ECE 5424: Introduction to Machine Learning

Topics:

- Decision/Classification Trees
- Ensemble Methods: Bagging, Boosting

Readings: Murphy 16.1-16.2; Hastie 9.2; Murphy 16.4

Stefan Lee Virginia Tech

Administrativia

HW3

- Due: Nov 7th, 11:55pm
- Some kernel questions
- Implement primal & dual SVMs
- Kaggle competition: Higgs Boson Signal vs Background classification

(C) Dhruv Batra

Administrativia

Midterm

- I've got these back from the TA
- Set up time to talk or wait for office hours to go over exam.

(C) Dhruv Batra

Administrativia

- Project Mid-Sem Spotlight Presentations
 - Next week!
 - Format
 - 5~6 slides (recommended)
 - 7 minute max time (STRICT) + 1-2 min Q&A
 - Content
 - Tell the class what you're working on
 - Any results yet?
 - Problems faced?
 - Upload slides on Scholar by Nov 7th 11:55pm
 - Assignment open now.

Decision Trees

A small dataset: Miles Per Gallon

Suppose we want to predict MPG

mpg	cylinders	displacement	horsepower	weight	acceleration	modelyear	maker
good	4	low	low	low	high	75to78	asia
bad	6	medium	medium	medium	medium	70to74	america
bad	4	medium	medium	medium	low	75to78	europe
bad	8	high	high	high	low	70to74	america
bad	6	medium	medium	medium	medium	70to74	america
bad	4	low	medium	low	medium	70to74	asia
bad	4	low	medium	low	low	70to74	asia
bad	8	high	high	high	low	75to78	america
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
bad	8	high	high	high	low	70to74	america
good	8	high	medium	high	high	79to83	america
bad	8	high	high	high	low	75to78	america
good	4	low	low	low	low	79to83	america
bad	6	medium	medium	medium	high	75to78	america
good	4	medium	low	low	low	79to83	america
good	4	low	low	medium	high	79to83	america
bad	8	high	high	high	low	70to74	america
good	4	low	medium	low	medium	75to78	europe
bad	5	medium	medium	medium	medium	75to78	europe

40 Records

From the UCI repository (thanks to Ross Quinlan)

A Decision Stump

Comments

- Not all features/attributes need to appear in the tree.
- A features/attribute X_i may appear in multiple branches.
- On a path, no feature may appear more than once.
 - Not true for continuous features. We'll see later.
- Many trees can represent the same concept
- But, not all trees will have the same size!
 - e.g., Y = (A^B) (A^C) (A and B) or (not A and C)

Learning decision trees is hard!!!

- Learning the simplest (smallest) decision tree is an NP-complete problem [Hyafil & Rivest '76]
- Resort to a greedy heuristic:
 - Start from empty decision tree
 - Split on next best attribute (feature)
 - Recurse
 - "Iterative Dichotomizer" (ID3)
 - C4.5 (ID3+improvements)

Recursion Step

Recursion Step

Second level of tree

Recursively build a tree from the seven records in which there are four cylinders and the maker was based in Asia

(Similar recursion in the other cases)

Choosing a good attribute

X ₁	X_2	Y	
Т	Τ	Т	
Т	F	Т	
Т	7	Т	
Т	F	Т	
F	Т	Т	
F	F	F	
F	Т	F	
F	F	F	

Measuring uncertainty

- Good split if we are more certain about classification after split
 - Deterministic good (all true or all false)
 - Uniform distribution bad

P(Y=F X ₁ = T) =	$P(Y=T X_1 = T) =$
0	1

Entropy

Entropy H(X) of a random variable Y

$$H(Y) = -\sum_{i=1}^{k} P(Y = y_i) \log_2 P(Y = y_i)$$

More uncertainty, more entropy!

Information Theory interpretation: H(Y) is the expected number of bits needed to encode a randomly drawn value of Y (under most efficient code)

Information gain

- Advantage of attribute decrease in uncertainty
 - Entropy of Y before you split
 - Entropy after split
 - Weight by probability of following each branch, i.e., normalized number of records

$$H(Y \mid X) = -\sum_{j=1}^{v} P(X = x_j) \sum_{i=1}^{k} P(Y = y_i \mid X = x_j) \log_2 P(Y = y_i \mid X = x_j)$$

- Information gain is difference $IG(X) = H(Y) H(Y \mid X)$
 - (Technically it's mutual information; but in this context also referred to as information gain)

Suppose we want to predict MPG

Look at all the information gains...

When do we stop?

(C) Dhruv Batra

Base Cases

- Base Case One: If all records in current data subset have the same output then don't recurse
- Base Case Two: If all records have exactly the same set of input attributes then don't recurse

Base Cases: An idea

- Base Case One: If all records in current data subset have the same output then don't recurse
- Base Case Two: If all records have exactly the same set of input attributes then don't recurse

•Is this a good idea?

