ECE 5424: Introduction to Machine Learning

Topics:

- (Finish) Regression
- Model selection, Cross-validation
- Error decomposition

Readings: Barber 17.1, 17.2

Stefan Lee Virginia Tech

Administrative

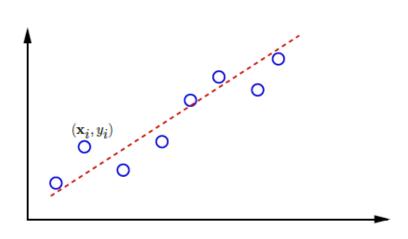
- Project Proposal
 - Due: Fri 09/23, 11:55 pm NOTE: DEADLINE SHIFTED
 - <=2pages, NIPS format</p>
- HW2
 - Due: Wed 09/28, 11:55pm
 - Implement linear regression, Naïve Bayes, Logistic Regression
- Reminder:
 - Participation on Scholar forum is part of your grade
 - Ask questions if you have them!

Recap of last time

Regression

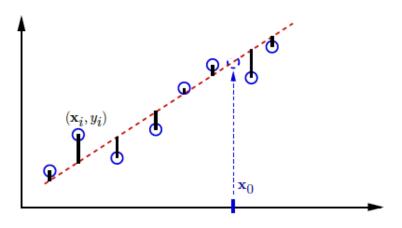
Linear fitting to data

- We want to fit a linear function to an observed set of points $X = [\mathbf{x}_1, \dots, \mathbf{x}_N]$ with associated labels $Y = [y_1, \dots, y_N]$.
 - Once we fit the function, we want to use it to *predict* the y for new \mathbf{x} .



Linear fitting to data

- We want to fit a linear function to an observed set of points $X = [\mathbf{x}_1, \dots, \mathbf{x}_N]$ with associated labels $Y = [y_1, \dots, y_N]$.
 - Once we fit the function, we want to use it to predict the y for new x.
- Least squares (LSQ) fitting criterion: find the function that minimizes sum (or average) of square distances between actual ys in the training set and predicted ones.



The fitted line is used as a predictor

Least squares in matrix form

$$\mathbf{X} = \begin{bmatrix} 1 & x_{11} & \cdots & x_{1d} \\ \vdots & & \vdots & \\ 1 & x_{N1} & \cdots & x_{Nd} \end{bmatrix}, \qquad \mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_N \end{bmatrix}, \qquad \mathbf{w} = \begin{bmatrix} w_0 \\ \vdots \\ w_d \end{bmatrix}.$$

• Predictions: $\hat{\mathbf{y}} = \mathbf{X}\mathbf{w}$, errors: $\mathbf{y} - \mathbf{X}\mathbf{w}$, empirical loss:

$$L(\mathbf{w}, \mathbf{X}) = \frac{1}{N} (\mathbf{y} - \mathbf{X}\mathbf{w})^T (\mathbf{y} - \mathbf{X}\mathbf{w})$$

Least squares solution

$$\frac{\partial}{\partial \mathbf{w}} L(\mathbf{w}) = -\frac{2}{N} \left(\mathbf{X}^T \mathbf{y} - \mathbf{X}^T \mathbf{X} \mathbf{w} \right) = 0$$
$$\mathbf{X}^T \mathbf{y} = \mathbf{X}^T \mathbf{X} \mathbf{w} \Rightarrow \mathbf{w}^* = \left(\mathbf{X}^T \mathbf{X} \right)^{-1} \mathbf{X}^T \mathbf{y}$$

- $\mathbf{X}^{\dagger} \triangleq (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T$ is called the *Moore-Penrose pseudoinverse* of \mathbf{X} .
- Linear regression in Matlab:

Prediction:

$$\hat{y} = \mathbf{w}^{*T} \begin{bmatrix} 1 \\ \mathbf{x}_0 \end{bmatrix} = \mathbf{y}^T \mathbf{X}^{\dagger T} \begin{bmatrix} 1 \\ \mathbf{x}_0 \end{bmatrix}$$

But, why?

- Why sum squared error???
- Gaussians, Watson, Gaussians...

Gaussian noise model

$$y = f(\mathbf{x}; \mathbf{w}) + \nu, \quad \nu \sim \mathcal{N}(\nu; 0, \sigma^2)$$

ullet Given the input ${f x}$, the label y is a random variable

$$p(y|\mathbf{x};\mathbf{w},\sigma) = \mathcal{N}(y; f(\mathbf{x};\mathbf{w}),\sigma^2)$$

that is,

$$p(y|\mathbf{x}; \mathbf{w}, \sigma) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(y - f(\mathbf{x}; \mathbf{w}))^2}{2\sigma^2}\right)$$

This is an explicit model of y that allows us, for instance, to sample y
for a given x.

