ECE 5424: Introduction to Machine Learning

Topics:

Probability Review

Readings: Barber 8.1, 8.2

Stefan Lee Virginia Tech

Project

- Groups of 1-3
 - we prefer teams of 2
- Deliverables:
 - Project proposal (NIPS format): 2 page, due Sept 21
 - Midway presentations (in class)
 - Final report: webpage with results

Administrative

- HW1
 - Due on Wed 09/14, 11:55pm
 - https://inclass.kaggle.com/c/vt-ece-introduction-to-machine-learning-hw-1
- Project Proposal
 - Due: Wed 09/21, 11:55 pm
 - <=2pages, NIPS format</p>

Proposal

- 2 Page (NIPS format)
 - https://nips.cc/Conferences/2015/PaperInformation/StyleFiles
- Necessary Information:
 - Project title
 - Project idea.
 - This should be approximately two paragraphs.
 - Data set details
 - Ideally existing dataset. No data-collection projects.
 - Software
 - Which libraries will you use?
 - What will you write?
 - Papers to read.
 - Include 1-3 relevant papers. You will probably want to read at least one of them before submitting your proposal.
 - Teammate
 - Will you have a teammate? If so, what's the break-down of labor? Maximum team size is 3 students.
 - Mid-semester Milestone
 - What will you complete by the project milestone due date? Experimental results of some kind are expected here.

Project

Rules

- Must be about machine learning
- Must involve real data
 - Use your own data or take from class website
- Can apply ML to your own research.
 - Must be done this semester.
- OK to combine with other class-projects
 - Must declare to both course instructors
 - Must have explicit permission from BOTH instructors
 - Must have a sufficient ML component
- Using libraries
 - No need to implement all algorithms
 - OK to use standard SVM, MRF, Decision-Trees, etc libraries
 - More thought + effort => More credit

Project

Main categories

- Application/Survey
 - Compare a bunch of existing algorithms on a new application domain of your interest
- Formulation/Development
 - Formulate a new model or algorithm for a new or old problem
- Theory
 - Theoretically analyze an existing algorithm
- Support
 - List of ideas, pointers to dataset/algorithms/code
 - https://filebox.ece.vt.edu/~f16ece5424/project.html
 - We will mentor teams and give feedback.

Procedural View

- Training Stage:
 - Raw Data → x
 - Training Data $\{(x,y)\}$ → f

(Feature Extraction)

(Learning)

- Testing Stage
 - Raw Data → x

- Test Data $x \rightarrow f(x)$

(Feature Extraction)

(Apply function, Evaluate error)

Statistical Estimation View

- Probabilities to rescue:
 - x and y are random variables

$$-D = (x_1, y_1), (x_2, y_2), ..., (x_N, y_N) \sim P(X, Y)$$

- IID: Independent Identically Distributed
 - Both training & testing data sampled IID from P(X,Y)
 - Learn on training set
 - Have some hope of generalizing to test set

Plan for Today

- Review of Probability
 - Discrete vs Continuous Random Variables
 - PMFs vs PDF
 - Joint vs Marginal vs Conditional Distributions
 - Bayes Rule and Prior
 - Expectation, Entropy, KL-Divergence

Probability

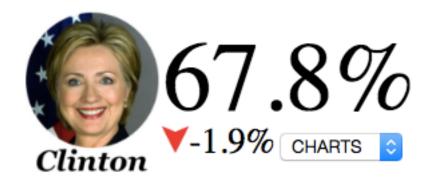
- The world is a very uncertain place
- 30 years of Artificial Intelligence and Database research danced around this fact
- And then a few AI researchers decided to use some ideas from the eighteenth century

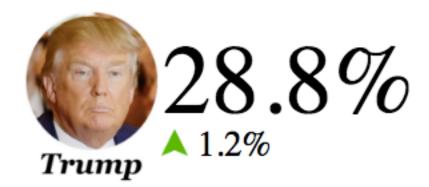
Probability

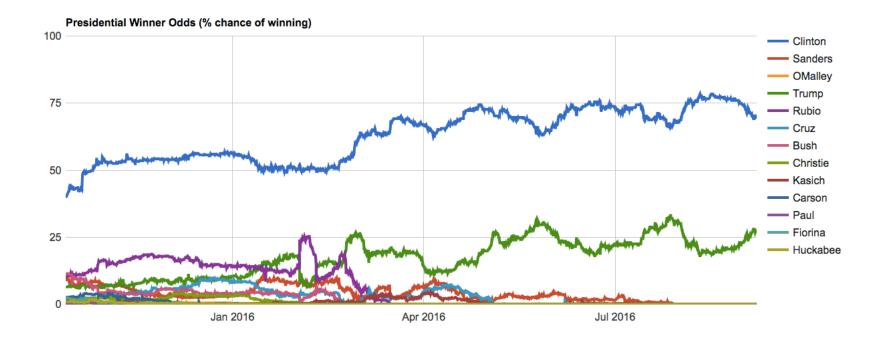
- A is non-deterministic event
 - Can think of A as a boolean-valued variable
- Examples
 - A = your next patient has cancer
 - A = Donald Trump Wins the 2016 Presidential Election

