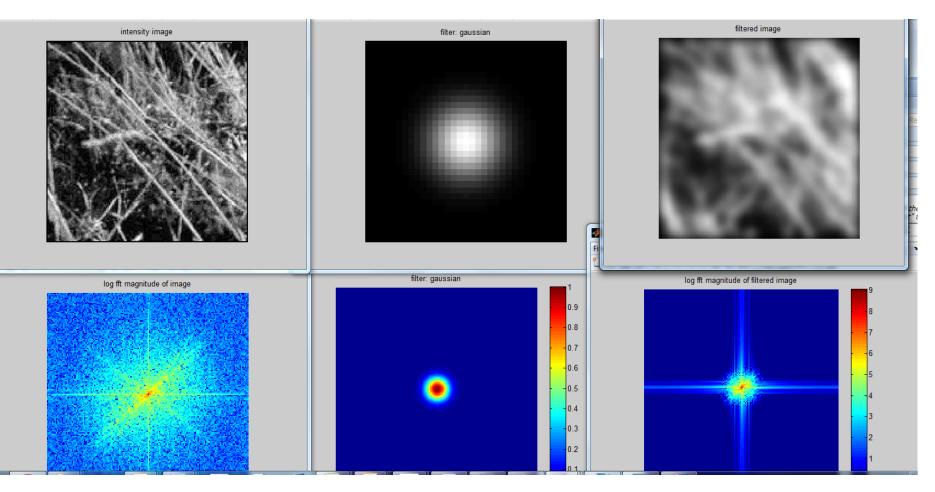
What happens if you take the phase from one image and combine it with the magnitude from another image?

Filtering

Why does the Gaussian give a nice smooth image, but the square filter give edgy artifacts?



Gaussian

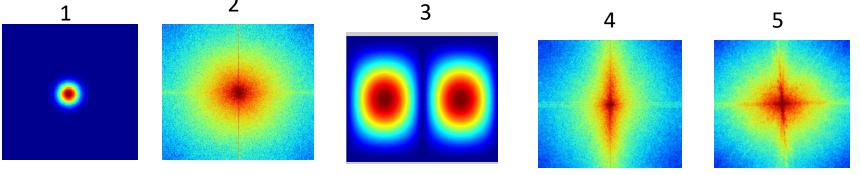


Box Filter



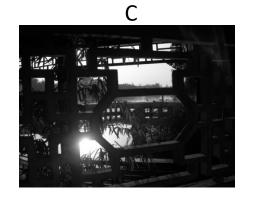
Question

Match the spatial domain image to the Fourier magnitude image



В





D

Ε

Image half-sizing

This image is too big to fit on the screen. How can we reduce it?

How to generate a halfsized version?

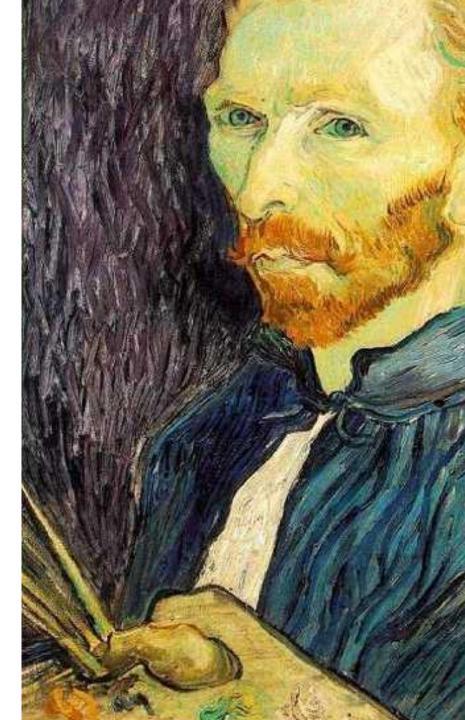
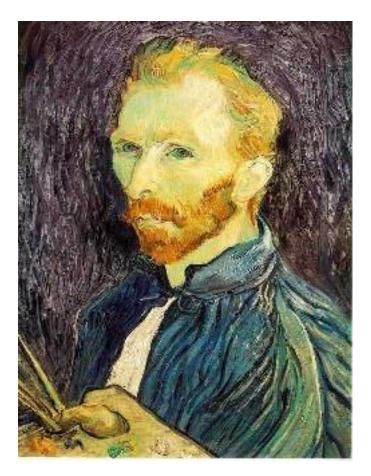