Is OLS Robust?

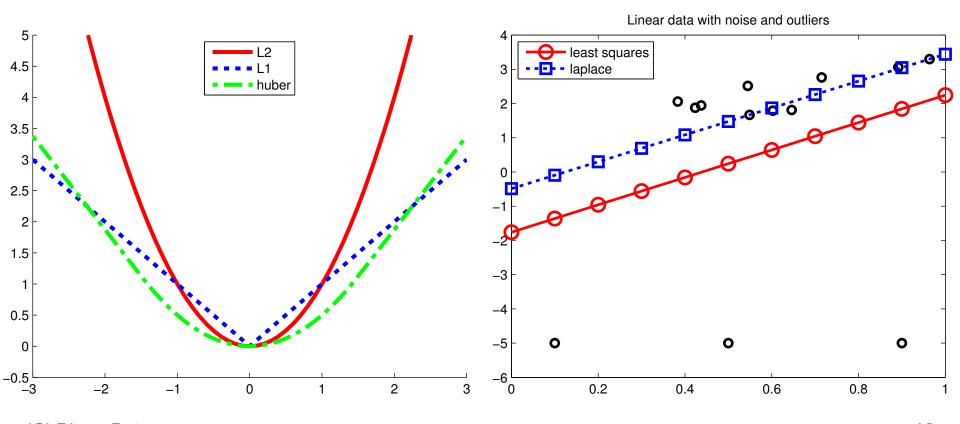
- Demo
 - http://www.calpoly.edu/~srein/StatDemo/All.html

- Bad things happen when the data does not come from your model!
- How do we fix this?

Robust Linear Regression

• y ~ Lap(w'x, b)

On paper



Plan for Today

- (Finish) Regression
 - Bayesian Regression
 - Different prior vs likelihood combination
 - Polynomial Regression
- Error Decomposition
 - Bias-Variance
 - Cross-validation

Robustify via Prior

- Ridge Regression
- $y \sim N(w'x, \sigma^2)$
- $w \sim N(0, t^2I)$
- P(w | x,y) =

Summary

Likelihood	Prior	Name
Gaussian	Uniform	Least Squares
Gaussian	Gaussian	Ridge Regression
Gaussian	Laplace	Lasso
Laplace	Uniform	Robust Regression
Student	Uniform	Robust Regression

Polynomial regression

Consider 1D for simplicity:

$$f(x; \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_m x^m.$$

• No longer linear in x – but still linear in \mathbf{w} !

Polynomial regression

Consider 1D for simplicity:

$$f(x; \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_m x^m.$$

- No longer linear in x but still linear in \mathbf{w} !
- Define $\phi(\mathbf{x}) = [1, x, x^2, \dots, x^m]^T$
- Then, $f(x; \mathbf{w}) = \mathbf{w}^T \phi(\mathbf{x})$ and we are back to the familiar simple linear regression. The least squares solution:

$$\hat{\mathbf{w}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}, \text{ where } \mathbf{X} = \begin{bmatrix} 1 & x_1 & x_1^2 & \dots & x_1^m \\ 1 & x_2 & x_2^2 & \dots & x_2^m \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 1 & x_N & x_N^2 & \dots & x_N^m \end{bmatrix}$$

General additive regression models

• A general extension of the linear regression model:

$$f(\mathbf{x}; \mathbf{w}) = w_0 + w_1 \phi_1(\mathbf{x}) + w_2 \phi_2(\mathbf{x}) + \dots + w_m \phi_m(\mathbf{x}),$$

where $\phi_i(\mathbf{x}): \mathcal{X} \to \mathbb{R}, j = 1, \dots, m$ are the basis functions.

This is still linear in w,

$$f(\mathbf{x}; \mathbf{w}) = \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x})$$

even when ϕ is non-linear in the inputs \mathbf{x} .

General additive regression models

$$f(\mathbf{x}; \mathbf{w}) = w_0 + w_1 \phi_1(\mathbf{x}) + w_2 \phi_2(\mathbf{x}) + \dots + w_m \phi_m(\mathbf{x}),$$

