ECE 5424: Introduction to
Machine Learning

Topics:
— Ensemble Methods: Bagging, Boosting
— PAC Learning

Readings: Murphy 16.4; Hastie 16
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Fighting the bias-variance tradeoff

« Simple (a.k.a. weak) learners

— e.g., naive Bayes, logistic regression, decision stumps (or
shallow decision trees)

— Good: Low variance, don’t usually overfit
— Bad: High bias, can'’t solve hard learning problems

« Sophisticated learners

— Kernel SVMs, Deep Neural Nets, Deep Decision Trees
— Good: Low bias, have the potential to learn with Big Data
— Bad: High variance, difficult to generalize

« Can we make combine these properties
— In general, No!!
— But often yes...
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s
Ensemble Methods

Core Intuition: A combination of multiple classifiers
will perform better than a single classifier.

Boosting
! R B
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s
Ensemble Methods

* Instead of learning a single predictor, learn many
predictors

* Output class: (Weighted) combination of each predictor

« With sophisticated learners
— Uncorrelated errors - expected error goes down
— On average, do better than single classifier!

— Bagging

 With weak learners
— each one good at different parts of the input space
— On average, do better than single classifier!

— Boosting
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Bagging
(Bootstrap Aggregatlng / Bootstrap Averaglng)

Core ldea: Average multiple strong learners trained from
resamples of your data to reduce variance and overfitting!

(C) Stefan Lee 5



Bagging
Given: (xi, yi)
Dataset of N Training Examples

Sample N training points with replacement and train a predictor, repeat M times:
Sample 1:

— h.
l l EE I llll l i)
Sample M: ]
_ h
n l llll III l m(X)

At test time, output the (weighted) average output of these predictors.
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-
Why Use Bagging

Let e™ be the error for the mth predictor trained through bagging
and e2'9 be the error of the ensemble. If

E[e™ = 0 (unbiased) and

E[e™MeX] = E[e™E[eX] (uncorrelated) then..

11
Ele®9] =~ — TE[e™]

The expected error of the average is a faction of the
average expected error of the predictors!
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When To Use Bagging

In practice, completely uncorrelated predictors don't really happen, but
there also wont likely be perfect correlation either, so bagging may still help!

Use bagging when...
... you have overfit sophisticated learners (averaging lowers variance)
... you have a somewhat reasonably sized dataset

... you want an extra bit of performance from your models
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Example: Decision Forests

fhh m ) g fY‘ Al

We've seen that single decision trees can easily overfit!

« Train a M trees on different samples of the data and call it a forest.

Uncorrelated errors result in better ensemble performance. Can we force this?
« Could assign trees random max depths
« Could only give each tree a random subset of the splits

« Some work to optimize for no correlation as part of the object!
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s
A Note From Statistics

Bagging is a general method to reduce/estimate the variance of an estimator.

« Looking at the distribution of a estimator from multiple resamples of
the data can give confidence intervals and bounds on that estimator.

« Typically just called Bootstrapping in this context.
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Boosting

Core ldea: Combine multiple weak learners to reduce
error/bias by reweighting hard examples!
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Some Intuition About Boosting

Consider a weak learner h(x), for example a decision stump:

t
I
I
h(x)=a 1 h(x)=Db
I
% | :
Example for binary classification: Example for regression:
t
: h(x) = w/ x
h(x)=-1 1h(x)=1
Xj : Xj

P
<«

v
A
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-
Some Intuition About Boosting

Consider a weak learner h(x), for example a decision stump:

h(x) = a

X:

t
[
[
[
[
| I

h(x) =a h(x) =

v

P
<«

This learner will make mistakes often but what if we combine multiple to combat
these errors such that our final predictor is:

fx) =aihy(x) + azhy(x) + -+ apy—1hp—1(x) + aphpy (x)
This is a big optimization problem now!!
i Nz L(y;, a1hi(x) + azhy(x) + -+ + apy—1hm—1(x) + aphpy (x))
h EH

Boostlng will do this greedily, training one classifier at a time
to correct the errors of the existing ensemble
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.
Boosting Algorithm [schapire, 1989]

« Pick a class of weak learners H={h|h: X =Y}

* You have a black box that picks best weak learning
— unweighted sum h* = argmin ZL Yi, h(x;))

heH
— weighted sum W= arhg;im sz (vi, h(zi))

* On each iteration t
— Compute error based on current ensemble fe—1 Cl?z Z Oét'ht' 97@

t/_
— Update weight of each training example based on it’s error.
— Learn a predictor h; and strength for this predictor «,

« Update ensemble: fi(x) = fi—1 + athi(x)
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-
Boosting Demo