Interpreting Probabilities

- What does P(A) mean?
- Frequentist View
 - limit N→∞ #(A is true)/N
 - limiting frequency of a repeating non-deterministic event
- Bayesian View
 - P(A) is your "belief" about A
- Market Design View
 - P(A) tells you how much you would bet







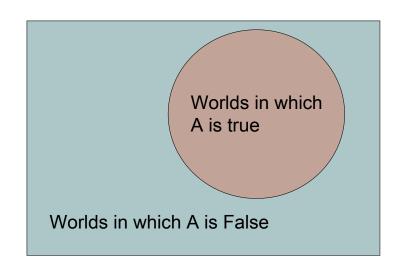
(C) Dhruv Batra Slide Credit: Andrew Moore 14

Axioms of Probability

- 0<= P(A) <= 1
- P(empty-set) = 0
- P(everything) = 1
- P(A or B) = P(A) + P(B) P(A and B)

- 0<= P(A) <= 1
- P(empty-set) = 0
- P(everything) = 1
- P(A or B) = P(A) + P(B) P(A and B)

Its area is 1



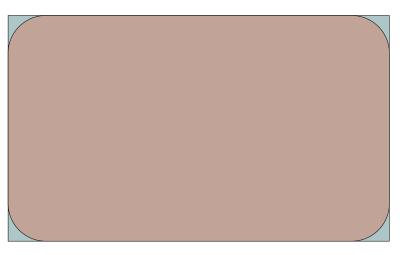
P(A) = Area of reddish oval

- 0<= P(A) <= 1
- P(empty-set) = 0
- P(everything) = 1
- P(A or B) = P(A) + P(B) P(A and B)

The area of A can't get any smaller than 0

And a zero area would mean no world could ever have A true

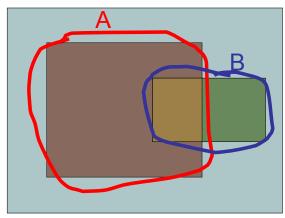
- 0<= P(A) <= 1
- P(empty-set) = 0
- P(everything) = 1
- P(A or B) = P(A) + P(B) P(A and B)

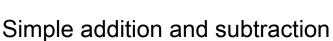


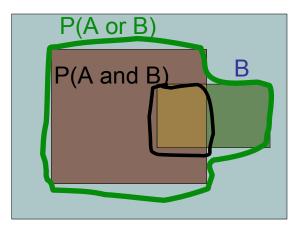
The area of A can't get any bigger than 1

And an area of 1 would mean all worlds will have A true

- 0<= P(A) <= 1
- P(empty-set) = 0
- P(everything) = 1
- P(A or B) = P(A) + P(B) P(A and B)







Concepts

- Sample Space
 - Space of events
- Random Variables
 - Mapping from events to numbers
 - Discrete vs Continuous
- Probability
 - Mass vs Density

Discrete Random Variables

 \mathcal{X} or Val(X) \longrightarrow

discrete random variable

sample space of possible outcomes, which may be finite or countably infinite

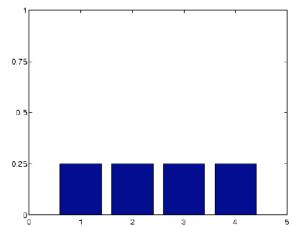
 $x \in \mathcal{X} \longrightarrow$ outcome of sample of discrete random variable

 $p(X=x) \longrightarrow$ probability distribution (probability mass function)

 $p(x) \longrightarrow$ shorthand used when no ambiguity

$$0 \le p(x) \le 1 \text{ for all } x \in \mathcal{X}$$

$$\sum_{x \in \mathcal{X}} p(x) = 1$$



$$\mathcal{X} = \{1,2,3,4\}$$

Continuous Random Variables

On board

Concepts

Expectation

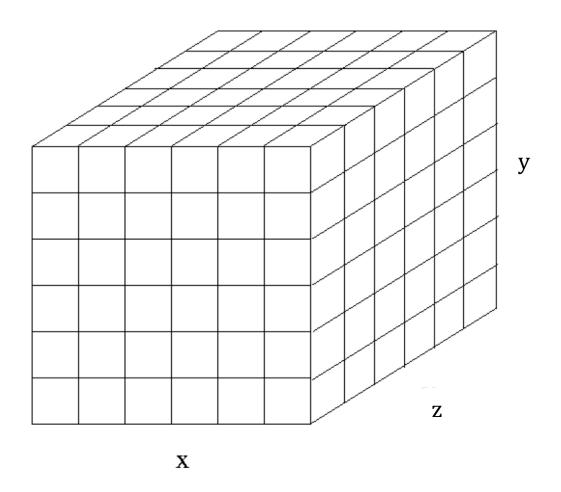
Variance

Most Important Concepts

- Marginal distributions / Marginalization
- Conditional distribution / Chain Rule