Still the same ML estimation technique applies:

$$\hat{\mathbf{w}} = \left(\mathbf{X}^T \mathbf{X}\right)^{-1} \mathbf{X}^T \mathbf{y}$$

where X is the *design matrix*

$$\begin{bmatrix} \phi_0(\mathbf{x}_1) & \phi_1(\mathbf{x}_1) & \phi_2(\mathbf{x}_1) & \dots & \phi_m(\mathbf{x}_1) \\ \phi_0(\mathbf{x}_2) & \phi_1(\mathbf{x}_2) & \phi_2(\mathbf{x}_2) & \dots & \phi_m(\mathbf{x}_2) \\ \dots & \dots & \dots & \dots \\ \phi_0(\mathbf{x}_N) & \phi_1(\mathbf{x}_N) & \phi_2(\mathbf{x}_N) & \dots & \phi_m(\mathbf{x}_N) \end{bmatrix}$$

(for convenience we will denote $\phi_0(\mathbf{x}) \equiv 1$)

Example

- Demo
 - http://www.princeton.edu/~rkatzwer/PolynomialRegression/

What you need to know

- Linear Regression
 - Model
 - Least Squares Objective
 - Connections to Max Likelihood with Gaussian Conditional
 - Robust regression with Laplacian Likelihood
 - Ridge Regression with priors
 - Polynomial and General Additive Regression

New Topic: Model Selection and Error Decomposition

Example for Regression

- Demo
 - http://www.princeton.edu/~rkatzwer/PolynomialRegression/

How do we pick the hypothesis class?

Model Selection

- How do we pick the right model class?
- Similar questions
 - How do I pick magic hyper-parameters?
 - How do I do feature selection?

Errors

- Expected Loss/Error
- Training Loss/Error
- Validation Loss/Error
- Test Loss/Error
- Reporting Training Error (instead of Test) is CHEATING
- Optimizing parameters on Test Error is CHEATING

- The improved holdout method: k-fold cross-validation
 - Partition data into k roughly equal parts;
 - Train on all but j-th part, test on j-th part

- The improved holdout method: k-fold cross-validation
 - Partition data into k roughly equal parts;
 - Train on all but j-th part, test on j-th part

- The improved holdout method: k-fold cross-validation
 - Partition data into k roughly equal parts;
 - Train on all but j-th part, test on j-th part

- The improved holdout method: k-fold cross-validation
 - Partition data into k roughly equal parts;
 - ullet Train on all but j-th part, test on j-th part

- The improved holdout method: k-fold cross-validation
 - Partition data into k roughly equal parts;
 - Train on all but j-th part, test on j-th part

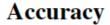
$$x_1$$
 x_N

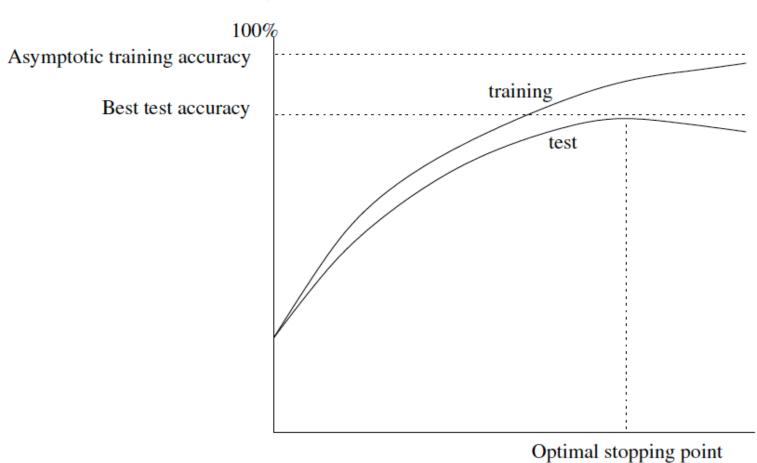
An extreme case: leave-one-out cross-validation

$$\hat{L}_{cv} = \frac{1}{N} \sum_{i=1}^{N} (y_i - f(\mathbf{x}_i; \hat{\mathbf{w}}_{-i}))^2$$

where $\hat{\mathbf{w}}_{-i}$ is fit to all the data but the *i*-th example.

