ECE 5424: Introduction to Machine Learning

Topics:

- Supervised Learning
 - General Setup, learning from data
 - Nearest Neighbour

Readings: Barber 14 (kNN)

Stefan Lee
Virginia Tech
Tuesday’s Class
Administrative

• New class room?
 – Nope. It doesn’t look like we will get any more room.

• More space?
 – Nope. If people drop and you get lucky, you may get a spot.
Administrative

• Scholar
 – Anybody not have access?
 – Still have problems reading/submitting? Resolve ASAP.
 – Please post questions on Scholar Forum.
 – Please check scholar forums. You might not know you have a doubt.

• Reading/Material/Pointers/Videos
 – Slides/notes on Scholar & Public Website
 – Readings/Video pointers on Public Website

 – Scholar: https://scholar.vt.edu/portal/site/f16ece5424
 – Website: https://filebox.ece.vt.edu/~s15ece5984/
Administrative

• Computer Vision & Machine Learning Reading Group
 – Meet: Monday 2-4pm
 – Reading CV/ML Conference Papers
 – Whittemore 654
Plan for today

• Supervised/Inductive Learning
 – Setup
 – Goal: Classification, Regression
 – Procedural View
 – Statistical Estimation View
 – Loss functions

• Your first classifier: k-Nearest Neighbour
Types of Learning

• Supervised learning
 – Training data includes desired outputs

• Unsupervised learning
 – Training data does not include desired outputs

• Weakly or Semi-supervised learning
 – Training data includes a few desired outputs

• Reinforcement learning
 – Rewards from sequence of actions
Supervised / Inductive Learning

• Given
 – examples of a function \((x, f(x))\)

• Predict function \(f(x)\) for new examples \(x\)
 – Discrete \(f(x)\): Classification
 – Continuous \(f(x)\): Regression
 – \(f(x) = \text{Probability}(x)\): Probability estimation
Appropriate Applications for Supervised Learning

- **Situations where there is no human expert**
 - x: Bond graph for a new molecule.
 - $f(x)$: Predicted binding strength to AIDS protease molecule.

- **Situations where humans can perform the task but can’t describe how they do it.**
 - x: Bitmap picture of hand-written character
 - $f(x)$: Ascii code of the character

- **Situations where the desired function is changing frequently**
 - x: Description of stock prices and trades for last 10 days.
 - $f(x)$: Recommended stock transactions

- **Situations where each user needs a customized function f**
 - x: Incoming email message.
 - $f(x)$: Importance score for presenting to user (or deleting without presenting).
Supervised Learning

• Input: x (images, text, emails…)

• Output: y (spam or non-spam…)

• (Unknown) Target Function
 – f: X \rightarrow Y (the “true” mapping / reality)

• Data
 – (x_1, y_1), (x_2, y_2), ..., (x_N, y_N)

• Model / Hypothesis Class
 – g: X \rightarrow Y
 – y = g(x) = \text{sign}(w^T x)

• Learning = Search in hypothesis space
 – Find best g in model class.
UNKNOWN TARGET FUNCTION
\[f: \mathcal{X} \rightarrow \mathcal{Y} \]

(ideal credit approval function)

TRAINING EXAMPLES
\[(x_1, y_1), \ldots, (x_N, y_N) \]

(historical records of credit customers)

LEARNING ALGORITHM
\[\mathcal{A} \]

FINAL HYPOTHESIS
\[g \approx f \]

(final credit approval formula)

HYPOTHESIS SET
\[\mathcal{H} \]

(set of candidate formulas)
Basic Steps of Supervised Learning

- **Set up** a supervised learning problem

- **Data collection**
 - Start with training data for which we know the correct outcome provided by a teacher or oracle.

- **Representation**
 - Choose how to represent the data.

- **Modeling**
 - Choose a hypothesis class: \(H = \{g: X \rightarrow Y\} \)

- **Learning/Estimation**
 - Find best hypothesis you can in the chosen class.

- **Model Selection**
 - Try different models. Picks the best one. (More on this later)

- **If happy stop**
 - Else refine one or more of the above
Learning is hard!

- No assumptions = No learning
Klingon vs Mlingon Classification

• Training Data
 – Klingon: klix, kour, koop
 – Mlingon: moo, maa, mou

• Testing Data: kap

• Which language?

• Why?

(C) Dhruv Batra
Training vs Testing

• What do we want?
 – Good performance (low loss) on training data?
 – No, Good performance on unseen test data!

• Training Data:
 – \{ (x_1,y_1), (x_2,y_2), \ldots, (x_N,y_N) \}
 – Given to us for learning f

• Testing Data
 – \{ x_1, x_2, \ldots, x_M \}
 – Used to see if we have learnt anything
Concepts

• Capacity
 – Measure how large hypothesis class H is.
 – Are all functions allowed?

• Overfitting
 – f works well on training data
 – Works poorly on test data

• Generalization
 – The ability to achieve low error on new test data
Loss/Error Functions

• How do we measure performance?

• Regression:
 – L_2 error

• Classification:
 – #misclassifications
 – Weighted misclassification via a cost matrix

 – For 2-class classification:
 • True Positive, False Positive, True Negative, False Negative

 – For k-class classification:
 • Confusion Matrix
Procedural View

• Training Stage:
 – Raw Data $\rightarrow x$ (Feature Extraction)
 – Training Data \{(x,y)\} $\rightarrow f$ (Learning)

• Testing Stage
 – Raw Data $\rightarrow x$ (Feature Extraction)
 – Test Data $x \rightarrow f(x)$ (Apply function, Evaluate error)
Statistical Estimation View

• Probabilities to rescue:
 – x and y are random variables
 – \(D = (x_1, y_1), (x_2, y_2), \ldots, (x_N, y_N) \sim P(X,Y) \)

• IID: Independent Identically Distributed
 – Both training & testing data sampled IID from \(P(X,Y) \)
 – Learn on training set
 – Have some hope of generalizing to test set
Guarantees

- 20 years of research in Learning Theory oversimplified:

- If you have:
 - Enough training data D
 - and H is not too complex
 - then *probably* we can generalize to unseen test data
New Topic: Nearest Neighbours
Synonyms

• Nearest Neighbors

• k-Nearest Neighbors

• Member of following families:
 – Instance-based Learning
 – Memory-based Learning
 – Exemplar methods
 – Non-parametric methods
Nearest Neighbor is an example of.... Instance-based learning

Has been around since about 1910.

To make a prediction, search database for similar datapoints, and fit with the local points.

Assumption: Nearby points behavior similarly wrt y
Instance/Memory-based Learning

Four things make a memory based learner:

• A distance metric

• How many nearby neighbors to look at?

• A weighting function (optional)

• How to fit with the local points?
1-Nearest Neighbour

Four things make a memory based learner:

• **A distance metric**
 – Euclidean (and others)

• **How many nearby neighbors to look at?**
 – 1

• **A weighting function (optional)**
 – unused

• **How to fit with the local points?**
 – Just predict the same output as the nearest neighbour.
k-Nearest Neighbour

Four things make a memory based learner:

• A distance metric
 – Euclidean (and others)

• How many nearby neighbors to look at?
 – k

• A weighting function (optional)
 – unused

• How to fit with the local points?
 – Just predict the average output among the nearest neighbours.
1 vs k Nearest Neighbour
1 vs k Nearest Neighbour
Nearest Neighbour

• Demo 1

• Demo 2
Spring 2013 Projects

- Gender Classification from body proportions
 - Igor Janjic & Daniel Friedman, Juniors
Scene Completion [Hayes & Efros, SIGGRAPH07]
Context Matching
Graph cut + Poisson blending
TODO

- HW0 Due Tonight at 11:55pm

- Reading: Barber Chap 14.