ECE 5424: Introduction to Machine Learning

Topics:

Statistical Estimation (MLE, MAP, Bayesian)

Readings: Barber 8.6, 8.7

Stefan Lee Virginia Tech

Administrative

- HW1
 - Due on Wed 9/14, 11:55pm
 - Problem 2.2: Two cases (in ball, out of ball)
- Project Proposal
 - Due: Tue 09/21, 11:55 pm
 - <=2pages, NIPS format</p>

Recap from last time

Procedural View

- Training Stage:
 - Raw Data → x
 - Training Data $\{(x,y)\} \rightarrow f$

- (Feature Extraction)
 - (Learning)

- Testing Stage
 - Raw Data → x
 - Test Data $x \rightarrow f(x)$

(Feature Extraction)

(Apply function, Evaluate error)

Statistical Estimation View

- Probabilities to rescue:
 - x and y are random variables
 - $-D = (x_1, y_1), (x_2, y_2), ..., (x_N, y_N) \sim P(X, Y)$
- IID: Independent Identically Distributed
 - Both training & testing data sampled IID from P(X,Y)
 - Learn on training set
 - Have some hope of generalizing to test set

Interpreting Probabilities

- What does P(A) mean?
- Frequentist View
 - limit N→∞ #(A is true)/N
 - limiting frequency of a repeating non-deterministic event
- Bayesian View
 - P(A) is your "belief" about A
- Market Design View
 - P(A) tells you how much you would bet

Concepts

- Likelihood
 - How much does a certain hypothesis explain the data?
- Prior
 - What do you believe before seeing any data?
- Posterior
 - What do we believe after seeing the data?

KL-Divergence / Relative Entropy

An assymetric measure of the distancebetween two distributions:

$$KL[p||q] = \sum_{x} p(x)[\log p(x) - \log q(x)]$$

- $\bullet KL > 0$ unless p = q then KL = 0
- ullet Tells you the extra cost if events were generated by p(x) but instead of charging under p(x) you charged under q(x).

Plan for Today

- Statistical Learning
 - Frequentist Tool
 - Maximum Likelihood
 - Bayesian Tools
 - Maximum A Posteriori
 - Bayesian Estimation
- Simple examples (like coin toss)
 - But SAME concepts will apply to sophisticated problems.

Your first probabilistic learning algorithm

- After taking this ML class, you drop out of VT and join an illegal betting company.
 - Specializing in mascot fist fights.
- Your new boss asks you:
 - If the VT and UVA mascots fight tomorrow, will Hokiebird win or lose?

- You say: what is the record?
 - W, L, L, W, W
- You say: P(Hokiebird Wins) = ...

UNKNOWN TARGET FUNCTION

f: X→Y

(ideal credit approval function)

TRAINING EXAMPLES

 $(\mathbf{x}_{1}, y_{1}), \dots, (\mathbf{x}_{N}, y_{N})$

(historical records of credit customers)

(set of candidate formulas)

Maximum Likelihood Estimation

- Goal: Find a good θ
- What's a good θ ?
 - One that makes it likely for us to have seen this data
 - Quality of θ = Likelihood(θ ; D) = P(data | θ)

Why Max-Likelihood?

Leads to "natural" estimators

MLE is OPT if model-class is correct

Sufficient Statistic

$$\widehat{\theta}_{MLE} = \frac{\alpha_H}{\alpha_H + \alpha_T}$$

- $D_1 = \{1,1,1,0,0,0\}$
- $D_2 = \{1,0,1,0,1,0\}$
- A function of the data $\phi(Y)$ is a sufficient statistic, if the following is true

$$\sum_{i \in D_1} \phi(y_i) = \sum_{i \in D_2} \phi(y_i) \qquad \Rightarrow \qquad L(\theta; D_1) = L(\theta; D_2)$$

How many flips do I need?

$$\widehat{\theta}_{MLE} = \frac{\alpha_H}{\alpha_H + \alpha_T}$$

- Boss says: Last year:
 - 3 heads/wins-for-Hokiebird
 - 2 tails/losses-for-Hokiebird.
- You say: = 3/5, I can prove it!
- He says: What if
 - 30 heads/wins-for-Hokiebird
 - 20 tails/losses-for-Hokiebird
- You say: Same answer, I can prove it!
- He says: What's better?
- You say: Humm... The more the merrier???
- He says: Is this why I am paying you the big bucks???

Bayesian Estimation

- Boss says: What is I know the Hokiebird is a better fighter on closer to Thanksgiving?
 - (fighting for his life)
- You say: Bayesian it is then..

Priors

- What are priors?
 - Express beliefs before experiments are conducted
 - Computational ease: lead to "good" posteriors
 - Help deal with unseen data
 - Regularizers: More about this in later lectures
- Conjugate Priors
 - Prior is conjugate to likelihood if it leads to itself as posterior
 - Closed form representation of posterior

Beta prior distribution – P()

$$P(\theta) = \frac{\theta^{\beta_H - 1} (1 - \theta)^{\beta_T - 1}}{B(\beta_H, \beta_T)} \sim Beta(\beta_H, \beta_T)$$

Demo:

http://demonstrations.wolfram.com/BetaDistribution/

Benefits of conjugate priors

$$P(\mathcal{D} \mid \theta) = \theta^{lpha_H} (1 - \theta)^{lpha_T}$$
 $P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta) P(\theta)$

MAP for Beta distribution

$$P(\theta \mid \mathcal{D}) = \frac{\theta^{\beta_H + \alpha_H - 1} (1 - \theta)^{\beta_T + \alpha_T - 1}}{B(\beta_H + \alpha_H, \beta_T + \alpha_T)} \sim Beta(\beta_H + \alpha_H, \beta_T + \alpha_T)$$

MAP: use most likely parameter:

$$\widehat{\theta} = \arg \max_{\theta} P(\theta \mid \mathcal{D}) =$$

- Beta prior equivalent to extra W/L matches
- As N → inf, prior is "forgotten"
- But, for small sample size, prior is important!

Effect of Prior

- Prior = Beta(2,2)
 - $-\theta_{prior} = 0.5$

- Dataset = {H}
 - $-L(\theta) = \theta$
 - $-\theta_{MLE}=1$

$$-\theta_{MAP} = (3-1)/(3+2-2) = 2/3$$

What you need to know

- Statistical Learning:
 - Maximum likelihood
 - Why MLE?
 - Sufficient statistics
 - Maximum a posterori
 - Bayesian estimation (return an entire distribution)
 - Priors, posteriors, conjugate priors
 - Beta distribution (conjugate of bernoulli)