Image sub-sampling



1/8

Throw away every other row and column to create a 1/2 size image - called *image sub-sampling*

Image sub-sampling



1/2

1/4 (2x zoom)

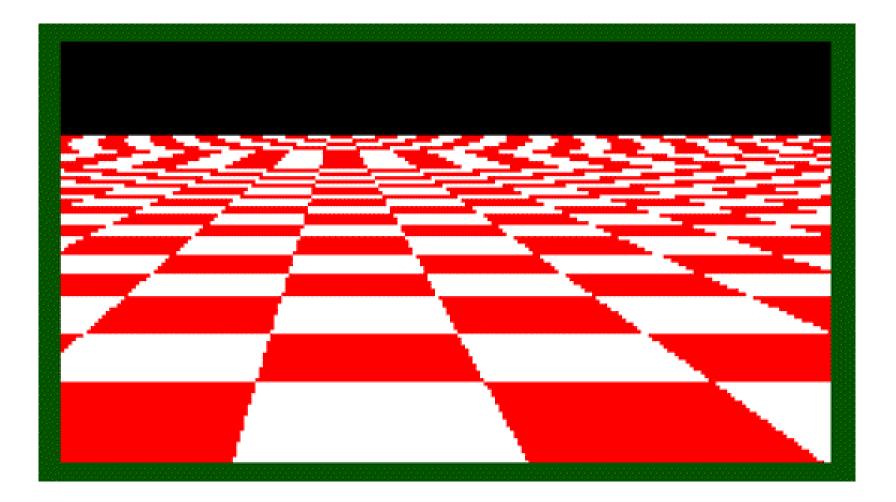
1/8 (4x zoom)

Why does this look so crufty? Aliasing! What do we do?

Slide by Steve Seitz

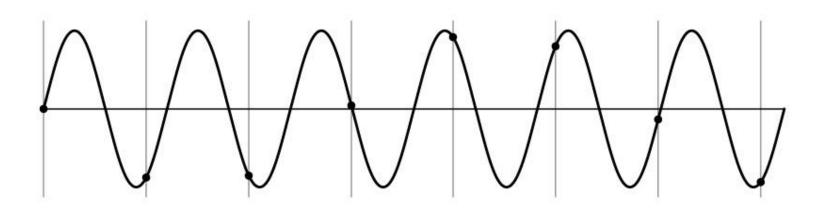
Image sub-sampling

Even worse for synthetic images



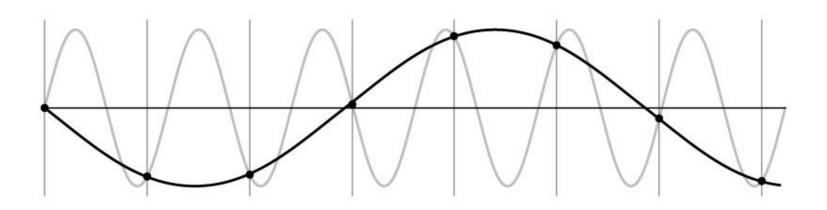
Aliasing problem

• 1D example (sinewave):



Aliasing problem

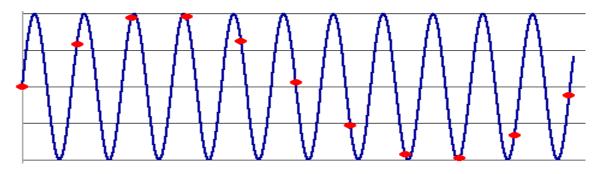
• 1D example (sinewave):



Aliasing problem

- Sub-sampling may be dangerous....
- Characteristic errors may appear:
 - "Wagon wheels rolling the wrong way in movies"
 - "Checkerboards disintegrate in ray tracing"
 - "Striped shirts look funny on color television"

