ECE 5424: Introduction to Machine Learning

Topics:

- (Finish) Expectation Maximization
- Principal Component Analysis (PCA)

Readings: Barber 15.1-15.4

Stefan Lee Virginia Tech

Project Poster

Poster Presentation:

Best Project Prize!

- Dec 6th 1:30-3:30pm
- Goodwin Hall Atrium
- Print poster (or bunch of slides)
 - Fedex, Library, ECE support, CS support
- Format:
 - Portrait, 2 feet (width) x 36 inches (height)
 - See https://filebox.ece.vt.edu/~f16ece5424/project.html
- Submit poster as PDF by Dec 6th 1:30pm
 - Makes up the final portion of your project grade

Final Exam

- Dec 14th in class (DURH 261); 2:05 4:05 pm
- Content:
 - Almost completely about material since the midterm
 - SVM, Neural Networks, Descision Trees, Ensemble Techniques, K-means, EM (today), Factor Analysis (Thrusday)
 - True/False (explain your choice like last time)
 - Multiple Choice
 - Some 'Prove this'
 - Some 'What would happen with algorithm A on this dataset"

Homework & Grading

- HW3 & HW4 should be graded this week
- Will release solutions this week as well

Recap of Last Time

GMM

EM

- Expectation Maximization [Dempster '77]
- Often looks like "soft" K-means
- Extremely general
- Extremely useful algorithm
 - Essentially THE goto algorithm for unsupervised learning
- Plan
 - EM for learning GMM parameters
 - EM for general unsupervised learning problems

EM for Learning GMMs

- Simple Update Rules
 - E-Step: estimate $P(z_i = j \mid x_i)$
 - M-Step: maximize full likelihood weighted by posterior

Gaussian Mixture Example: Start

After 1st iteration

After 2nd iteration

After 3rd iteration

After 4th iteration

After 5th iteration

After 6th iteration

After 20th iteration

General Mixture Models

P(x z)	P(z)	Name
Gaussian	Categorial	GMM
Multinomial	Categorical	Mixture of Multinomials
Categorical	Dirichlet	Latent Dirichlet Allocation

The general learning problem with missing data

Marginal likelihood – x is observed, z is missing:

$$ll(\theta : \mathcal{D}) = \log \prod_{i=1}^{N} P(\mathbf{x}_i \mid \theta)$$
$$= \sum_{i=1}^{N} \log P(\mathbf{x}_i \mid \theta)$$
$$= \sum_{i=1}^{N} \log \sum_{\mathbf{z}} P(\mathbf{x}_i, \mathbf{z} \mid \theta)$$

Applying Jensen's inequality

$$ll(\theta : \mathcal{D}) = \sum_{i=1}^{N} \log \sum_{\mathbf{z}} Q_i(\mathbf{z}) \frac{P(\mathbf{x}_i, \mathbf{z} \mid \theta)}{Q_i(\mathbf{z})}$$

$$ll(\theta: \mathcal{D}) \ge F(\theta, Q_i) = \sum_{i=1}^{N} \sum_{\mathbf{z}} Q_i(\mathbf{z}) \log \frac{P(\mathbf{x}_i, \mathbf{z} \mid \theta)}{Q_i(\mathbf{z})}$$

Convergence of EM

Define potential function F(,Q):

$$ll(\theta: \mathcal{D}) \ge F(\theta, Q_i) = \sum_{i=1}^{N} \sum_{\mathbf{z}} Q_i(\mathbf{z}) \log \frac{P(\mathbf{x}_i, \mathbf{z} \mid \theta)}{Q_i(\mathbf{z})}$$

- EM corresponds to coordinate ascent on F
 - Thus, maximizes lower bound on marginal log likelihood

EM is coordinate ascent

$$ll(\theta: \mathcal{D}) \ge F(\theta, Q_i) = \sum_{i=1}^{N} \sum_{\mathbf{z}} Q_i(\mathbf{z}) \log \frac{P(\mathbf{x}_i, \mathbf{z} \mid \theta)}{Q_i(\mathbf{z})}$$

• **E-step**: Fix (t), maximize F over Q:

$$F(\theta, Q_i) = \sum_{i=1}^{N} \sum_{\mathbf{z}} Q_i(\mathbf{z}) \log \frac{P(\mathbf{x}_i, \mathbf{z} \mid \theta^{(t)})}{Q_i(\mathbf{z})}$$

$$= \sum_{i=1}^{N} \sum_{\mathbf{z}} Q_i(\mathbf{z}) \log \frac{P(\mathbf{z} \mid \mathbf{x}_i, \theta) P(\mathbf{x}_i \mid \theta^{(t)})}{Q_i(\mathbf{z})}$$

$$= \sum_{i=1}^{N} \sum_{\mathbf{z}} Q_i(\mathbf{z}) \log P(\mathbf{x}_i \mid \theta^{(t)}) + \sum_{i=1}^{N} \sum_{\mathbf{z}} Q_i(\mathbf{z}) \log \frac{P(\mathbf{z} \mid \mathbf{x}_i, \theta^{(t)})}{Q_i(\mathbf{z})}$$

$$= ll(\theta^{(t)} : \mathcal{D}) - \sum_{i=1}^{N} KL(Q_i(\mathbf{z}) || P(\mathbf{z} \mid \mathbf{x}_i, \theta^{(t)})$$

