

Coexistence of DSRC and Wi-Fi

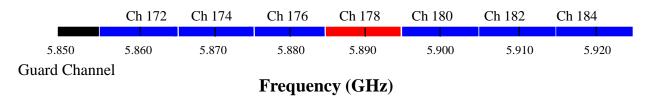
Impact on the Performance of Vehicular Safety Applications

JINSHAN LIU, GAURANG NAIK, JUNG-MIN (JERRY) PARK

MAY 23, 2017

Dedicated Short Range Communications (DSRC)

Vehicular Adhoc Networks (VANETs) are becoming increasingly important for road safety.


In 1999, FCC allocated 75 MHz of spectrum in the 5.9 GHz band for V2V and V2I communications.

The proposed vehicular communication technology is the Dedicated Short Range Communications (DSRC).

PHY and MAC details in the IEEE 802.11p standard

The spectrum band 5850 – 5925 MHz band is reserved for DSRC

• Seven channels of 10 MHz each

http://www.extremetech.com/extreme/176093-v2v-what-are-vehicle-to-vehicle-communications-and-how-does-it-work

The Coexistence Problem!

Despite its importance, there have not been widespread DSRC deployments

Spectrum band under-utilized

In 2013, FCC issued a proposal to open up additional spectrum in the 5 GHz band for unlicensed operations (particularly Wi-Fi)

- Specifically, 5350 5470 MHz and 5850 5925 MHz bands
- The latter band completely overlaps with the band reserved for DSRC applications

Spectrum sharing scenario

- DSRC will remain primary users
- Wi-Fi (and others) to be secondary users

Related Work

DSRC Coexistence Tiger Team Proposals

- Proposal 1:
 - Detect 10 MHz preambles at Wi-Fi
 - Back-off for 10 seconds when DSRC activity is detected.
- Proposal 2:

- ►DFS like approach not practical
- Move safety critical applications to upper 30 MHz (non-shared)
- The lower 40 MHz to be shared with Wi-Fi. Requires re-channelization of DSRC (primary) systems

Two key Wi-Fi parameters that can facilitate DSRC – Wi-Fi coexistence [1, 2].

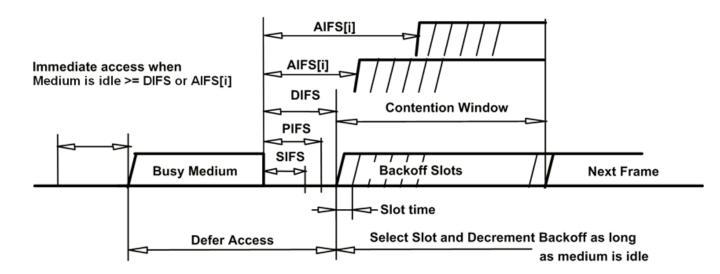
- Sensing range
- Inter-frame Spacing (IFS)

[1] J. LANSFORD ET AL., "COEXISTENCE OF UNLICENSED DEVICES WITH DSRC SYSTEMS IN THE 5.9 GHZ ITS BAND," IN IEEE VNC, 2013.
[2] Y. PARK AND H. KIM, "ON THE COEXISTENCE OF IEEE 802.11 AC AND WAVE IN THE 5.9 GHZ BAND," IEEE COMM. MAG., VOL. 52, ISSUE 6, 2014.