Aliasing

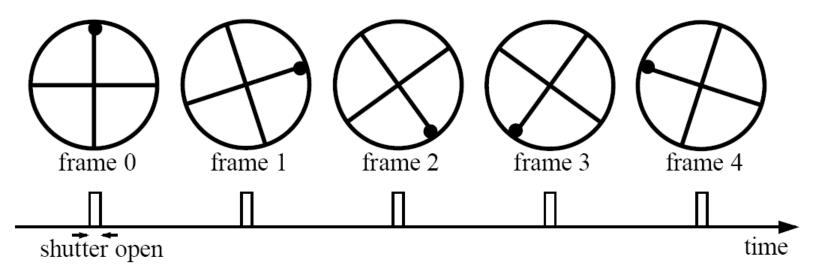


- Occurs when your sampling rate is not high enough to capture the amount of detail in your image
- Can give you the wrong signal/image—an *alias*
- To do sampling right, need to understand the structure of your signal/image
- To avoid aliasing:
 - sampling rate \geq 2 * max frequency in the image
 - said another way: ≥ two samples per cycle
 - This minimum sampling rate is called the **Nyquist rate**

Wagon-wheel effect

Imagine a spoked wheel moving to the right (rotating clockwise). Mark wheel with dot so we can see what's happening.

If camera shutter is only open for a fraction of a frame time (frame time = 1/30 sec. for video, 1/24 sec. for film):

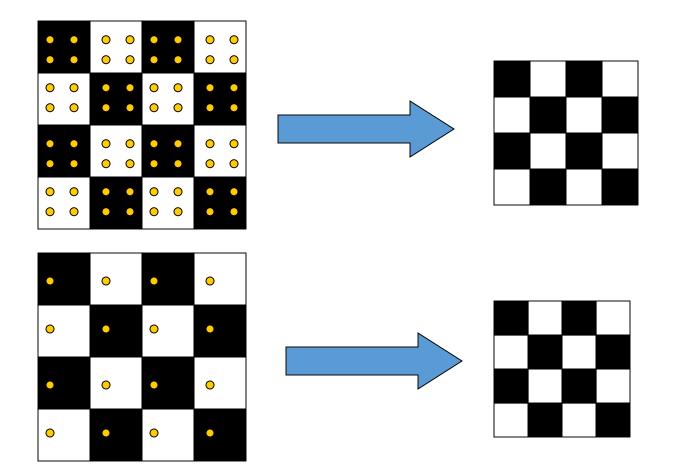


Without dot, wheel appears to be rotating slowly backwards! (counterclockwise)

