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Administrative stuffs

Search for Teammates!

add new post:

8 e I'm one student looking for more people to work with.

* Signed up Piazza discussion board?

. . . [,% I'm from a group looking for more students.
e Sample final project ideas posted
*Name Jia-Bin Huang *Email jbhuang@vt.edu
*About Me

* Installed MATLAB?
» Akrit (TA) will hold a tutorial session next Friday

(Things you could include: your location, grad/undergrad, when
you're available... help people get to know you!)

* Reviewed Linear Algebra?

* Questions about the course logistics?


piazza.com/vt/fall2016/ece5554ece4554/

Previous class: Introduction

. OverV|ew of computer vision

Comfort



Today’s class

* What determines pixels’ htness?

* What determines pixels’ color?

* What can we infer about the scene from pixel intensities?



Why should we care?

—

Photometric Stereo



https://en.wikipedia.org/wiki/Photometric_stereo

Why should we care?

Exposing Photo Manipulation from Shading and Shadows [Kee et al. TOG 14]



http://www.cs.dartmouth.edu/farid/downloads/publications/tog14.pdf

Why should we care?

~ White and gold?

" Or

Black and blue?



Why should we care?

Point sampling strategy

Color descriptor computation

=

Dense sampling detector

0‘ :-‘le--llna. o-m-‘l.--liua.
n— :-‘l.-lLu. c-t-ll.—lLu.
Q- nd. | @ and
O" ity c-;ul;

Spatial pyramid (2x2)

Image

™

Spatial pyramid (1x3) Histograms, ColorSIFT, ...

Bag-of-words model
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Coduba
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Vector quantization

Vector qua'ntization

Object and scene categorization [Sande et al. PAMI 2010]

Fixed-length
feature vector

SN


https://staff.fnwi.uva.nl/th.gevers/pub/GeversPAMI09.pdf

What determines pixels’ brightness?




Image Formation

Digital Camera

(Internal) image plane

Film




Sensor Array

BRI NET

a/b CMOS sensor

FIGURE 2.17 (a) Continuos image projected onto a sensor arrayv. (b) Result of image
sampling and quantization.



What humans see

Slide credit: Larry Zitnick



What compute

Slide credit: Larry Zitnick
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How does a pixel get its value?

Light emitted

Fraction of light reflects
into camera

Sensor

Slide credit: Derek Hoiem



How does a pixel get its value?

* Major factors
* |llumination strength and direction
Surface geometry
Surface material
Nearby surfaces
Camera gain/exposure

Light emitted

Light reflected to
camera

Sensor

Slide credit: Derek Hoiem



Basic models of reflection

e Specular: light bounces off at the incident angle
* E.g., mirror :
specular reflection incoming light

R

* Diffuse: light scatters in all directions
e E.g., brick, cloth, rough wood

diffuse reflection incoming light

Ny
N
N

Slide credit: Derek Hoiem



Lambertian reflectance model

* Some light is absorbed (function of albedo p)
* Remaining light is scattered (diffuse reflection)
* Examples: soft cloth, concrete, matte paints

light source light source

diffuse reflection

absorption

(1-p)

Slide credit: Derek Holem



Lambertian reflectance model

* Some light is absorbed (function of albedo p)
* Remaining light is scattered (diffuse reflection)
* Examples: soft cloth, concrete, matte paints

light source light source

diffuse reflection

absorption

(1-p)

Slide credit: Derek Holem



Diffuse reflection: Lambert’s cosine law

Intensity does not depend on viewer angle.

* Amount of reflected light proportional to cos(0)
* Visible solid angle also proportional to cos(8)
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Slide credit: Derek Hoiem http://en.wikipedia.org/wiki/Lambert%27s cosine law



http://en.wikipedia.org/wiki/Lambert's_cosine_law

Specular Reflection

» Reflected direction depends on light orientation
and surface normal

e E.g., mirrors are fully specular

 Most surfaces can be modeled with a mixture of
diffuse and specular components

light source

specular reflection

Flickr, by piratejohnn ‘
Slide credit: Derek Hoiem y piraicj y



Most surfaces have both specular and diffuse
components

» Specularity = spot where specular reflection dominates (typically
reflects light source)

€y

Typically, specular component is small

Slide credit: Derek Hoiem Photo: northcountryhardwoodfloors.com



Intensity and Surface Orientation

Intensity depends on illumination angle because less light comes in at
oblique angles.