DSRC Primer

Two types of safety critical messages

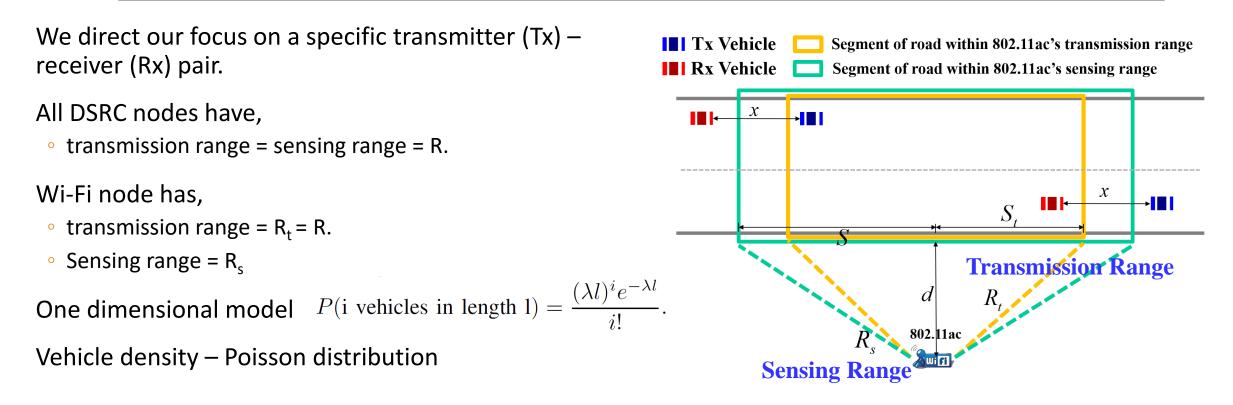
- 1. Event-driven messages
- Transmitted when a hazardous event occurs
- 2. Basic safety messages (BSM)
- Broadcasted periodically (default 100 milliseconds)
- Contains sender's position, speed, acceleration etc.


We analyze the impact of Wi-Fi transmissions on BSMs

DSRC specific 802.11 features

- No ACK transmissions (on CCH)
- Fixed Contention Window
- Packet Expiration

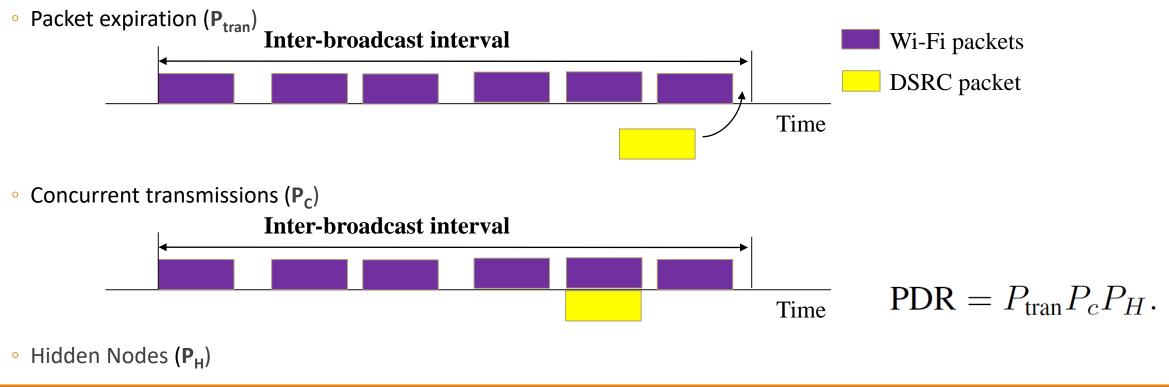
Who will transmit first?


Wi-Fi DIFS = 23 microseconds

DSRC PIFS = 45 microseconds

When DSRC and Wi-Fi devices are in close proximity, Wi-Fi device has higher priority for Channel Access

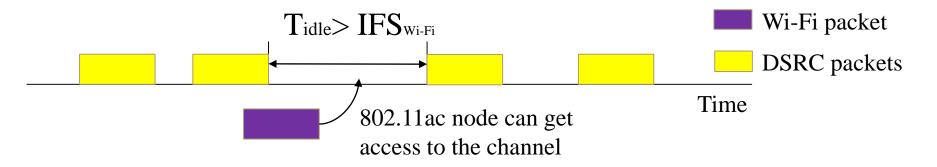
System Model



Performance Analysis

DSRC Performance Metric – Packet Delivery Ratio (PDR)

Packet loss can be attributed to one of three factors,



Priority Reversal

Priority Reversal occurs when a Wi-Fi node gains access to the channel when DSRC nodes still have a packet to transmit.

Undesired behavior

When can Priority Reversal occur?

