ECE 5424: Introduction to Machine Learning

Topics:

- Neural Networks (again)
- Decision/Classification Trees

Readings: Murphy 16.1-16.2; Hastie 9.2

Stefan Lee Virginia Tech

Midterms Graded (All)

Midterms Graded (UGrad)

Midterms Graded (Grad)

Midterms Graded (All + Curve)

Administrativia

- Project Mid-Sem Spotlight Presentations
 - T/R Nov 8/10th: In-class
 - 5 slides (recommended)
 - 7 minute time (STRICT) + 1-2 min Q&A
 - Tell the class what you're working on
 - Any results yet?
 - Problems faced?
 - Upload slides on Scholar
- Also remember HW3 is due Nov 7th! Start Early.
 - Small typo on assignment, will send email from Scholar today.

Does everyone understand Convolutional Neural Networks?

Lets consider a neural network with a vector input:

Fully connected layers have a ton of parameters if input dimension is large!

Layer

Fully Connected Hidden Layer

The assumption: locality

Assume input dependencies are local in the signal.

Connect each neuron to only a local subset of the input signal.

Fixing stationarity

Problem! This local dependency would be stationary in the signal.

Example: Speech detection would need to learn a 'hard k' sound detector at each location!

Fixing stationarity

Input

Layer

Convolutional Layer

with 1 'filter'

Solution: Share weights at each local group!

Looks like a discrete convolution!

We can use powerful convolutional approaches (FFT for example) do forward-pass efficiently!

 For representative power, we might want to learn multiple filters over the input.

We can learn multiple filters per layer.

Input

Layer

Each filter outputs a vector. We can stack these vectors as the output of our layer.

13

Now we have a 2D signal for the next layer? What now?

Apply same logic and learn 2D filters!

- What about n-d inputs?
 - Just learn higher dimensional filters!
 - For images:
 - http://setosa.io/ev/image-kernels/

redit: Marc'Aurelio Ranzato

Pooling Layer

Pooling Layer

Convolutional Nets

- Example:
 - http://yann.lecun.com/exdb/lenet/index.html

Visualizing Learned Filters

Visualizing Learned Filters

Visualizing Learned Filters

Autoencoders

- Goal
 - Compression: Output tries to predict input

New Topic: Decision Trees

Synonyms

- Decision Trees
- Classification and Regression Trees (CART)
- Algorithms for learning decision trees:
 - ID3
 - C4.5
- Random Forests
 - Multiple decision trees

Decision Trees

- Demo
 - http://www.cs.technion.ac.il/~rani/LocBoost/

Pose Estimation

- Random Forests!
 - Multiple decision trees
 - http://youtu.be/HNkbG3KsY84

A small dataset: Miles Per Gallon

Suppose we want to predict MPG

mpg	cylinders	displacement	horsepower	weight	acceleration	modelyear	maker
good	4	low	low	low	high	75to78	asia
bad	6	medium	medium	medium	medium	70to74	america
bad	4	medium	medium	medium	low	75to78	europe
bad	8	high	high	high	low	70to74	america
bad	6	medium	medium	medium	medium	70to74	america
bad	4	low	medium	low	medium	70to74	asia
bad	4	low	medium	low	low	70to74	asia
bad	8	high	high	high	low	75to78	america
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
bad	8	high	high	high	low	70to74	america
good	8	high	medium	high	high	79to83	america
bad	8	high	high	high	low	75to78	america
good	4	low	low	low	low	79to83	america
bad	6	medium	medium	medium	high	75to78	america
good	4	medium	low	low	low	79to83	america
good	4	low	low	medium	high	79to83	america
bad	8	high	high	high	low	70to74	america
good	4	low	medium	low	medium	75to78	europe
bad	5	medium	medium	medium	medium	75to78	europe

40 Records

From the UCI repository (thanks to Ross Quinlan)

A Decision Stump

Comments

- Not all features/attributes need to appear in the tree.
- A features/attribute X_i may appear in multiple branches.
- On a path, no feature may appear more than once.
 - Not true for continuous features. We'll see later.
- Many trees can represent the same concept
- But, not all trees will have the same size!
 - e.g., Y = (A^B) (A^C) (A and B) or (not A and C)

Learning decision trees is hard!!!

- Learning the simplest (smallest) decision tree is an NP-complete problem [Hyafil & Rivest '76]
- Resort to a greedy heuristic:
 - Start from empty decision tree
 - Split on next best attribute (feature)
 - Recurse
 - "Iterative Dichotomizer" (ID3)
 - C4.5 (ID3+improvements)

Recursion Step

Recursion Step

Second level of tree

Recursively build a tree from the seven records in which there are four cylinders and the maker was based in Asia

(Similar recursion in the other cases)

Choosing a good attribute

X ₁	X_2	Υ
Т	-	Т
Т	Ŧ	Т
Т	7	Т
Т	F	Т
F	Т	Т
F	F	F
F	Т	F
F	F	F

Measuring uncertainty

- Good split if we are more certain about classification after split
 - Deterministic good (all true or all false)
 - Uniform distribution bad

P(Y=F X ₁ = T) =	$P(Y=T X_1 = T) =$
0	1

Entropy

Entropy H(X) of a random variable Y

$$H(Y) = -\sum_{i=1}^{k} P(Y = y_i) \log_2 P(Y = y_i)$$

More uncertainty, more entropy!

Information Theory interpretation: H(Y) is the expected number of bits needed to encode a randomly drawn value of Y (under most efficient code)

Information gain

- Advantage of attribute decrease in uncertainty
 - Entropy of Y before you split
 - Entropy after split
 - Weight by probability of following each branch, i.e., normalized number of records

$$H(Y \mid X) = -\sum_{j=1}^{v} P(X = x_j) \sum_{i=1}^{k} P(Y = y_i \mid X = x_j) \log_2 P(Y = y_i \mid X = x_j)$$

- Information gain is difference $IG(X) = H(Y) H(Y \mid X)$
 - (Technically it's mutual information; but in this context also referred to as information gain)

Learning decision trees

- Start from empty decision tree
- Split on next best attribute (feature)
 - Use, for example, information gain to select attribute
 - Split on $\underset{i}{\operatorname{arg max}} IG(X_i) = \underset{i}{\operatorname{arg max}} H(Y) H(Y \mid X_i)$
- Recurse

Suppose we want to predict MPG

Look at all the information gains...

When do we stop?

Base Cases

- Base Case One: If all records in current data subset have the same output then don't recurse
- Base Case Two: If all records have exactly the same set of input attributes then don't recurse

Base Cases: An idea

- Base Case One: If all records in current data subset have the same output then don't recurse
- Base Case Two: If all records have exactly the same set of input attributes then don't recurse

•Is this a good idea?

The problem with Base Case 3

а	b	У
О	О	0
0	1	1
1	0	1
1	1	0

$$y = a XOR b$$

The information gains:

The resulting decision tree:

If we omit Base Case 3:

а	b	У
О	0	0
0	1	1
1	0	1
1	1	0

$$y = a XOR b$$

The resulting decision tree:

