ECE 5424: Introduction to Machine Learning

Topics:

- Neural Networks
 - Backprop

Readings: Murphy 16.5

Stefan Lee Virginia Tech

Recap of Last Time

Not linearly separable data

- Some datasets are not linearly separable!
 - http://www.eee.metu.edu.tr/~alatan/Courses/Demo/AppletSV
 M.html

Addressing non-linearly separable data – Option 1, non-linear features

- Choose non-linear features, e.g.,
 - Typical linear features: w₀ + _i w_i x_i
 - Example of non-linear features:
 - Degree 2 polynomials, w₀ + _i w_i x_i + _{ij} w_{ij} x_i x_j
- Classifier h_w(x) still linear in parameters w
 - As easy to learn
 - Data is linearly separable in higher dimensional spaces
 - Express via kernels

Addressing non-linearly separable data – Option 2, non-linear classifier

- Choose a classifier h_w(x) that is non-linear in parameters w, e.g.,
 - Decision trees, neural networks,...
- More general than linear classifiers
- But, can often be harder to learn (non-convex optimization required)
- Often very useful (outperforms linear classifiers)
- In a way, both ideas are related

Biological Neuron

Recall: The Neuron Metaphor

- Neurons
 - accept information from multiple inputs,
 - transmit information to other neurons.
- Multiply inputs by weights along edges
- Apply some function to the set of inputs at each node

Types of Neurons

Perceptron

loss function for gradient descent training.

Limitation

A single "neuron" is still a linear decision boundary

What to do?

Idea: Stack a bunch of them together!

Multilayer Networks

- Cascade Neurons together
- The output from one layer is the input to the next
- Each Layer has its own sets of weights

Universal Function Approximators

Theorem

 3-layer network with linear outputs can uniformly approximate any continuous function to arbitrary accuracy, given enough hidden units [Funahashi '89]

Plan for Today

- Neural Networks
 - Parameter learning
 - Backpropagation

Forward Propagation

On board

Gradient Computation

- First let's try:
 - Single Neuron for Linear Regression

Gradient Computation

- First let's try:
 - Single Neuron for Linear Regression

- Now let's try the general case
- Backpropagation!
 - Really efficient

Neural Nets

- Best performers on OCR
 - http://yann.lecun.com/exdb/lenet/index.html

- NetTalk
 - Text to Speech system from 1987
 - http://youtu.be/tXMaFhO6dIY?t=45m15s

- Rick Rashid speaks Mandarin
 - http://youtu.be/Nu-nlQqFCKg?t=7m30s

Historical Perspective

Convergence of backprop

- Perceptron leads to convex optimization
 - Gradient descent reaches global minima
- Multilayer neural nets not convex
 - Gradient descent gets stuck in local minima
 - Hard to set learning rate
 - Selecting number of hidden units and layers = fuzzy process
 - NNs had fallen out of fashion in 90s, early 2000s
 - Back with a new name and significantly improved performance!!!!
 - Deep networks
 - Dropout and trained on much larger corpus

Overfitting

- Many many many parameters
- Avoiding overfitting?
 - More training data
 - Regularization
 - Early stopping

A quick note

Fig. 4. (a) Not recommended: the standard logistic function, $f(x) = 1/(1 + e^{-x})$. (b) Hyperbolic tangent, $f(x) = 1.7159 \tanh\left(\frac{2}{3}x\right)$.

Rectified Linear Units (ReLU)

Convolutional Nets

- Basic Idea
 - On board
 - Assumptions:
 - Local Receptive Fields
 - Weight Sharing / Translational Invariance / Stationarity
 - Each layer is just a convolution!

FULLY CONNECTED NEURAL NET

LOCALLY CONNECTED NEURAL NET

Slide Credit: Marc'Aurelio Ranzato

LOCALLY CONNECTED NEURAL NET

Slide Credit: Marc'Aurelio Ranzato

LOCALLY CONNECTED NEURAL NET

Slide Credit: Marc'Aurelio Ranzato

CONVOLUTIONAL NET

edit: Marc'Aurelio Ranzato

CONVOLUTIONAL NET

redit: Marc'Aurelio Ranzato

NEURAL NETS FOR VISION

A standard neural net applied to images:

- scales quadratically with the size of the input
- does not leverage stationarity

Solution:

- connect each hidden unit to a small patch of the input
- share the weight across hidden units

This is called: convolutional network.

LeCun et al. "Gradient-based learning applied to document recognition" IEEE 1998

CONVOLUTIONAL NET

CONVOLUTIONAL NET

Convolutional Nets

- Example:
 - http://yann.lecun.com/exdb/lenet/index.html

Building an Object Recognition System

IDEA: Use data to optimize features for the given task.

Building an Object Recognition System

What we want: Use parameterized function such that

- a) features are computed efficiently
- b) features can be trained efficiently

Building an Object Recognition System

- Everything becomes adaptive.
- No distiction between feature extractor and classifier.
- Big non-linear system trained from raw pixels to labels.

Visualizing Learned Filters

Visualizing Learned Filters

Visualizing Learned Filters

Autoencoders

- Goal
 - Compression: Output tries to predict input

Autoencoders

- Goal
 - Learns a low-dimensional "basis" for the data

Stacked Autoencoders

How about we compress the low-dim features more?

Sparse DBNs [Lee et al. ICML '09]

Figure courtesy: Quoc Le 48

Stacked Autoencoders

Finally perform classification with these low-dim features.

What you need to know about neural networks

- Perceptron:
 - Representation
 - Derivation
- Multilayer neural nets
 - Representation
 - Derivation of backprop
 - Learning rule
 - Expressive power