p = Albedo: fraction of light that is reflected

S = directional source

N = surface normal U f H
[ = reflected intensity ﬁ >/
I(x) = p(x)(S- N(x)) i |

Slide credit: Forsyth






Recap

_ . ] absorption
* When light hits a typical surface
* Some light is absorbed (1-p)
* More absorbed for low albedos
diffuse
* Some light is reflected diffusely reflection

* Independent of viewing direction iR

<. .
* Some light is reflected specularly
* Light bounces off (like a mirror), depends on viewing
direction specular
reflection
R\
0./ ©

Slide credit: Derek Hoiem



Other possible effects

light source light source
transparency refraction
| |
K o

Slide credit: Derek Hoiem



Slide credit: Derek Hoiem

light source

fluorescence

phosphorescence

light source




Slide credit: Derek Hoiem

light source

subsurface

scattering




BRDF: Bidirectional Reflectance Distribution Function

 Model of local reflection that tells how bright a surface appears
when viewed from one direction when light falls on it from
another

\‘ & A surface normal
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Slide credit: S. Savarese



Reflection models

Lambertian: Mirrored: reflection Glossy: reflection mostly
reflection all diffuse all specular diffuse, some specular



Dynamic range and camera response

e Typical scenes have a huge
dynamic range

 Camera response is roughly linear
in the mid range (15 to 240) but
non-linear at the extremes
* called saturation or undersaturation

Intensity of light reflected
from objects (lamberts)
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Dazzling light; bright sun on snow
10 /\ glig g

1 Outdoors in full sunlight

Qutdoors under a tree on a sunny day

Comfortable indoor illumination;
night sports events

bright moonlight

iR et o] Cone vision

V' Threshold when dark-adapted

@ 1998 Sinauer Associates, Inc.
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Canon EQS5-1Ds Mark Il, JPEG from camera
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Density response
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Density step =011
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What determines pixels’ color?

https://upload.wikimedia.org/wikipedia/commons/b/b1/Colouring pencils.jpg



https://upload.wikimedia.org/wikipedia/commons/b/b1/Colouring_pencils.jpg

The Eye

Conjunctiva )
: Vitreous humor

Iris

Cornea

Visual axis —_

Aqueous

Choroid

Sclera

* The human eye is a cameral

* IriS - colored annulus with radial muscles

* Pupil - the hole (aperture) whose size is controlled by the iris
* What's the “film”?

— photoreceptor cells (rods and cones) in the retina

Slide by Steve Seitz



Retina up-close
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Two types of light-sensitive receptors

Cones

e cone-shaped

 |less sensitive

 operate in high light color vision

Rods

* rod-shaped
 highly sensitive

* Qperate at night
e gray-scale vision
 slower to respond

Slide Credit: Efros



Distribution of Rods and Cones

Night Sky: why are there more stars off-center?

Slide credit: Efros



Find your blind spot

°



Slide Credit: Efros

The Physics of Light

Light: Electromagnetic energy whose wavelength is between

400 nm and 700 nm. (1 nm = 10 -9 meter)

T uhltraviolet rays. microwaves.
N visible LT .

o Merays

T gamma rays i PR fTin¥r >l ran Eee e PR D T radio waves - .. 3
A

Relative Sensitivity

400 500 SO0 Fasiel
Wavelength {(nm)

Human Luminance Sensitivity Function

http://www.yorku.ca/eye/photopik.htm



Visible Light

Why do we see light of these wavelengths?

10000 C

...because that’s where the
Sun radiates EM energy

5000° C

0 400 700 1000 2000
—

Visible Wavelength (nm)
Region © Stephen E. Palmer, 2002




The Physics of Light

Any patch of light can be completely described
physically by its spectrum: the number of photons
(per time unit) at each wavelength 400 - 700 nm.

# Photons
(per ms.)

400 500 600 700
Wavelength (nm.)

© Stephen E. Palmer, 2002



The Physics of Light

Some examples of the spectra of light sources

A. Ruby Laser B. Gallium Phosphide Crystal
n 0
c c
@) o
S| Is)
e <
o o
H* H*
400 500 600 700 400 500 600 700
Wavelength (nm.) Wavelength (nm.)
C. Tungsten Lightbulb D. Normal Daylight
2} 2}
c c
o o
© s)
e e
o o
H* H*
400 500 600 700 400 500 600 700

© Stephen E. Palmer, 2002



The Physics of Light

% Photons Reflected

Some examples of the reflectance spectra of surfaces

Yell

Z10]0

700 400

700 400
Wavelength (nm)

700 400 700

© Stephen E. Palmer, 2002



The Psychophysical Correspondence

There is no simple functional description for the perceived
color of all lights under all viewing conditions, but ......