Computation of Probabilities

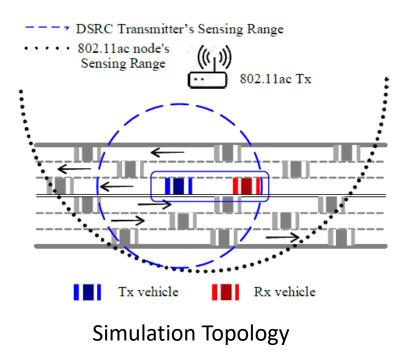
The probabilities have a non-tractable closed-form expression.

We use <u>Monte-Carlo</u> sampling to determine P_{trans} and P_c.

 P_{H} is the computed using [3] as,

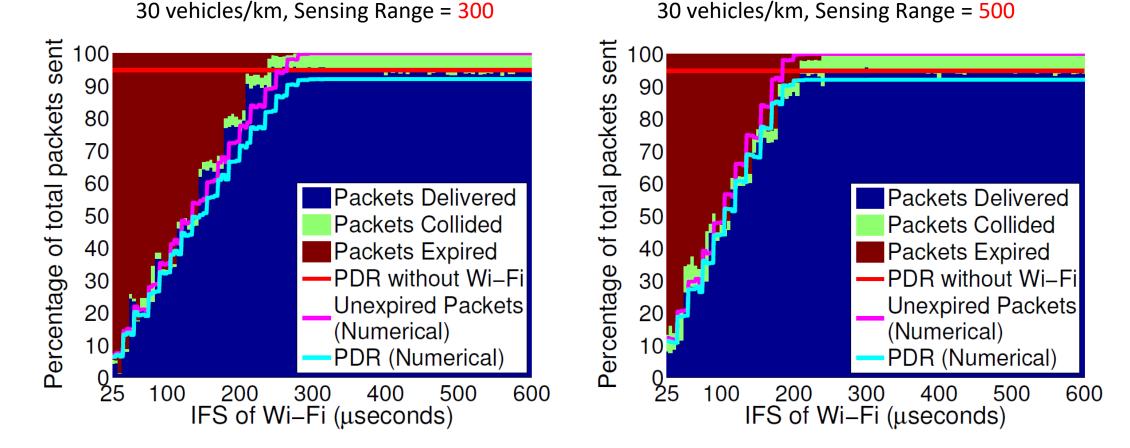
$$P_H = e^{-\frac{2P_{\text{tran}}\lambda x T_1}{T_c}}.$$


where, T_c is the inter-broadcast interval,

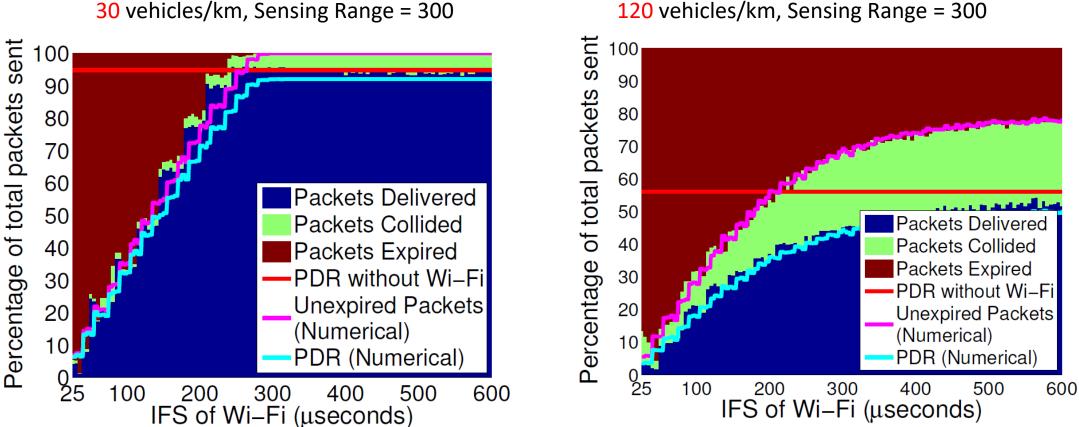

 T_1 is the time required to transmit DSRC headers and data.