 Demo

— Matlab demo by Antonio Torralba
— http://people.csail.mit.edu/torralba/shortCourseRLOC/boosting/boosting.html
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Boosting: Weak to Strong

Training Error

v

0.0 Size of Boosted Ensemble (M)

As we add more boosted learners to our ensemble, error approaches zero (in the limit)
* need to decided when to stop based on a validation set

» don’t use this on already overfit strong learners, will just become worse
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.
Boosting Algorithm [schapire, 1989]

« Pick a class of weak learners H={h|h: X =Y}

* You have a black box that picks best weak learning
— unweighted sum h* = argmin ZL Yi, h(x;))

heH
— weighted sum W= arhgé%m sz (vi, h(zi))

* On each iteration t
— Compute error based on current ensemble fe—1 Cl?z Z Oét'ht' CUz

t'=1
— Update weight of each training example based on it’s error.
— Learn a predictor h; and strength for this predictor «a,

« Update ensemble: fi(x) = fi1 + arhe()
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.
Boosting Algorithm [schapire, 1989]

We've assumed we have some tools to find optimal learners, either

{xy,yidic h”

1
h* = argmin Nz L(y; h(x;)

A 4

v

or

{xi'yirwi}livzl h”

A 4

v

* 4 1
h* = argmin Nz w; * L(y;, h(x;)

To train the tt" predictor, our job is to express the optimization
for the new predictor in one of these forms

ml{}M Nz Ly, fe—1(x) + achs(x))

h;€H

Typically done by either changing y; or w; depending on L.
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Types of Boosting

Boosting Name

Regression: 5 |
Squared Loss (y — f(z)) L2Boosting

Regression: _ |
Absolute Loss \y — f(a:)] Gradient Boosting

Classification: _
Exponential Loss e/ (@) AdaBoost
Classification: B _
Log/Logistic Loss 108 (1 +e ¥ (”C)) LogitBoost
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L2 Boosting

Boosting Name

Regression:
Squared Loss

(y — f(2))” L2Boosting

* Algorithm
— On Board
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Adaboost

Boosting Name

Classifiqation: e~V f(x)
Exponential Loss

AdaBoost

* Algorithm
— You will derive in HWA4!
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—
What you should know

« Voting/Ensemble methods

* Bagging
— How to sample
— Under what conditions is error reduced

* Boosting
— General algorithm

— L2Boosting derivation
— Adaboost derivation (from HW4)
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Learning Theory

Probably Approximately Correct (PAC) Learning
What does it formally mean to learn?
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Learning Theory

« We have explored many ways of learning from data

 But...

— How good is our classifier, really?
— How much data do | need to make it “good enough”?

(C) Dhruv Batra Slide Credit: Carlos Guestrin 24



-
A simple setting...

 (Classification
— N data points

— Finite space H of possible hypothesis
* e.g. decision trees on categorical variables of depth d

* A learner finds a hypothesis h that is consistent with
training data
— Gets zero error in training — errory.,i,(h) =0

« What is the probability that h has more than true
error?
— P(errory,.(h) = €)
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- __________________________________________________________
Generalization error in finite hypothesis spaces

[Haussler '88]

e Theorem:

— Hypothesis space H finite
— dataset D with N i.i.d. samples
— 0<e<1

For any learned hypothesis h that is consistent (O
training error) on the training data:

P(errorirye(h) > ¢€) < \H\e‘NG

Even if h makes zero errors in training data, may make errors in test
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Using a PAC bound

P(erroripyue(h) > ¢€) < |H|e_N6

« Let max acceptable P(errori, 4.(g) >€) =6

« Typically, 2 use cases:
— 1: Pick e and § , give you N
* | want no more than ¢ error with probability §, how much data?
— 2:Pick Nand § , give you €
* | have N data points and want to know my error € with § confidence.
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s
Haussler ‘88 bound

P(errorypye(h) > €) < |Hle IV

« Strengths:
— Holds for all (finite) H
— Holds for all data distributions

 Weaknesses
— Consistent classifier (0 training error)
— Finite hypothesis space
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R EEEEEEEE—————
Generalization bound for |H| hypothesis

« Theorem:
— Hypothesis space H finite
— dataset D with N i.i.d. samples
— 0<e<1

For any learned hypothesis h:

P (errortrue(h) — errorqin(h) > €) < |H|€_2N€2
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e
PAC bound and Bias-Variance tradeoff

2
P (errortrue(h> — errortrain(h) > 6) < |H|e_2N€

or, after moving some terms around,
with probability at least 1-6 :

In|H|+ In%
ON

errortrue(h) < errortrain(h) + \

Important: PAC bound holds for all h, but doesn’t
guarantee that algorithm finds best h!!!
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