ECE 5424: Introduction to Machine Learning

Topics:

(Finish) Nearest Neighbor

Readings: Barber 14 (kNN)

Stefan Lee Virginia Tech

Administrative

HW1

- Out now on Scholar
- Due on Wednesday 09/14, 11:55pm
- Please please please please start early
- Implement K-NN
- Kaggle Competition
- Bonus points for best performing entries.
- Bonus points for beating the instructor/TA.

Recap from last time

Nearest Neighbours

Instance/Memory-based Learning

Four things make a memory based learner:

A distance metric

How many nearby neighbors to look at?

A weighting function (optional)

How to fit with the local points?

1-Nearest Neighbour

Four things make a memory based learner:

- A distance metric
 - Euclidean (and others)
- How many nearby neighbors to look at?
 - _ 1
- A weighting function (optional)
 - unused
- How to fit with the local points?
 - Just predict the same output as the nearest neighbour.

1-NN for Regression

Multivariate distance metrics

Suppose the input vectors \mathbf{x}_1 , \mathbf{x}_2 , ... \mathbf{x}_N are two dimensional:

$$\mathbf{x}_1 = (x_{11}, x_{12}), \mathbf{x}_2 = (x_{21}, x_{22}), \dots \mathbf{x}_N = (x_{N1}, x_{N2}).$$

One can draw the nearest-neighbor regions in input space.

$$Dist(\mathbf{x}_{i},\mathbf{x}_{i}) = (x_{i1} - x_{i1})^{2} + (x_{i2} - x_{i2})^{2}$$

$$Dist(\mathbf{x}_{i},\mathbf{x}_{j}) = (x_{i1} - x_{j1})^{2} + (x_{i2} - x_{j2})^{2}$$
 $Dist(\mathbf{x}_{i},\mathbf{x}_{j}) = (x_{i1} - x_{j1})^{2} + (3x_{i2} - 3x_{j2})^{2}$

The relative scalings in the distance metric affect region shapes

Euclidean distance metric

Or equivalently,

$$D(x, x') = \sqrt{\sum_{i} \sigma_i^2 (x_i - x_i')^2}$$

$$D(x, x') = \sqrt{(x_i - x_i')^T A(x_i - x_i')}$$

$$A = \begin{bmatrix} \sigma_1^2 & 0 & \cdots & 0 \\ 0 & \sigma_2^2 & \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & \sigma_N^2 \end{bmatrix}$$

Notable distance metrics (and their level sets)

Scaled Euclidian (L₂)

Mahalanobis (non-diagonal A)

Minkowski distance

Notable distance metrics (and their level sets)

Scaled Euclidian (L₂)

Mahalanobis (non-diagonal A)

L₁ norm (absolute)

L_{inf} (max) norm

Slide Credit: Carlos Guestrin

Plan for today

- (Finish) Nearest Neighbour
 - Kernel Classification/Regression
 - Curse of Dimensionality

1-NN for Regression

Often bumpy (overfits)

9-NN for Regression

Often bumpy (overfits)

Weighted k-NNs

Neighbors are not all the same

Kernel Regression/Classification

Four things make a memory based learner:

- A distance metric
 - Euclidean (and others)
- How many nearby neighbors to look at?
 - All of them
- A weighting function (optional)
 - $w_i = \exp(-d(x_i, query)^2 / \sigma^2)$
 - Nearby points to the query are weighted strongly, far points weakly. The σ parameter is the **Kernel Width**. Very important.
- How to fit with the local points?
 - Predict the weighted average of the outputs predict = $\sum w_i y_i / \sum w_i$

Weighting/Kernel functions

 $w_i = \exp(-d(x_i, query)^2 / \sigma^2)$

(Our examples use Gaussian)

Effect of Kernel Width

- What happens as σ→inf?
- What happens as $\sigma \rightarrow 0$?

Problems with Instance-Based Learning

Expensive

- No Learning: most real work done during testing
- For every test sample, must search through all dataset very slow!
- Must use tricks like approximate nearest neighbour search
- Doesn't work well when large number of irrelevant features
 - Distances overwhelmed by noisy features
- Curse of Dimensionality
 - Distances become meaningless in high dimensions

(See proof in next lecture)

Curse of Dimensionality

- Consider: Sphere of radius 1 in d-dims
- Consider: an outer ε-shell in this sphere
- What is $\frac{shell\ volume}{sphere\ volume}$?

Curse of Dimensionality

(C) Dhruv Batra ϵ

What you need to know

k-NN

- Simplest learning algorithm
- With sufficient data, very hard to beat "strawman" approach
- Picking k?
- Kernel regression/classification
 - Set k to n (number of data points) and chose kernel width
 - Smoother than k-NN
- Problems with k-NN
 - Curse of dimensionality
 - Irrelevant features often killers for instance-based approaches
 - Slow NN search: Must remember (very large) dataset for prediction

What you need to know

- Key Concepts (which we will meet again)
 - Supervised Learning
 - Classification/Regression
 - Loss Functions
 - Statistical Estimation
 - Training vs Testing Data
 - Hypothesis Class
 - Overfitting, Generalization