ECE 5424: Introduction to
Machine Learning

Topics:
— Unsupervised Learning: Kmeans, GMM, EM

Readings: Barber 20.1-20.3

Stefan Lee
Virginia Tech



Tasks

Supervised Learning

X > Classification

X Regression

Unsupervised Learning

X Clustering

X Em—) Dimensionality

Reduction
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-
Unsupervised Learning

* Learning only with X
— Y not present in training data

« Some example unsupervised learning problems:
— Clustering / Factor Analysis
— Dimensionality Reduction / Embeddings
— Density Estimation with Mixture Models
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New Topic: Clustering
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-
Synonyms

« Clustering

* Vector Quantization
 Latent Variable Models
 Hidden Variable Models

 Mixture Models

+ Algorithms:
— K-means
— Expectation Maximization (EM)
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Some Data
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K-means

1. Ask user how many
clusters they'd like.
(e.g. k=5)
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R
K-means

 Randomly initialize k centers

_ o= O . 0

« Assign:

— Assign each pointi {1,...n} to nearest center:

— C(i) «— argmin ||x; — Hj||2
J

* Recenter:
- u; becomes centroid of its points
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R
K-means

« Demo
— http://mlehman.github.io/kmeans-javascript/
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-
What is K-means optimizing?

* QObjective F( ,C): function of centers and point
allocations C:

N
— F(p,C) =) |Ixi — ol

1=1

N k
— 1-of-k encoding F(p,a) = Z

1=1 3

aijl|xi — pyl)?
1

* Optimal K-means:
— min min, F( ,a)
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-
Coordinate descent algorithms

Want: min, min, F(a,b)

Coordinate descent:
— fix a, minimize b
— fix b, minimize a
— repeat

Converges!!!
— if F is bounded

— to a (often good) local optimum
« as we saw in applet (play with it!)

K-means is a coordinate descent algorithm!
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.
K-means as Co-ordinate Descent

« Optimize objective function:

min  min F(u,a)= min  min ZZCLMHXZ- — p)?
a

Hi,..-, Hi Ai,..., anN Hi,..., HE Ai,..., N “

 Fix , optimize a (or C)
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.
K-means as Co-ordinate Descent

« Optimize objective function:

min  min F(u,a)= min  min ZZCLMHXZ- — p)?
a

Hi,..-, Hi Ai,..., anN Hi,..., HE Ai,..., N “

* Fix a (or C), optimize
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.
One important use of K-means

« Bag-of-word models in computer vision
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Bag of Words model

P All About The Company
Global Activities

aardvark

0
Corporate Structure
TOTAL's Story about 2
Upstream Strategy
Downstream Strategy
Chemicals Strategy all 2
TOTAL Foundation
Homepage

Africa 1

A 4

all about the apple 0
company

anxious O

Qur energy exploration, production, and distribution
operations span the globe, with activities in more than 100
countries.

At TOTAL, we draw our greatest strength from our gas 1
fast-growing oil and gas reserves. Our strategic emphasis
on natural gas provides a strong position in a rapidly
expanding market.

N . o oil 1
Our expanding refining and marketing operations in Asta
and the Mediterranean Rim complement already solid
positions in Europe, Aftica, and the U5

Our growing spectalty chemicals sector adds balance and 7/ aire 0
profit to the core energy business.
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Object » Bag of ‘words’

Fei-Fei Li



Fei-FeiLi




Interest Point Features

— | ¢—

Compute

SIFT Normalize
descriptor patch

[Lowe’99]

Detect patches
[Mikojaczyk and Schmid ’02]

[Matas et al. '02]
[Sivic et al. ’03]
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Patch Features
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dictionary formation
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-
Clustering (usually k-means)
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- ______________________________________________________
Clustered Image Patches
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-
(One) bad case for k-means

« Clusters may overlap

« Some clusters may be
“‘wider” than others

° e GMM to the rescue!
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Recall Multi-variate Gaussians

30
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GMM
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e
Hidden Data Causes Problems #1

* Fully Observed (Log) Likelihood factorizes

« Marginal (Log) Likelihood doesn'’t factorize

« All parameters coupled!

(C) Dhruv Batra 32



—
GMM vs Gaussian Joint Bayes Classifier

« On Board

— Observed Y vs Unobserved Z
— Likelihood vs Marginal Likelihood
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e
Hidden Data Causes Problems #2

35
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Hidden Data Causes Problems #2

« |dentifiability

35
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e
Hidden Data Causes Problems #3

 Likelihood has singularities if one Gaussian
“collapses”
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- __ ______________
Special case: spherical Gaussians

and hard assignments

« If P(X|Z=k) is spherical, with same for all classes:

. 1 2
P(x;1z=j)x exp[— = Hxi - “JH ]

 If each x; belongs to one class C(i) (hard
assignment), marginal likelihood:

Nk | N 1 ,
Hglp(xiv)’:])‘xl:l[exl)l_ = Hxl _MC(i)H ]

i=l j

« M(M)LE same as K-means!!!
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-
The K-means GMM assumption

« There are k components
« Component i has an associated
mean vector
u, L s

o U1

‘Ll 3
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The K-means GMM assumption

* There are k components

« Component / has an associated
mean vector u,

* Each component generates data \
from a Gaussian with mean m;and
covariance matrix o“I

Each data point is generated
according to the following recipe:
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The K-means GMM assumption

« There are k components

«  Component i has an associated
mean vector u,

. Each component generates
data from a Gaussian with
mean m;and covariance matrix
o’1

Each data point is generated
according to the following
recipe:

1. Pick a component at random:
Choose component i with
probability P(y=i)
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The K-means GMM assumption

. There are k components

. Component i has an associated
mean vector u,

. Each component generates
data from a Gaussian with
mean m;and covariance matrix
o1

Each data point is generated
according to the following
recipe:

1. Pick a component at random:
Choose component i with
probability P(y=i)

2. Datapoint ~N(u, o°I)
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The General GMM assumption

 There are k components

«  Component i has an associated
mean vector m;

. Each component generates
data from a Gaussian with
mean m;and covariance matri
2

Each data point is generated
according to the following
recipe:

1. Pick a component at random:
Choose component i with
probability P(y=i)
2. Datapoint ~ N(m,, %)
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