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Recap of Last Time
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-
Not linearly separable data

* Some datasets are not linearly separable!

— http://www.eee.metu.edu.tr/~alatan/Courses/Demo/AppletSV
M.html




Addressing non-linearly separable data —
Option 1, non-linear features

« Choose non-linear features, e.g.,
— Typical linear features: wy + ; w; X
— Example of non-linear features:
« Degree 2 polynomials, wo + Wi X; + j W;jX; X

« Classifier h,(x) still linear in parameters w
— As easy to learn
— Data is linearly separable in higher dimensional spaces
— Express via kernels
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Addressing non-linearly separable data —
Option 2, non-linear classifier

Choose a classifier h,(x) that is non-linear in
parameters w, e.g.,
— Decision trees, neural networks,...

* More general than linear classifiers

« But, can often be harder to learn (non-convex
optimization required)

« Often very useful (outperforms linear classifiers)

* In a way, both ideas are related
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Biological Neuron
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-
Recall: The Neuron Metaphor

 Neurons
— accept information from multiple inputs,
— transmit information to other neurons.

* Multiply inputs by weights along edges
« Apply some function to the set of inputs at each node

Sort of what a neuron
looks like
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. Types of Neurons
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Potentially more. Require a convex

loss function for gradient descent training.

Slide Credit: HKUST 8



s
Limitation

* A single “neuron” is still a linear decision boundary

« What to do?

» l|dea: Stack a bunch of them together!
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Multilayer Networks

« (Cascade Neurons together
« The output from one layer is the input to the next
« Each Layer has its own sets of weights
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- ______________________________________________________
Universal Function Approximators

e Theorem

— 3-layer network with linear outputs can uniformly
approximate any continuous function to arbitrary accuracy,
given enough hidden units [Funahashi '89]
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Plan for Today

* Neural Networks
— Parameter learning
— Backpropagation
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Forward Propagation

e On board
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Feed-Forward Networks

* Predictions are fed forward through the network to
classify
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Feed-Forward Networks

* Predictions are fed forward through the network to
classify
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s
Feed-Forward Networks

* Predictions are fed forward through the network to

classify
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s
Feed-Forward Networks

* Predictions are fed forward through the network to

classify
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Feed-Forward Networks

* Predictions are fed forward through the network to

classify
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s
Feed-Forward Networks

* Predictions are fed forward through the network to

classify
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.
Gradient Computation

* Firstlet’s try:

— Single Neuron for Linear Regression
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.
Gradient Computation

* Firstlet’s try:

— Single Neuron for Linear Regression
* Now let’s try the general case

» Backpropagation!
— Really efficient
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Neural Nets

» Best performers on OCR

— http://yann.lecun.com/exdb/lenet/index.html

* NetTalk

— Text to Speech system from 1987
— http://youtu.be/tXMaFhO6dIY?t=45m15s

* Rick Rashid speaks Mandarin
— http://youtu.be/Nu-nlIQgqFCKg?t=7m30s
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Historical Perspective
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Convergence of backprop

* Perceptron leads to convex optimization

Gradient descent reaches global minima

« Multilayer neural nets not convex

(C) Dhruv Batra

Gradient descent gets stuck in local minima
Hard to set learning rate

Selecting number of hidden units and layers = fuzzy
process

NNs had fallen out of fashion in 90s, early 2000s

Back with a new name and significantly improved
performance!!!!
* Deep networks
— Dropout and trained on much larger corpus
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Overfitting

 Many many many parameters

« Avoiding overfitting?
— More training data
— Regularization
— Early stopping
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A quick note
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Fig. 4. (a) Not recommended: the standard logistic function, f(z) =1/(1 +e™ ). (b)
Hyperbolic tangent, f(z) = 1.7159 tanh (%a“)
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Image Credit: LeCun et al. ‘98
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Rectified Linear Units (RelLU)

—Logistic ] | 10} —  Max(0, x) ,
| | | | | —  1/(1 + exp(-x))
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s
Convolutional Nets

 Basic Idea
— On board

— Assumptions:
« Local Receptive Fields
« Weight Sharing / Translational Invariance / Stationarity

— Each layer is just a convolution!