[3] X. MA, J. ZHANG, AND T. WU, "RELIABILITY ANALYSIS OF ONE-HOP SAFETYCRITICAL BROADCAST SERVICES IN VANETS," VEHICULAR TECHNOLOGY, IEEE TRANSACTIONS ON, VOL. 60, NO. 8, PP. 3933–3946, 2011.

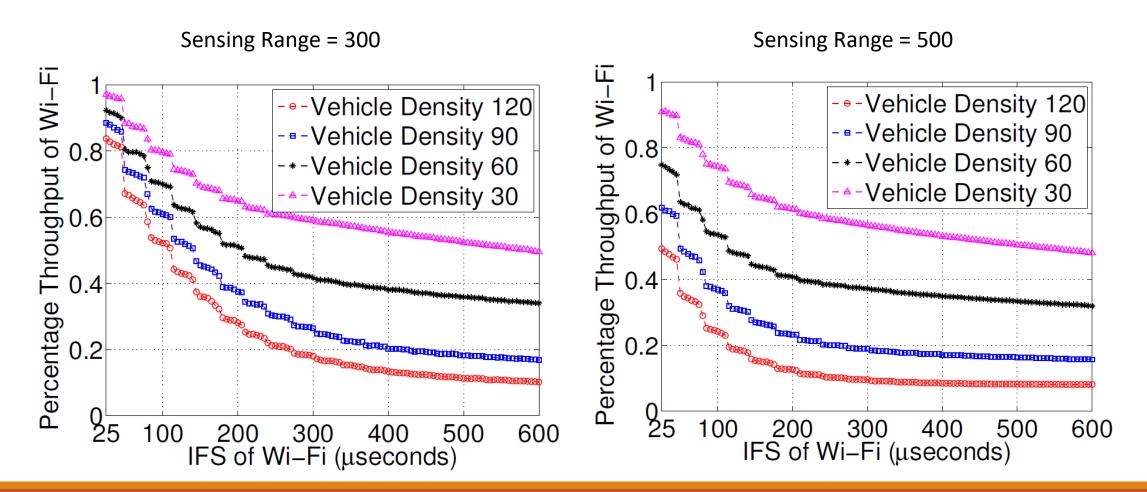
Simulation Results



30 vehicles/km, Sensing Range = 300 Percentage of total packets sent 100 90 80 70 60 Packets Delivered 50 **Packets Collided** 40 Packets Expired PDR without Wi–Fi 30 Unexpired Packets 20 (Numerical) 10 PDR (Numerical) 25 100 200 300 400 500 600 IFS of Wi–Fi (µseconds)


Simulation Results – Impact of Sensing Sensitivity

5/23/2017


Simulation Results – Impact of number of vehicles

120 vehicles/km, Sensing Range = 300

Simulation Results – Impact on Wi-Fi

Take-away Points

If default Wi-Fi parameters are used, performance of DSRC nodes is significantly degraded

Need for increased Wi-Fi IFS

Wi-Fi devices need not back-off for arbitrarily large times after sensing DSRC activity

- PDR of DSRC devices saturates after a certain threshold Wi-Fi IFS value
- The threshold IFS value depends on vehicle density
- Wi-Fi performance can be un-acceptable for certain applications

Sensing Range of Wi-Fi devices must be larger than its transmission range

- Larger the sensing range, better the DSRC performance
- Larger the sensing range, poorer the Wi-Fi performance

Conclusions

We provide insights on adjustment of two key Wi-Fi parameters to enable harmonious DSRC-Wi-Fi coexistence

- Wi-Fi IFS
- Wi-Fi Sensing Range (sensing sensitivity)

Corresponding to the vehicle density, there is a threshold Wi-Fi IFS value beyond which Wi-Fi transmissions do not impact DSRC system performance

• A look-up table based approach can be used

Wi-Fi performance affected, but our approach is more viable than Tiger Team's proposal.