The problem with Base Case 3

а	b	У
О	О	0
0	1	1
1	0	1
1	1	0

$$y = a XOR b$$

The information gains:

The resulting decision tree:

If we omit Base Case 3:

а	b	У
О	О	0
0	1	1
1	0	1
1	1	0

$$y = a XOR b$$

The resulting decision tree:

Basic Decision Tree Building Summarized

BuildTree(*DataSet*, *Output*)

- If all output values are the same in *DataSet*, return a leaf node that says "predict this unique output"
- If all input values are the same, return a leaf node that says "predict the majority output"
- Else find attribute X with highest Info Gain
- Suppose X has n_X distinct values (i.e. X has arity n_X).
 - Create and return a non-leaf node with n_X children.
 - The i'th child should be built by calling

BuildTree(*DS_i*,*Output*)

Where DS_i built consists of all those records in DataSet for which X = ith distinct value of X.

output = DecisionTree(data)

- -If(data.out is all one label) then return that label.
- -If(data.in are identical) then return majority label.
- -Split on next best feature (call it x*)

x*= arg max
$$IG(X_i)$$
 = arg max $H(Y) - H(Y \mid X_i)$
 $H(Y \mid X) = -\sum_{j=1}^{v} P(X = x_j) \sum_{i=1}^{k} P(Y = y_i \mid X = x_j) \log_2 P(Y = y_i \mid X = x_j)$

-For each value a of x* create a node and recur:
 DecisionTree(data.in(data.in.x* == a))

Will this mushroom kill me?						
Cap Shape	Odor	Habitat	Cap Color	Stalk Shape	Poison	
convex	pungent	urban	brown	enlarging	Yes	
convex	almond	grass	yellow	enlarging	No	
bell	anise	meadows	white	enlarging	No	
convex	none	urban	white	enlarging	Yes	
convex	none	grass	gray	tapering	No	
convex	almond	grass	yellow	enlarging	No	
bell	almond	meadows	white	enlarging	Yes	
bell	anise	meadows	white	enlarging	No	
convex	pungent	grass	white	tapering	Yes	

Decision trees will overfit

- Standard decision trees have no prior
 - Training set error is always zero!
 - (If there is no label noise)
 - Lots of variance
 - Will definitely overfit!!!
 - Must bias towards simpler trees
- Many strategies for picking simpler trees:
 - Fixed depth
 - Fixed number of leaves
 - Or something smarter... (chi2 tests)

Remember: Error Decomposition

(C) Dhruv Batra

Decision trees will overfit

(C) Dhruv Batra

Avoiding Overfitting

How can we avoid overfitting?

- Stop growing when data split not statistically significant
- Grow full tree, then post-prune

How to select "best" tree:

- Measure performance over training data
- Measure performance over separate validation data set
- Add complexity penalty to performance measure

Reduced-Error Pruning

Split data into training and validation set

Do until further pruning is harmful:

- 1. Evaluate impact on *validation* set of pruning each possible node (plus those below it)
- 2. Greedily remove the one that most improves *validation* set accuracy

Pruning Decision Trees

Demo

http://webdocs.cs.ualberta.ca/~aixplore/learning/DecisionTre
 es/Applet/DecisionTreeApplet.html

(C) Dhruv Batra

Effect of Reduced-Error Pruning

Rule Post-Pruning

- 1. Convert tree to equivalent set of rules
- 2. Prune each rule independently of others
- 3. Sort final rules into desired sequence for use

Perhaps most frequently used method (e.g., C4.5)

Converting A Tree to Rules

IF $(Outlook = Sunny) \ AND \ (Humidity = High)$ THEN PlayTennis = No

 $\begin{array}{ll} \text{IF} & (Outlook = Sunny) \; AND \; (Humidity = Normal) \\ \text{THEN} & PlayTennis = Yes \\ \end{array}$

. . .

Real-Valued inputs

What should we do if some of the inputs are real-valued?

cylinders	displacemen	horsepower	weight	acceleration	modelyear	maker
4	97	75	2265	18.2	77	asia
6	199	90	2648	15	70	america
4	121	110	2600	12.8	77	europe
8	350	175	4100	13	73	america
6	198	95	3102	16.5	74	america
4	108	94	2379	16.5	73	asia
4	113	95	2228	14	71	asia
8	302	139	3570	12.8	78	america
:	:	:	:	:	:	:
:	:	:	:	:	:	:
:	:	:	:	:	:	:
4	120	79	2625	18.6	82	america
8	455	225	4425	10	70	america
4	107	86	2464	15.5	76	europe
5	131	103	2830	15.9	78	europe
	4 6 4 8 6 4 4 8 : :	4 97 6 199 4 121 8 350 6 198 4 108 4 113 8 302 : : : : : : : : : : : : : : : : : : :	4 97 75 6 199 90 4 121 110 8 350 175 6 198 95 4 108 94 4 113 95 8 302 139 : : : : : : : : : : : : : : : : : : :	4 97 75 2265 6 199 90 2648 4 121 110 2600 8 350 175 4100 6 198 95 3102 4 108 94 2379 4 113 95 2228 8 302 139 3570 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :	4 97 75 2265 18.2 6 199 90 2648 15 4 121 110 2600 12.8 8 350 175 4100 13 6 198 95 3102 16.5 4 108 94 2379 16.5 4 113 95 2228 14 8 302 139 3570 12.8 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :	4 97 75 2265 18.2 77 6 199 90 2648 15 70 4 121 110 2600 12.8 77 8 350 175 4100 13 73 6 198 95 3102 16.5 74 4 108 94 2379 16.5 73 4 113 95 2228 14 71 8 302 139 3570 12.8 78 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

Infinite number of possible split values!!!