Bayes Rule

Joint Distribution

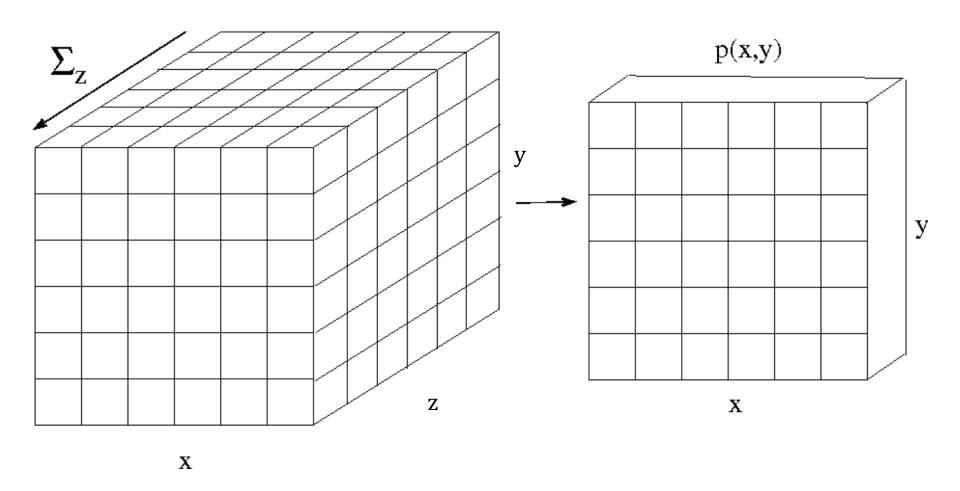


Marginalization

- Marginalization
 - Events: P(A) = P(A and B) + P(A and not B)

- Random variables
$$P(X = x) = \sum_{y} P(X = x, Y = y)$$

Marginal Distributions



$$p(x,y) = \sum_{z \in \mathcal{Z}} p(x,y,z)$$

$$p(x) = \sum p(x, y)$$

Slide Credit: Erik Suddherth $y{\in}\mathfrak{I}$

Conditional Probabilities

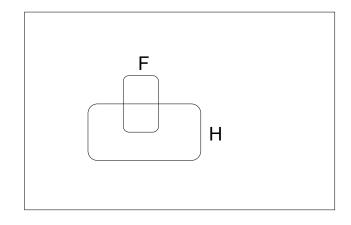
- P(Y=y | X=x)
- What do you believe about Y=y, if I tell you X=x?
- P(Donald Trump Wins the 2016 Election)?
- What if I tell you:
 - He has the Republican nomination
 - His twitter history
 - The complete DVD set of The Apprentice

Conditional Probabilities

P(A | B) = In worlds that where B is true,
 fraction where A is true

Example

- H: "Have a headache"
- F: "Coming down with Flu"

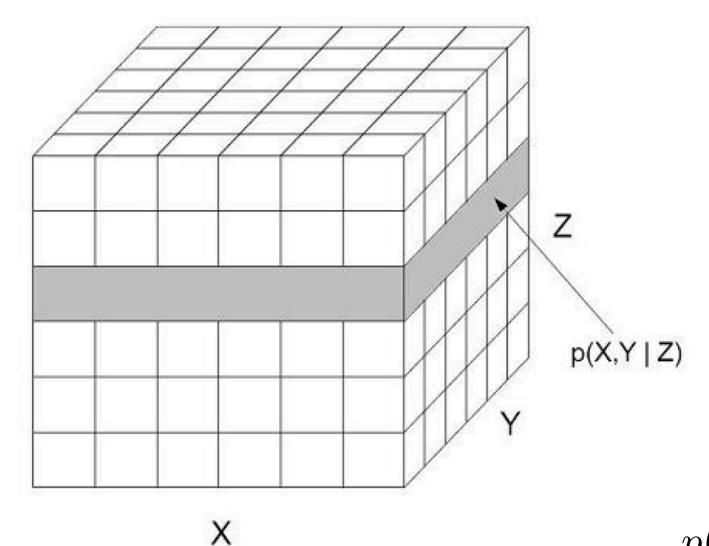


$$P(H) = 1/10$$

 $P(F) = 1/40$
 $P(H|F) = 1/2$

"Headaches are rare and flu is rarer, but if you're coming down with 'flu there's a 50-50 chance you'll have a headache."