Typical Behavior



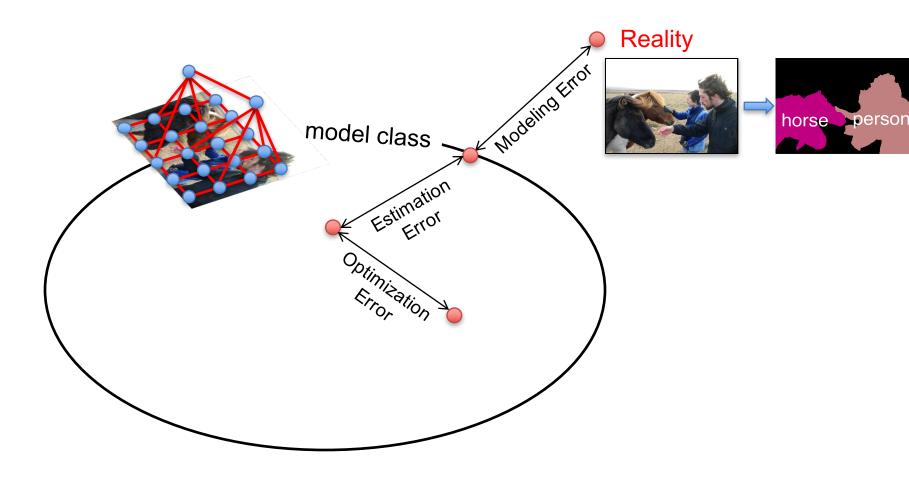


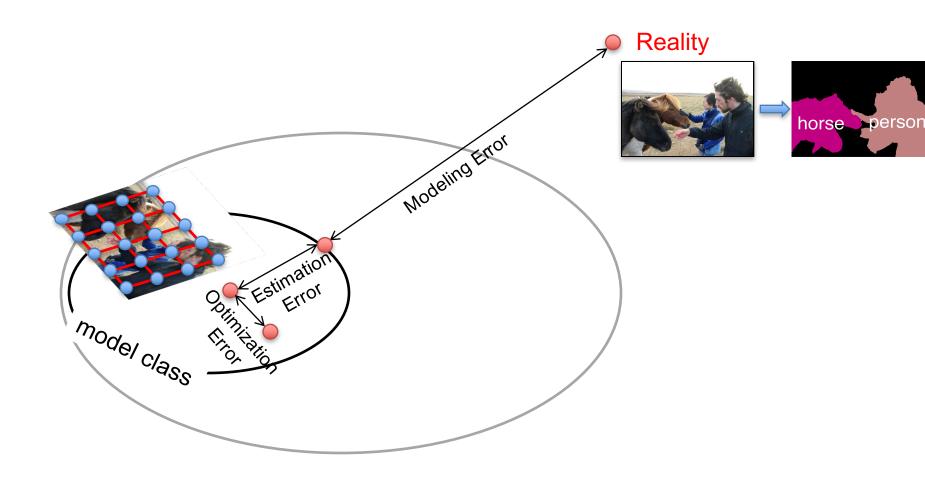
Training effort

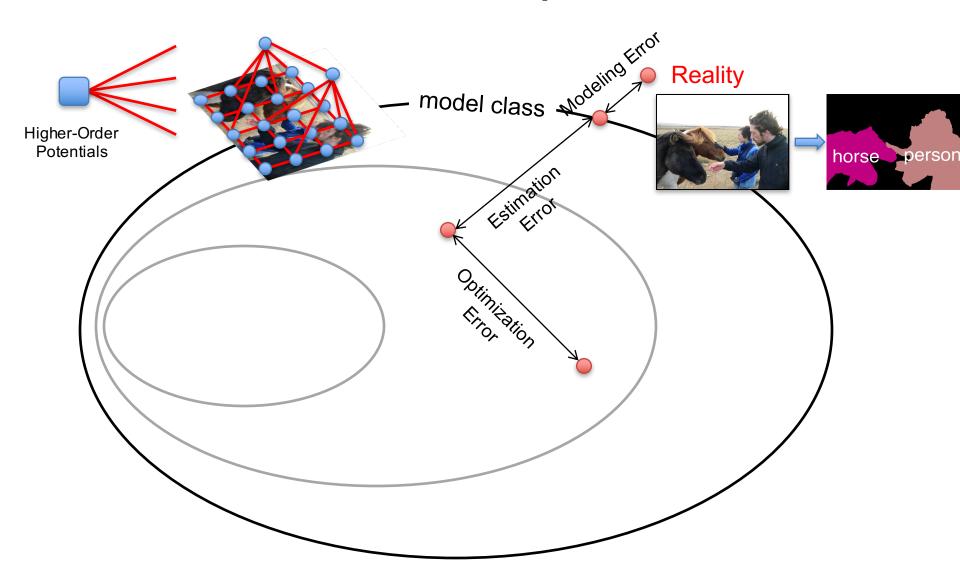
Overfitting

• Overfitting: a learning algorithm overfits the training data if it outputs a solution w when there exists another solution w' such that:

$$[error_{train}(\mathbf{w}) < error_{train}(\mathbf{w}')] \land [error_{true}(\mathbf{w}') < error_{true}(\mathbf{w})]$$







- Approximation/Modeling Error
 - You approximated reality with model
- Estimation Error
 - You tried to learn model with finite data
- Optimization Error
 - You were lazy and couldn't/didn't optimize to completion
- (Next time) Bayes Error
 - Reality just sucks