Thank You for listening!

Parameter	Value
Road	
Length of the road	1000 meters
Vehicle densities	{30,60,120} vehicles/km
Number of lanes	6
Lane width	3 meters
DSRC	
Transmitter Gain	10 dB
Receiver Gain	4.3 dB
Transmission Range	300 meters
Sensing Range	300 meters
Packet Length	500 bytes
Data Rate	6 Mbps
PIFS	45 μ seconds
Slot Duration (σ)	16 µseconds
Contention Window	127
Inter-Broadcast Interval	0.1 seconds
Distance between Tx & Rx	50 meters
IEEE 802.11ac	
Transmitter Gain	10 dB
Receiver Gain	4.3 dB
Transmission Range	300 meters
Sensing Range	{300,400,500} meters
Packet Length	10,800 bytes
Data Rate	54 Mbps
IFS	23 to $2032\mu s$ (23 to CW $\cdot \sigma$)
Distance from DSRC	150 meters

Simulation Parameters

Different from standard, set CW of DSRC to be 127, because pointed out in [4], CW=7 is far away from optimal.

[4] R. STANICA, E. CHAPUT, AND A.-L. BEYLOT, "REVERSE BACK-OFF MECHANISM FOR SAFETY VEHICULAR AD HOC NETWORKS," AD HOC NETWORKS, VOL. 16, PP. 210–224, 2014.

Uirginia Tech

Algorithm 1 Monte Carlo sampling algorithm 1: Input: IFS₂ of 802.11ac, PIFS, CW 2: Output: P_c , P_{tran} . 3: Define $k = \lfloor \frac{\text{IFS}_2 - \text{PIFS}}{2} \rfloor$, $l = \lfloor \frac{\text{CW}}{L} \rfloor$, $\beta_1 = 2\lambda R$, $\beta_2 = 2\lambda S$ 4: Initialize $P_{\text{tran}} = 0$, 5: $\gamma_1 = \min\{\beta_1, \beta_2\}, \gamma_2 = |\beta_1 - \beta_2|$ 6: for $t = 1, 2, \dots, T$ do Sample $X_1 \sim \text{Poi}(\gamma_1), X_2 \sim \text{Poi}(\gamma_2), N = X_1 + X_2$ 7: Sample $B^{(i)} \sim \text{unif}[0, \text{CW} - 1], i = 1, 2, \dots, N$ 8: Add $B^{(0)} = 0$, let $\mathbf{B} = [B^{(0)}, B^{(1)}, \cdots, B^{(N)}]$ 9: 10: $B' = B[1, 2, \cdots, X_1]$ if $\beta_1 > \beta_2$ then 11: Find the indexes of $B^{(1)}$ in B and B', denoted as I_1 and I_2 12: 13: else Find the indexes of $B^{(1)}$ in B and B', denoted as I_2 and I_1 14: Sort $B^{(0)}, \dots, B^{(N)}$ in ascending order B_0, \dots, B_N 15: Initialize $\mathbf{Q} = [0, 0, \cdots, 0]_{1 \times I}$. 16: 17: for $j = 1, 2, \dots, l$ do for $m = 1, 2, \dots, N_2$ do 18: if $k \cdot j \le B_m - B_{m-1} < k \cdot (j+1)$ then 19: if $m < I_2$ then 20: 21: $\mathbf{Q}(j) = \mathbf{Q}(j) + 1$ 22: $n_{ac} = [1, 2, \cdots, l] \cdot \mathbf{Q}^T$ if $n_{ac} \cdot T_2 + I_1 \cdot (T_1 + \text{PIFS}) + B^{(1)} \cdot \sigma < T_c$ then 23: 24: $P_{\text{tran}} = P_{\text{tran}} + 1$ if $B^{(1)} == B_{I_1+1}$ or $B^{(1)} == B_{I_1-1}$ then 25: 26: $P_{c} = P_{c} + 1$ 27: $P_c = P_c/P_{\text{tran}}, P_{\text{tran}} = P_{\text{tran}}/T$

Monte Carlo Sampling