(See <u>http://www.michaelbach.de/ot/mot_wagonWheel/index.html</u>) Sou

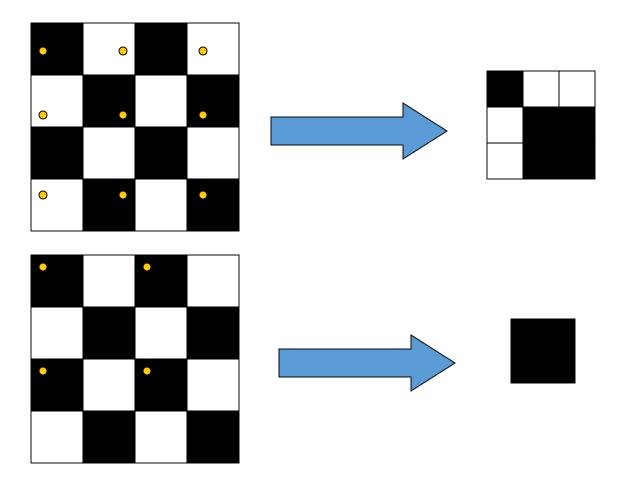
Wagon-wheel effect

Sampling an image

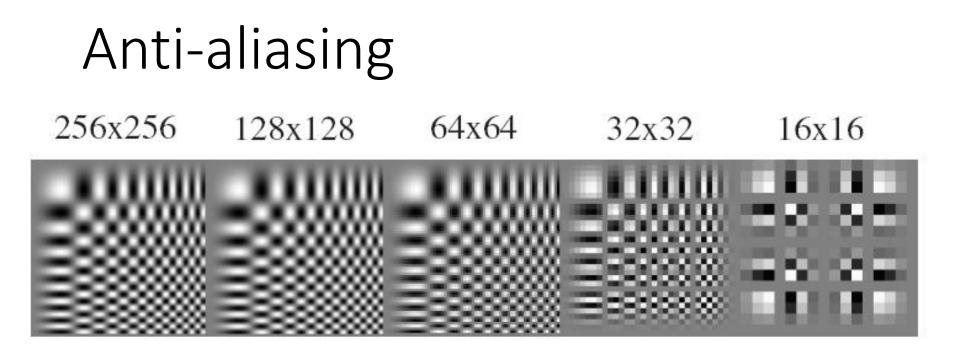


Examples of GOOD sampling

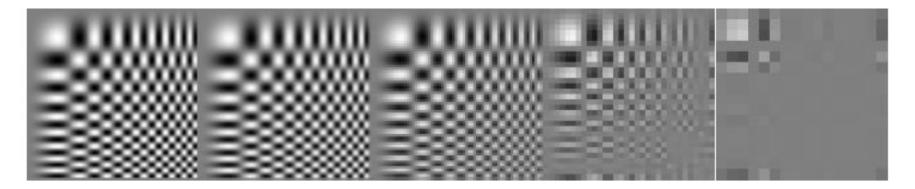
Undersampling



Examples of BAD sampling -> Aliasing

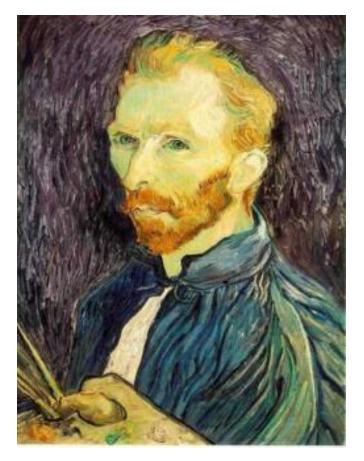


256x256 128x128 64x64 32x32 16x16



Forsyth and Ponce 2002

Gaussian (low-pass) pre-filtering



G 1/8

G 1/4

Gaussian 1/2

• Solution: filter the image, then subsample

Subsampling with Gaussian pre-filtering



Gaussian 1/2

G 1/8

• Solution: filter the image, then subsample

Compare with...

1/2

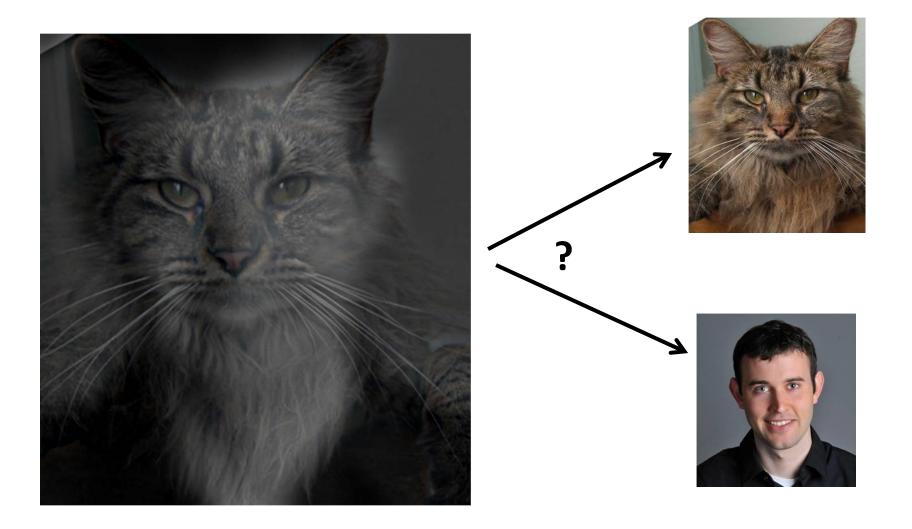
1/4 (2x zoom)

1/8 (4x zoom)

Why does a lower resolution image still make sense to us? What do we lose?

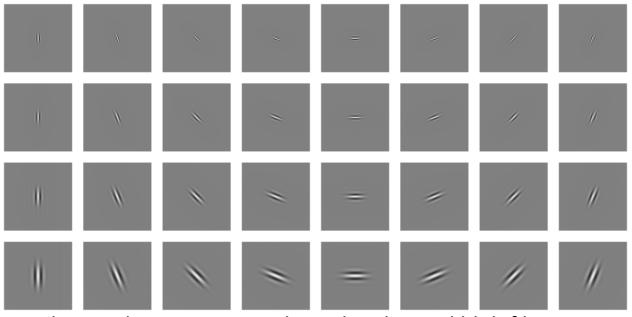
Image: http://www.flickr.com/photos/igorms/136916757/

Why do we get different, distance-dependent interpretations of hybrid images?



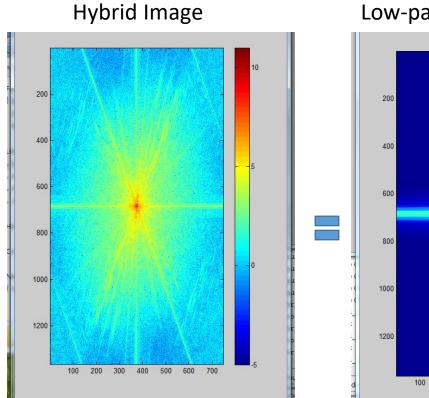
Clues from Human Perception

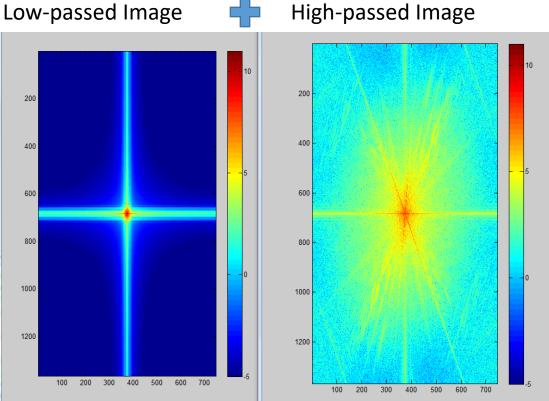
- Early processing in humans filters for various orientations and scales of frequency
- Perceptual cues in the mid-high frequencies dominate perception
- When we see an image from far away, we are effectively subsampling it



Early Visual Processing: Multi-scale edge and blob filters

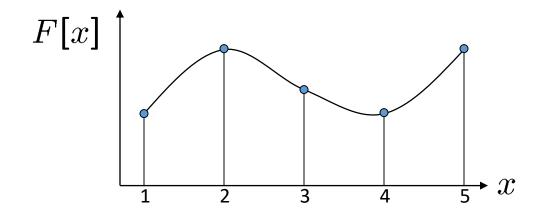
Hybrid Image in FFT

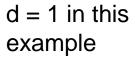




Upsampling

- This image is too small for this screen:
- How can we make it 10 times as big?
- Simplest approach:
 repeat each row
 and column 10 times
- ("Nearest neighbor interpolation")

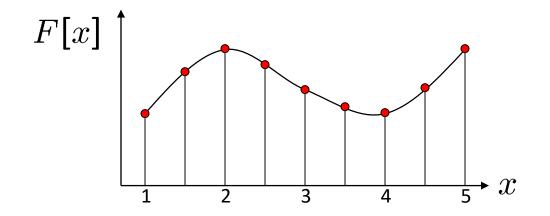


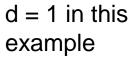


Recall how a digital image is formed

 $F[x, y] = quantize\{f(xd, yd)\}$

- It is a discrete point-sampling of a continuous function
- If we could somehow reconstruct the original function, any new image could be generated, at any resolution and scale