A helpful constraint:
Consider only physical spectra with normal distributions

mean

# Photons area .
—p\ \/Al'lANCEe

10]0) 500 600 700
Wavelength (nm.)

© Stephen E. Palmer, 2002



The Psychophysical Correspondence

Mean == Hue

Wavelength

# Photons

© Stephen E. Palmer, 2002



The Psychophysical Correspondence

Variance = Saturation

A

.

Wavelength

# Photons

© Stephen E. Palmer, 2002



The Psychophysical Correspondence

Area == Brightness

# Photons

Wavelength

© Stephen E. Palmer, 2002



Question: draw a “pink” light

A

# Photons

>

Wavelength




Physiology of Color Vision

I Three kinds of cones:

440 530 560 nm.
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* Why are M and L cones so close?
* Why are there 3?

© Stephen E. Palmer, 2002



Trichromacy VoL

Power

Wavelength

Rods and cones act as filters on the spectrum

* To get the output of a filter, multiply its response curve by the
spectrum, integrate over all wavelengths
e Each cone yields one number

 How can we represent an entire spectrum with 3 numbers?

e We can’t! Most of the information is lost

— As a result, two different spectra may appear indistinguishable

» such spectra are known as metamers
Slide by Steve Seitz



Physiology of Color Blindness

Normal

Protanopia: Lack of L-cones Trichromat

e
o
o

RELATIVE ABSORBANCE (%)
<)
S

400 450 500 550 600 650

WAVELENGTH (nm.)



Physiology of Color Blindness
M
Normal
Deuteranopia: Lack of M-cones Trichromat
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Physiology of Color Blindness

Normal
Tritanopia: Lack of S-cones Tnetimomat

530 560 nm.

=
o
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WAVELENGTH (nm.)



Correcting Colorblind?

100

80 -

2 US & Intl.
Patent Pending

0 | 1 1 1 | I I 1 a
400 450 500 550 600

EnChroma Cx

http://enchroma.com/



Color Constancy

The "photometer metaphor” of color perception:
Color perception is determined by the spectrum of light
on each retinal receptor (as measured by a photometer).

© Stephen E. Palmer, 2002



Color Constancy

The "photometer metaphor” of color perception:
Color perception is determined by the spectrum of light
on each retinal receptor (as measured by a photometer).

© Stephen E. Palmer, 2002



Color Constancy

The "photOrmetar metaphor” of colererception:
Color perception is dewziiined by the spectrum of light
on each.retiial receptor (as measuied.hv a photometer).

© Stephen E. Palmer, 2002



Color Constancy

60% blue filter Complete inversion

© Stephen E. Palmer, 2002



Color Constancy

Color Constancy: the ability to perceive the
Invariant color of a surface despite ecological
Variations in the conditions of observation.

Another of these hard inverse problems:
Physics of light emission and surface reflection
underdetermine perception of surface color

© Stephen E. Palmer, 2002



Practical Color Sensing: Bayer Grid

* Estimate RGB
at ‘G’ cels from
neighboring values

Incoming Light

Filter Layer

Sensor Array

Resulting Pattern

http://www.cooldictionary.com/
words/Bayer-filter.wikipedia

Slide by Steve Seitz



Color Image




Images in Matlab

* Images represented as a matrix

e Suppose we have a NxM RGB image called “im”
—im(1,1,1) = top-left pixel value in R-channel
— im(y, x, b) =y pixels down, x pixels to right in the bt channel
— im(N, M, 3) = bottom-right pixel in B-channel

* imread(filename) returns a uint8 image (values O to 255)
— Convert to double format (values 0 to 1) with im2double

row 0.92 [ 093 [ 094 | 0.97 | 0.62 | 0.37 [ 0.85 | 0.97 | 0.93 | 0.92 | 0.99 | ﬁ
095 [ 0.89 | 0.82 | 0.89 | 0.56 | 031 | 0.75 | 092 | 0.81 | 0.95 | 0.91 |
0.89 | 0.72 | 051 | 055 | 0.51 | 0.42 | 0.57 | 0.41 | 0.49 | 0.91 552 | 0.9 G
0.96 | 095 | 0.88 | 0.94 | 0.56 | 0.46 | 0.91 | 0.87 | 0.90 | 0.97 095 | 091
071 | 0.81 | 0.81 | 0.87 | 057 | 037 | 0.80 | 0.88 | 0.89 | 0.79 ' '
0.91 | 0.92
0.49 | 062 | 0.60 | 0.58 | 0.50 | 0.60 | 0.58 | 0.50 | 0.61 | 0.45 0.97 | 0.95 0.92 | 0.99
0.86 | 084 | 0.74 | 058 | 0.51 | 0.39 | 0.73 | 0.92 | 0.91 | 0.49 0'79 0'85 0.95 | 091
0.96 | 067 | 054 | 0.85 | 0.48 | 0.37 | 0.88 | 0.90 | 0.94 | 0.82 o' 25 0'33 091 | 0.92
0.69 | 049 | 0.56 | 0.66 | 0.43 | 042 | 0.77 | 0.73 | 0.71 | 0.90 o' 29 0'7 . 0.97 | 0.95
0.79 | 0.73 1 090 | 0.67 | 0.33 | 0.61 | 0.69 | 0.79 | 0.73 | 0.93 0'82 0'93 0.79 | 0.85
\ 4 091 | 094 | 0.89 | 0.49 | 0.41 | 0.78 | 0.78 | 0.77 | 0.89 | 0.99 ' ' 045 | 0.33
e B e L B <A e A~ A A A o A Bk~ e A A A 0.90 | 0.99 0.49 0.74
0.79 | 0.73 1 090 | 0.67 | 033 | 0.61 | 0.69 | 0.79 | 0.73 | 0.93 | 0.97 0'82 0'93
091 | 094 | 0.89 | 0.49 | 0.41 | 0.78 | 0.78 | 0.77 | 0.89 | 0.99 | 0.93 |— '
oo T o oo oo o oo T oo 0.90 | 0.99
l 079 | 073 [ 0.90 [ 0.67 [ 033 [ 0.61 | 0.69 | 0.79 | 0.73 | 0.93 | 0.97
l 091 | 094 |08 | 049 ] 041|078 ] 078|077 089 099 | 093




Color spaces

* How can we represent color?

http://en.wikipedia.org/wiki/File:RGB_illumination.jpg



Color spaces: RGB

Default color space

(G=0,B=0)

(R=0,B=0)

RGB cube

e Easy for devices

B

e But not perceptual (R=0,G=0)

Where do the grays live?
Where is hue and saturation?

Image from: http://en.wikipedia.org/wiki/File:RGB_color_solid_cube.png
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Saturation

* Hue, Saturation, Value (Intensity)
* RGB cube on its vertex

* Decouples the three components (a bit)
e Use rgb2hsv() and hsv2rgb() in Matlab

Slide by Steve Seitz



Intuitive color space

Color spaces: HSV

Hue

Saturation




Color spaces: L*a*b*

(L=65,b=0)

b

(L=65,a=0)



So far: light—2>surface—>camera

e Called a local illumination model

e But much light comes from surrounding surfaces
\ |

From Koenderink slides on image texture and the flow of light



Inter-reflection is a major source of light




Inter-reflection affects the apparent color of objects

From Koenderink slides on image texture and the flow of light



Scene surfaces also cause shadows

e Shadow: reduction in intensity due to a blocked source

light source

shadow object

|\ penumbra




Shadows

Area
Cast S .
Shadow ource
Boundary
Point Occluder
Source

Self Shadow
Boundary




Models of light sources

* Distant point source
e One illumination direction
* E.g., sun

* Area source
* E.g., white walls, diffuser lamps, sky

 Ambient light

* Substitute for dealing with interreflections

e Global illumination model
e Account for interreflections in modeled scene



Questions

. Why is (2) brighter than (1)?
Each points to the asphalt.

. Why is (4) darker than (3)?
(4) points to the marking.

. Why is (5) brighter than (3)?
Each points to the side of
the wooden block.

. Why isn’t (6) black, given
that there is no direct path
from it to the sun?

. Why (7) brighter than (8)?

Both point to the yellow

paints.

. Why is (9) green, given that

the sun light contains all

visible wavelengths?




What does the intensity of a pixel tell us?

im(234, 452) = 0.58

092 [ 0.93 [ 0.94 | 0.97 | 0.62 ‘/0.37 0.85 [ 0.97 | 0.93 | 0.92 | 0.99
0.95 | 0.89 | 0.82 | 0.89 0.5/ 031 ) 0.75 [ 092 | 0.81 | 0.95 | 0.91
0.89 [ 0.72 | 0.51 | 0.55 Qél 0.42 | 0.57 | 041 | 0.49 [ 0.91 | 0.92
0.96 | 0.95 | 0.88 0.94//0.56 0.46 | 0.91 [ 0.87 | 0.90 [ 0.97 | 0.95

0.71 [ 0.81 | 0.81 | 0.8 0.57 [ 0.37 | 0.80 | 0.88 [ 0.89 | 0.79 | 0.85
049 | 0.62 | 0.60 | 0.58 | 0.50 | 0.60 | 0.58 | 0.50 | 0.61 | 0.45 | 0.33
0.86 | 0.84 [ 0.74 | 0.58 | 0.51 | 0.39 | 0.73 | 0.92 | 0.91 | 0.49 | 0.74
096 | 0.67 | 0.54 | 0.85 | 048 | 0.37 [ 0.88 | 0.90 [ 0.94 | 0.82 | 0.93
0.69 [ 0.49 | 0.56 | 0.66 | 0.43 | 0.42 | 0.77 | 0.73 | 0.71 | 0.90 | 0.99
0.79 1 0.73 | 090 | 0.67 | 0.33 | 0.61 [ 0.69 | 0.79 [ 0.73 | 0.93 | 0.97
091 ({ 0.94 | 0.89 | 049 | 0.41 { 0.78 | 0.78 | 0.77 | 0.89 | 0.99 | 0.93




The plight of the poor pixel

* A pixel’s brightness is determined by
* Light source (strength, direction, color)
 Surface orientation
» Surface material and albedo
» Reflected light and shadows from surrounding surfaces
* Gain on the sensor

* A pixel’s brightness tells us nothing by itself






And yet we can interpret images...

» Key idea: for nearby scene points, most factors do not change much
* The information is mainly contained in local differences of brightness



Darkness = Large Difference in Neighboring Pixels
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What is this?




—

3 Y ,\.\i.v
= \ e
AM/ 7 A

A




What differences in intensity tell us about
shape?

e Changes in surface normal
* Texture

* Proximity
* Indents and bumps

* Grooves and creases

Photos Koenderink slides on image texture and the flow of light



Shadows as cues

terminator (shadow boundary)

volume . '
shadow o
— e
- - ==
§$\

[

shadow :\ body
\% (attached)
5__,,_,.::-——_—2—'5- Q& shadow
S— === >

From Koenderink slides on image texture and the flow of light

Slide: Forsyth



Color constancy

* Interpret surface in terms of albedo or “true color”, rather than observed
intensity
* Humans are good at it
* Computers are not nearly as good




One source of constancy: local comparisons




http://www.echalk.co.uk/amusements/Opticallllusions/colourPerception/colourPerception.html



http://www.echalk.co.uk/amusements/OpticalIllusions/colourPerception/colourPerception.html

Perception of Intensity

from Ted Adelson



Perception of Intensity

L

from Ted Adelson



Color Correction

* Simple idea: multiply R, G, and B values by separate
constants

T [a, O O7[7
gl=| 0 a, 0[|9
pl LO 0 o llb.

e How to choose the constants?

— “White world” assumption: brightest pixel is white
* Divide by largest value

— “Gray world” assumption: average value should be gray
e E.g., multiply r channel by avg(r) /avg((r+g+b)/3)
— White balancing: choose a reference as the white or gray color




b

Discount the‘gold side

£&"—m—D



Things to remember

* Important terms: diffuse/specular reflectance,
albedo

e Color vision: physics of light, trichromacy, color
consistency, color spaces (RGB, HSV, Labx

* Observed intensity depends on
* light sources,
» geometry/material of reflecting surface,
* surrounding objects,
* camera settings

* Objects cast light and shadows on each other

» Differences in intensity are primary cues for shape

Receptor response
of k'th receptor class

Jo PAIEG)A
A

Incoming spectral radiance %
)

E(L
\ Aoin g spectral
radiance

E@)p(r)

Spectral albedo
p(L)




Thank you

* Next class: Image Filters