Finite dataset, only finite number of relevant splits!

Idea One: Branch on each possible real value

"One branch for each numeric value" idea:

Hopeless: with such high branching factor will shatter the dataset and overfit

Threshold splits

- Binary tree, split on attribute X
 - One branch: X < t</p>
 - Other branch: X >= t

Choosing threshold split

- Binary tree, split on attribute X
 - One branch: X < t
 - Other branch: X >= t
- Search through possible values of t
 - Seems hard!!!
- But only finite number of t's are important
 - Sort data according to X into $\{x_1, ..., x_n\}$
 - Consider split points of the form $x_i + (x_{i+1} x_i)/2$

A better idea: thresholded splits

- Suppose X is real valued
- Define IG(Y|X:t) as H(Y) H(Y|X:t)
- Define H(Y|X:t) = H(Y|X < t) P(X < t) + H(Y|X >= t) P(X >= t)
 - IG(Y|X:t) is the information gain for predicting Y if all you know is whether X is greater than or less than t
- Then define $IG^*(Y|X) = max_t IG(Y|X:t)$
- For each real-valued attribute, use IG*(Y|X) for assessing its suitability as a split
- Note, may split on an attribute multiple times, with different thresholds

Decision Trees

- Demo
 - http://www.cs.technion.ac.il/~rani/LocBoost/

Regression Trees

What do we do at the leaf?

Examples of leaf (predictor) models

Predictor model: constant

$$y = const$$

Predictor model: polynomial

$$y = \sum_{i=0}^{n} w_i x^i$$
 (note: linear for n=1, constant for n=0)

Regression Trees

Decision Forests

Learn many trees & Average Outputs
Will formally visit this in Bagging lecture

What you need to know about decision trees

- Decision trees are one of the most popular data mining tools
 - Easy to understand
 - Easy to implement
 - Easy to use
 - Computationally cheap (to solve heuristically)
- Information gain to select attributes (ID3, C4.5,...)
- Presented for classification, can be used for regression and density estimation too.
- Decision trees will overfit!!!
 - Zero bias classifier → Lots of variance
 - Must use tricks to find "simple trees", e.g.,
 - · Fixed depth/Early stopping
 - Pruning
 - Hypothesis testing

New Topic: Ensemble Methods

Bagging

Boosting

Synonyms

- Ensemble Methods
- Learning Mixture of Experts/Committees
- Boosting types
 - AdaBoost
 - L2Boost
 - LogitBoost
 - <Your-Favorite-keyword>Boost

A quick look back

- So far you have learnt
- Regression
 - Least Squares
 - Robust Least Squares
- Classification
 - Linear
 - Naïve Bayes
 - Logistic Regression
 - SVMs
 - Non-linear
 - Decision Trees
 - Neural Networks
 - K-NNs

Recall Bias-Variance Tradeoff

Demo

- http://www.princeton.edu/~rkatzwer/PolynomialRegression/
- Or if that fails to load.... Matlab demo!

Bias-Variance Tradeoff

- Choice of hypothesis class introduces learning bias
 - More complex class → less bias
 - More complex class → more variance

Fighting the bias-variance tradeoff

Simple (a.k.a. weak) learners

- e.g., naïve Bayes, logistic regression, decision stumps (or shallow decision trees)
- Good: Low variance, don't usually overfit
- Bad: High bias, can't solve hard learning problems

Sophisticated learners

- Kernel SVMs, Deep Neural Nets, Deep Decision Trees
- Good: Low bias, have the potential to learn with Big Data
- Bad: High variance, difficult to generalize
- Can we make combine these properties
 - In general, No!!
 - But often yes...

Voting (Ensemble Methods)

- Instead of learning a single classifier, learn many classifiers
- Output class: (Weighted) vote of each classifier
 - Classifiers that are most "sure" will vote with more conviction.
- With sophisticated learners
 - Uncorrelated errors → expected error goes down
 - On average, do better than single classifier!
 - Bagging
- With weak learners
 - each one good at different parts of the input space
 - On average, do better than single classifier!

Boosting

Bagging

- Bagging = Bootstrap Averaging
 - On board with Expected Error Analysis
 - Bootstrap Demo
 - http://wise.cgu.edu/bootstrap/

Decision Forests

Learn many trees & Average Outputs
Will formally visit this in Bagging lecture