ECE 5424: Introduction to
Machine Learning

Topics:
— (Finish) Nearest Neighbor

Readings: Barber 14 (kNN)

Stefan Lee
Virginia Tech



s
Administrative

« HW1
— Out now on Scholar
— Due on Wednesday 09/14, 11:55pm
— Please please please please please start early
— Implement K-NN
— Kaggle Competition
— Bonus points for best performing entries.
— Bonus points for beating the instructor/TA.
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Recap from last time
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-
Nearest Neighbours
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-
Instance/Memory-based Learning

Four things make a memory based learner:
* A distance metric

« How many nearby neighbors to look at?
« A weighting function (optional)

« How to fit with the local points?
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-
1-Nearest Neighbour

Four things make a memory based learner:

« A distance metric
— Euclidean (and others)

« How many nearby neighbors to look at?
-1

« A weighting function (optional)
— unused

« How to fit with the local points?
— Just predict the same output as the nearest neighbour.
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1-NN for Regression
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Multivariate distance metrics

Suppose the input vectors x4, Xo, ...Xy are two dimensional:

X1 = (X171, X12) s X2= (X217, X22) » -.. Xn = ( Xn7 5 XN2)-
One can draw the nearest-neighbor regions in input space.

DiSt(Xi,Xj) = (X,'1 — Xj1)2 + (Xi2 - Xj2)2 DiSt(X/,Xj) =(Xi1 - Xj1)2+(3xi2_ 3)(/'2)2

The relative scalings in the distance metric affect region shapes
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s
Euclidean distance metric

D(x,z") = \/Z o%(x; — x})?

Or equivalently,

D(x,2') = \/(wi — )T A(z; — )

a% O 0
2
where A — O 0_2 O
' 2
i O O oN
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HOEBB‘G als!ance me!rlcs

(and their level sets)

Scaled Euclidian (L,) Mahalanobis

(non-diagonal A)
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Minkowski distance

p= p= p=2" p= p=2 p= p= p=20 p=
=0.25 =0.354 =05 =0.707 =1 = 1414 =2 =2.828 =

(C) Dhruv Batra

11




vot3oung FutyubIal

i

=770 Q=TZN=7TW [=ITW_(UeISSnes:

Scaled Euclidian (L,)

b\

Mahalanobis
(non-diagonal A)

otable distance metrics
(and their level sets)
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L, norm (absolute)

L;. (max) norm




Plan for today

* (Finish) Nearest Neighbour
— Kernel Classification/Regression
— Curse of Dimensionality
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1-NN for Regression

« Often bumpy (overfits)
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9-NN for Regression

« Often bumpy (overfits)
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Weighted k-NNs

* Neighbors are not all the same



-
Kernel Regression/Classification

Four things make a memory based learner:

« A distance metric
— Euclidean (and others)

« How many nearby neighbors to look at?
— All of them

« A weighting function (optional)
— w; = exp(-d(x; query)’/ o)
— Nearby points to the query are weighted strongly, far points
weakly. The o parameteris the Kernel Width. Very important.

« How to fit with the local points?
— Predict the weighted average of the outputs
predict = Zw;y;/ Zw;
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Weighting/Kernel functions

1/d 1/d2 1/(d+1)
w; = exp(-d(x;, query)? / o?) 10 10 .
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(Our examples use Gaussian)
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Effect of Kernel Width

« What happens as o-2inf?

 What happens as 0>07?

Gaussian Kemel - noisyLinear, ¢=0.5 Gaussian Kemel - noisyLinear, ¢=2.0 Gaussian Kemel - noisyLinear, c=4.0 Gaussian Kemel - noisyLinear, ¢ = 8.0
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Problems with Instance-Based Learning

« EXxpensive
— No Learning: most real work done during testing

— For every test sample, must search through all dataset —
very slow!

— Must use tricks like approximate nearest neighbour search

* Doesn’t work well when large number of irrelevant
features
— Distances overwhelmed by noisy features

« Curse of Dimensionality
— Distances become meaningless in high dimensions
— (See proof in next lecture)
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-
Curse of Dimensionality

« Consider: Sphere of radius 1 in d-dims

» Consider: an outer g-shell in this sphere

e What is shell volume o,
sphere volume
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volume fraction

(C) Dhruv Batra

Curse of Dimensionality




-
What you need to know

 k-NN
— Simplest learning algorithm
— With sufficient data, very hard to beat “strawman” approach
— Picking k?

« Kernel regression/classification
— Set k to n (number of data points) and chose kernel width
— Smoother than k-NN

 Problems with k-NN

— Curse of dimensionality

— lIrrelevant features often killers for instance-based
approaches

— Slow NN search: Must remember (very large) dataset for
prediction
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-
What you need to know

« Key Concepts (which we will meet again)
— Supervised Learning
— Classification/Regression
— Loss Functions
— Statistical Estimation
— Training vs Testing Data
— Hypothesis Class
— Overfitting, Generalization
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