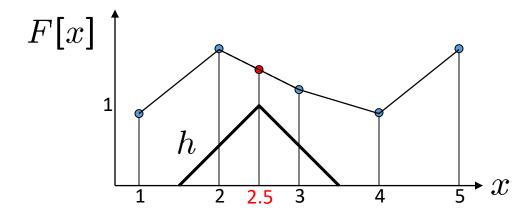




Recall how a digital image is formed

 $F[x, y] = quantize\{f(xd, yd)\}$

- It is a discrete point-sampling of a continuous function
- If we could somehow reconstruct the original function, any new image could be generated, at any resolution and scale



d = 1 in this example

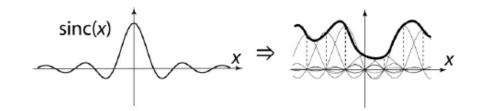
- What if we don't know f ?
 - Guess an approximation: \tilde{f}
 - Can be done in a principled way: filtering
 - Convert F to a continuous function:

 $f_F(x) = F(\frac{x}{d})$ when $\frac{x}{d}$ is an integer, 0 otherwise

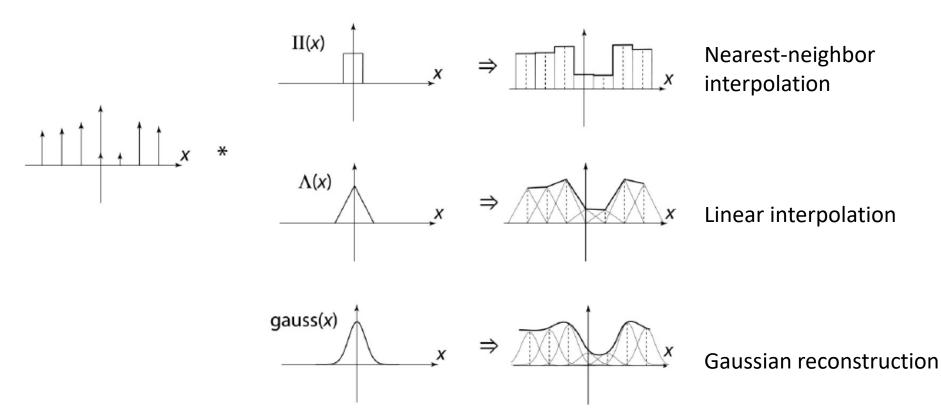
• Reconstruct by convolution with a *reconstruction filter, h*

$$\tilde{f} = h * f_F$$

Adapted from: S. Seitz



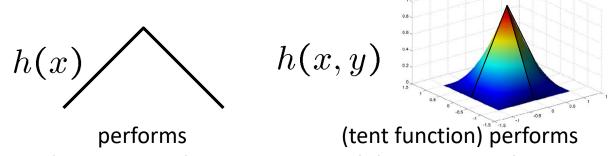
"Ideal" reconstruction



Source: B. Curless

Reconstruction filters

• What does the 2D version of this hat function look like?



linear interpolation

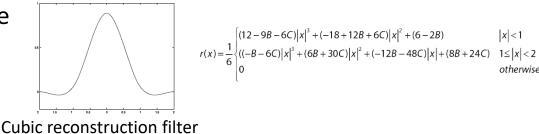
bilinear interpolation

Often implemented without cross-correlation

• E.g., <u>http://en.wikipedia.org/wiki/Bilinear_interpolation</u>

Better filters give better resampled images

• Bicubic is common choice



Original image: 🚺 x 10

Nearest-neighbor interpolation

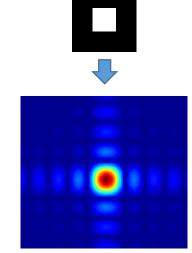
Bilinear interpolation

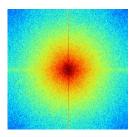
Bicubic interpolation

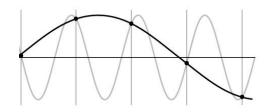
Also used for *resampling*

Things to Remember

- Sometimes it makes sense to think of images and filtering in the frequency domain
 - Fourier analysis
- Can be faster to filter using FFT for large images (N logN vs. N² for auto-correlation)
- Images are mostly smooth
 - Basis for compression
- Remember to low-pass before sampling







Thank you

- Enjoy your long weekend!
- Next class:
 - Pyramid, template matching