Conditional Distributions



 $p(x,y \mid Z=z) = \frac{p(x,y,z)}{p(z)}$

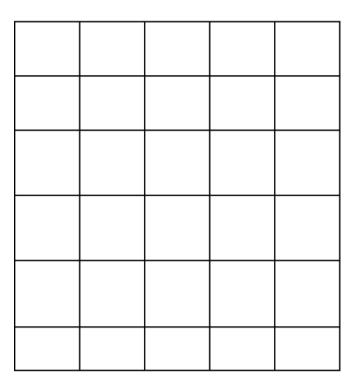
Slide Credit: Erik Sudderth

Conditional Probabilities

Definition

Corollary: Chain Rule

Independent Random Variables



_

$$X \perp Y$$

$$\downarrow \qquad \qquad \downarrow$$

$$p(x,y) = p(x)p(y)$$
for all $x \in \mathcal{X}, y \in \mathcal{Y}$

Marginal Independence

- Sets of variables X, Y
- X is independent of Y
 - Shorthand: $P \vdash (\mathbf{X} \perp \mathbf{Y})$
- Proposition: P satisfies (X ⊥ Y) if and only if
 - $P(X=x,Y=y) = P(X=x) P(Y=y), \forall x \in Val(X), \forall y \in Val(Y)$

Conditional independence

- Sets of variables X, Y, Z
- X is independent of Y given Z if
 - Shorthand: $P \vdash (X \perp Y \mid Z)$
 - For $P \vdash (X \perp Y \mid)$, write $P \vdash (X \perp Y)$
- Proposition: P satisfies (X ⊥ Y | Z) if and only if
 - $P(X,Y|Z) = P(X|Z) P(Y|Z), \qquad \forall x \in Val(X), \forall y \in Val(Y), \forall z \in Val(Z)$

Concept

- Bayes Rules
 - Simple yet fundamental

This is Bayes Rule

Bayes, Thomas (1763) An essay towards solving a problem in the doctrine of chances. *Philosophical Transactions of the Royal Society of London,* 53:370-418

Bayes Rule

- Simple yet profound
 - Using Bayes Rules doesn't make your analysis Bayesian!
- Concepts:
 - Likelihood
 - How much does a certain hypothesis explain the data?
 - Prior
 - What do you believe before seeing any data?
 - Posterior
 - What do we believe after seeing the data?

Entropy

• Measures the amount of ambiguity or uncertainty in a distribution:

$$H(p) = -\sum_{x} p(x) \log p(x)$$

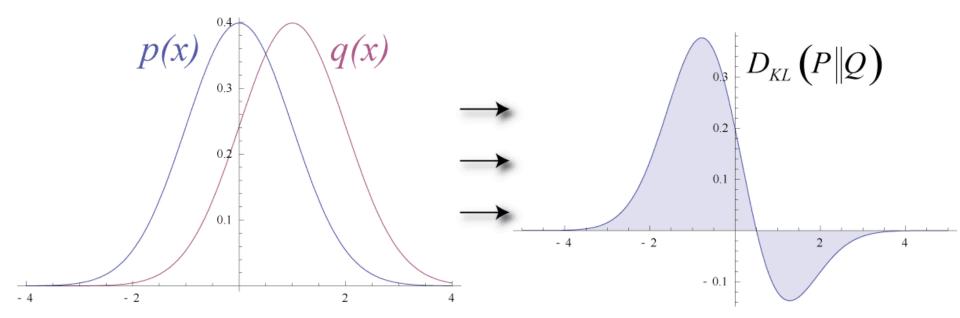
- Expected value of $-\log p(x)$ (a function which depends on p(x)!).
- \bullet H(p) > 0 unless only one possible outcomein which case H(p) = 0.
- Maximal value when p is uniform.
- Tells you the expected "cost" if each event costs $-\log p(\text{event})$

KL-Divergence / Relative Entropy

An assymetric measure of the distancebetween two distributions:

$$KL[p||q] = \sum_{x} p(x)[\log p(x) - \log q(x)]$$

- $\bullet KL > 0$ unless p = q then KL = 0
- ullet Tells you the extra cost if events were generated by p(x) but instead of charging under p(x) you charged under q(x).



Original Gaussian PDF's

KL Area to be Integrated



• End of Prob. Review

Start of Estimation