ECE 5424: Introduction to Machine Learning

Topics:

Unsupervised Learning: Kmeans, GMM, EM

Readings: Barber 20.1-20.3

Stefan Lee Virginia Tech

Tasks

Supervised Learning

Unsupervised Learning

(C) Dhruv Batra

Unsupervised Learning

- Learning only with X
 - Y not present in training data
- Some example unsupervised learning problems:
 - Clustering / Factor Analysis
 - Dimensionality Reduction / Embeddings
 - Density Estimation with Mixture Models

(C) Dhruv Batra

New Topic: Clustering

Synonyms

- Clustering
- Vector Quantization
- Latent Variable Models
- Hidden Variable Models
- Mixture Models
- Algorithms:
 - K-means
 - Expectation Maximization (EM)

(C) Dhruv Batra

Some Data

1. Ask user how many clusters they'd like. (e.g. k=5)

- 1. Ask user how many clusters they'd like. (e.g. k=5)
- 2. Randomly guess k cluster Center locations

- 1. Ask user how many clusters they'd like. (e.g. k=5)
- Randomly guess k cluster Center locations
- 3. Each datapoint finds out which Center it's closest to. (Thus each Center "owns" a set of datapoints)

- 1. Ask user how many clusters they'd like. (e.g. k=5)
- Randomly guess k cluster Center locations
- 3. Each datapoint finds out which Center it's closest to.
 - 4. Each Center finds the centroid of the points it owns

- 1. Ask user how many clusters they'd like. (e.g. k=5)
- 2. Randomly guess k cluster Center locations
- 3. Each datapoint finds out which Center it's closest to.
 - 4. Each Center finds the centroid of the points it owns
 - 5. ...Repeat until terminated!

Randomly initialize k centers

$$- \qquad {}^{(0)} = \qquad {}^{(0)}, \dots, \qquad {}^{(0)}$$

Assign:

- Assign each point i {1,...n} to nearest center:
- $C(i) \leftarrow \underset{j}{\operatorname{argmin}} ||\mathbf{x}_i \boldsymbol{\mu}_j||^2$

Recenter:

- μ_i becomes centroid of its points

- Demo
 - http://mlehman.github.io/kmeans-javascript/

(C) Dhruv Batra

What is K-means optimizing?

 Objective F(,C): function of centers and point allocations C:

-
$$F(\boldsymbol{\mu}, C) = \sum_{i=1}^{N} ||\mathbf{x}_i - \boldsymbol{\mu}_{C(i)}||^2$$

- 1-of-k encoding
$$F(\boldsymbol{\mu}, \boldsymbol{a}) = \sum_{i=1}^{N} \sum_{j=1}^{k} a_{ij} ||\mathbf{x}_i - \boldsymbol{\mu}_j||^2$$

- Optimal K-means:
 - min min_a F(,a)

Coordinate descent algorithms

- Want: min_a min_b F(a,b)
- Coordinate descent:
 - fix a, minimize b
 - fix b, minimize a
 - repeat
- Converges!!!
 - if F is bounded
 - to a (often good) local optimum
 - as we saw in applet (play with it!)

K-means is a coordinate descent algorithm!

K-means as Co-ordinate Descent

Optimize objective function:

$$\min_{\boldsymbol{\mu}_1,...,\boldsymbol{\mu}_k} \min_{\boldsymbol{a}_1,...,\boldsymbol{a}_N} F(\boldsymbol{\mu},\boldsymbol{a}) = \min_{\boldsymbol{\mu}_1,...,\boldsymbol{\mu}_k} \min_{\boldsymbol{a}_1,...,\boldsymbol{a}_N} \sum_{i=1}^N \sum_{j=1}^k a_{ij} ||\mathbf{x}_i - \boldsymbol{\mu}_j||^2$$

Fix , optimize a (or C)

K-means as Co-ordinate Descent

Optimize objective function:

$$\min_{\boldsymbol{\mu}_1,...,\boldsymbol{\mu}_k} \min_{\boldsymbol{a}_1,...,\boldsymbol{a}_N} F(\boldsymbol{\mu},\boldsymbol{a}) = \min_{\boldsymbol{\mu}_1,...,\boldsymbol{\mu}_k} \min_{\boldsymbol{a}_1,...,\boldsymbol{a}_N} \sum_{i=1}^N \sum_{j=1}^k a_{ij} ||\mathbf{x}_i - \boldsymbol{\mu}_j||^2$$

• Fix a (or C), optimize

One important use of K-means

Bag-of-word models in computer vision

(C) Dhruv Batra

Bag of Words model

aardvark	0
about	2
all	2
Africa	1
apple	0
anxious	0
gas	1
oil	1
Zaire	0

Object

Bag of 'words'

Interest Point Features

Detect patches

[Mikojaczyk and Schmid '02] [Matas et al. '02] [Sivic et al. '03]

Patch Features

dictionary formation

Clustering (usually k-means)

Clustered Image Patches

Image representation

(One) bad case for k-means

- Clusters may overlap
- Some clusters may be "wider" than others
- GMM to the rescue!

GMM

Recall Multi-variate Gaussians

30

GMM

Fully Observed (Log) Likelihood factorizes

Marginal (Log) Likelihood doesn't factorize

All parameters coupled!

(C) Dhruv Batra

GMM vs Gaussian Joint Bayes Classifier

- On Board
 - Observed Y vs Unobserved Z
 - Likelihood vs Marginal Likelihood

(C) Dhruv Batra

Identifiability

Likelihood has singularities if one Gaussian "collapses"

(C) Dhruv Batra 36

Special case: spherical Gaussians and hard assignments

• If P(X|Z=k) is spherical, with same for all classes:

$$P(\mathbf{x}_i \mid z = j) \propto \exp\left[-\frac{1}{2\sigma^2} \|\mathbf{x}_i - \mu_j\|^2\right]$$

 If each x_i belongs to one class C(i) (hard assignment), marginal likelihood:

$$\prod_{i=1}^{N} \sum_{j=1}^{k} P(\mathbf{x}_{i}, y = j) \propto \prod_{i=1}^{N} \exp \left[-\frac{1}{2\sigma^{2}} \left\| \mathbf{x}_{i} - \mu_{C(i)} \right\|^{2} \right]$$

M(M)LE same as K-means!!!

- There are k components
- Component i has an associated mean vector μ_i

- There are k components
- Component i has an associated mean vector μ_i
- Each component generates data from a Gaussian with mean m_i and covariance matrix $\sigma^2 I$

Each data point is generated according to the following recipe:

- There are k components
- Component i has an associated mean vector μ_i
 - Each component generates data from a Gaussian with mean m_i and covariance matrix $\sigma^2 I$

Each data point is generated according to the following recipe:

Pick a component at random:
 Choose component i with probability P(y=i)

- There are k components
- Component i has an associated mean vector μ_i
 - Each component generates data from a Gaussian with mean m_i and covariance matrix $\sigma^2 I$

Each data point is generated according to the following recipe:

- Pick a component at random:
 Choose component i with
 probability P(y=i)
 - 2. Datapoint ~ $N(\mu_{\nu}, \sigma^2 I)$

The General GMM assumption

- There are k components
- Component i has an associated mean vector m_i
 - Each component generates data from a Gaussian with mean m_i and covariance matrix Σ_i

Each data point is generated according to the following recipe:

- Pick a component at random:
 Choose component i with probability P(y=i)
 - 2. Datapoint $\sim N(m_i, \Sigma_i)$