Sub-sampling

Input image Convolutional layer
P & Y layer
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FULLY CONNECTED NEURAL NET

Example: 1000x1000 image
~ IM hidden units
- 10712 parameters!!!

- Spatial correlation is local

- Better to put resources elsewherel! “©

i
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LOCALLY CONNECTED NEURAL NET

Example: 1000x1000 image
IM hidden units
Filter size: 10x10
100M parameters

—
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LOCALLY CONNECTED NEURAL NET
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LOCALLY CONNECTED NEURAL NET

4
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STATIONARITY? Statistics is
9 similar at different locations
p7

Example: 1000x1000 image
. IM hidden units
Filter size: 10x10
100M parameters
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CONVOLUTIONAL NET

Share the same parameters across
different locations:

Convolutions with learned kernels

o redit: Marc'Aurelio Ranzato Ranza*o "




CONVOLUTIONAL NET

E.g.: 1000x1000 image
100 Filters
Filter size: 10x10
10K parameters
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NEURAL NETS FOR VISION

A standard neural net applied to images:
- scales quadratically with the size of the input

- does not leverage stationarity

Solution:
- connect each hidden unit to a small patch of the input

- share the weight across hidden units

This is called: convolutional network.

LeCun et al. "Gradient-based learning applied to document recognition” IEEE 1998

Slide Credit: Marc'Aurelio Ranzato Ranza*o -’



CONVOLUTIONAL NET

Let us assume filter is an “eye” detector.

Q.: how can we make the detection robust
to the exact location of the eye?
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CONVOLUTIONAL NET

By "pooling” (e.g., max or average) filter
responses at different locations we gain
robustness to the exact spatial location
of features.
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Convolutional Nets

« Example:
— http://yann.lecun.com/exdb/lenet/index.html

C3:f. maps 16@10x10

INPUT gg@ 2Egitzusre maps S4: f. maps 16 @5x5
32x32 S2: f. maps C5: layer .
6@14x14 120 o layer QuTPUT

‘ Full conAection Gaussian connections
Convolutions Subsampling Convolutions  Subsampling Full connection
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Building an Object Recognition System

\\CA Rll

IDEA: Use data to optimize features for the given task.
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Building an Object Recognition System

\\CA Rll

CLASSIFIER

What we want: Use parameterized function such that

a) features are computed efficiently
b) features can be trained efficiently
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Building an Object Recognition System

END-TO-END
RECOGNITION

SYSTEM

- Everything becomes adaptive.
- No distiction between feature extractor and classifier.
- Big non-linear system trained from raw pixels fo labels.
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Visualizing Learned Filters
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Figure Credit: [Zeiler & Fergus ECCV14]
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-
Visualizing Learned Filters
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.
Autoencoders

« Goal
— Compression: Output tries to predict input

Input Features | Output
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.
Autoencoders

e Goal
— Learns a low-dimensional “basis” for the data
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Stacked Autoencoders

 How about we compress the low-dim features more?

Input Features Il Output
(Features 1)
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Face detectors

Face parts
HE=E“-#1¥ (combination
IE-%QIL

-kl of edges)
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Sparse DBNs
[Lee etal. ICML ‘09]

Figure courtesy: Quoc Le



s
Stacked Autoencoders

* Finally perform classification with these low-dim
features.

—> P(y=0|x)
—> Ply=1]x)

—> Ply=2| x)

Input Features | Features Il Softmax
classifier

(C) Dhruv Batra Image Credit: http://ufldl.stanford.edu/wiki/index.php/Stacked Autoencoders 49



-
What you need to know about neural networks

* Perceptron:
— Representation
— Derivation

* Multilayer neural nets
— Representation
— Derivation of backprop
— Learning rule
— Expressive power