– "Realigns" F with likelihood:

$$Q_i^{(t)}(\mathbf{z}) = P(\mathbf{z} \mid \mathbf{x}_i, \theta^{(t)})$$

$$F(\theta^{(t)}, Q^{(t)}) = ll(\theta^{(t)} : \mathcal{D})$$

EM is coordinate ascent

$$ll(\theta: \mathcal{D}) \ge F(\theta, Q_i) = \sum_{i=1}^{N} \sum_{\mathbf{z}} Q_i(\mathbf{z}) \log \frac{P(\mathbf{x}_i, \mathbf{z} \mid \theta)}{Q_i(\mathbf{z})}$$

M-step: Fix Q^(t), maximize F over

$$F(\theta, Q_i) = \sum_{i=1}^{N} \sum_{\mathbf{z}} Q_i^{(t)}(\mathbf{z}) \log \frac{P(\mathbf{x}_i, \mathbf{z} \mid \theta)}{Q_i^{(t)}(\mathbf{z})}$$

$$= \sum_{i=1}^{N} \sum_{\mathbf{z}} Q_i^{(t)}(\mathbf{z}) \log P(\mathbf{x}_i, \mathbf{z} \mid \theta) - \sum_{i=1}^{N} \sum_{\mathbf{z}} Q_i^{(t)}(\mathbf{z}) \log Q_i^{(t)}(\mathbf{z})$$

$$= \sum_{i=1}^{N} \sum_{\mathbf{z}} Q_i^{(t)}(\mathbf{z}) \log P(\mathbf{x}_i, \mathbf{z} \mid \theta) + \sum_{i=1}^{N} \underbrace{H(Q_i^{(t)})}_{\text{constant}}$$

- Corresponds to weighted dataset:
 - $< x_1, z=1 > with weight Q^{(t+1)}(z=1|x_1)$
 - $\langle x_1, z=2 \rangle$ with weight Q^(t+1)(z=2|x₁)
 - $\langle x_1, z=3 \rangle$ with weight Q^(t+1)(z=3|x₁)
 - $\langle x_2, z=1 \rangle$ with weight Q^(t+1)(z=1|x₂)
 - $\langle \mathbf{x}_2, \mathbf{z}=2 \rangle$ with weight Q^(t+1)($\mathbf{z}=2|\mathbf{x}_2\rangle$)
 - < \mathbf{x}_2 , \mathbf{z} =3> with weight Q^(t+1)(\mathbf{z} =3| \mathbf{x}_2)

EM Intuition

What you should know

- K-means for clustering:
 - algorithm
 - converges because it's coordinate ascent
- EM for mixture of Gaussians:
 - How to "learn" maximum likelihood parameters (locally max. like.) in the case of unlabeled data
- EM is coordinate ascent
- Remember, E.M. can get stuck in local minima, and empirically it <u>DOES</u>
- General case for EM

Tasks

New Topic: PCA

Synonyms

- Principal Component Analysis
- Karhunen–Loève transform
- Eigen-Faces
- Eigen-<Insert-your-problem-domain>
- PCA is a Dimensionality Reduction Algorithm
- Other Dimensionality Reduction algorithms
 - Linear Discriminant Analysis (LDA)
 - Independent Component Analysis (ICA)
 - Local Linear Embedding (LLE)

— ...

Dimensionality reduction

- Input data may have thousands or millions of dimensions!
 - e.g., images have 5M pixels

Dimensionality reduction

- Input data may have thousands or millions of dimensions!
 - e.g., images have 5M pixels
- Dimensionality reduction: represent data with fewer dimensions
 - easier learning fewer parameters
 - visualization hard to visualize more than 3D or 4D
 - discover "intrinsic dimensionality" of data
 - high dimensional data that is truly lower dimensional

PCA / KL-Transform

- De-correlation view
 - Make features uncorrelated
 - No projection yet
- Max-variance view:
 - Project data to lower dimensions
 - Maximize variance in lower dimensions
- Synthesis / Min-error view:
 - Project data to lower dimensions
 - Minimize reconstruction error

All views lead to same solution

Basic PCA algorithm

- Center data (subtract mean)
- Estimate covariance
- Find eigenvectors and values of covariance
- Principle components: choose k eigenvectors with highest corresponding values

Video

https://youtu.be/pSRA8GpWIrA?t=162

Video

- What if the dimension is high?
 - Covariance matrix is d x d
 - For high d, Eigen decomposition is very slow... O(d³)
- Use Singular Value Decomposition (SVD)
 - finds k-eigenvectors
 - great implementations O(N²d)

PCA Problem #1

Only removed linear dependencies

Correlation Cov(x,y) / (var(x), var(y))

PCA Problem #2

 Direction of maximum variance may not be use for classification

See Linear Discriminate Analysis (if you have labels)

What you need to know

- Dimensionality Reduction
 - why and when its important
 - visualization
 - compression
 - faster learning
- Principle Component Analysis
 - KL Transform view
 - Notes have reconstruction error and max variance views too
 - Relationship to covariance matrix and eigenvectors
 - using SVD for PCA

Machine Learning Lectures are Over

- Basics of Statistical Learning
 - Loss functions, MLE, MAP, Bayesian estimation, bias-variance tradeoff, regularization, cross-validation
- Supervised Learning
 - Nearest neighbor, Naïve Bayes, Logistic Regression, Neural Networks, Support Vector Machines, Kernels, Decision Trees
 - Ensemble methods: bagging and boosting
- Unsupervised Learning
 - Clustering/Density estimation: k-means, GMMs, EM
 - Dimensionality Reduction: PCA (with SVD)

What is Left?

- Poster Session
 - Dec 6th 1:30-3:30pm in Goodwin Hall Atrium
- Final Exam
 - Dec 14th in class (DURH 261); 2:05 4:05 pm

A Sincere Thank You