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Format

* Midterm Exam
* When: October 6th, class timing
Where: In class

Format: Pen-and-paper.

Open-book, open-notes, closed-internet.
* No sharing.

What to expect: mix of
* Multiple Choice or True/False questions
* “Prove this statement”
* “What would happen forthis dataset?”

Material
* Everything from beginning to class to Tuesday’s lecture



How to Prepare

* Find the “What You Should Know” slides in each lecture powerpoints
and make sure you know those concepts

* This presentation provides an overview but is not 100% complete.

* Review class materials and your homeworks.

* We wont ask many questions you can just look up so get a good
nights rest and come prepared to think.



-
Summary of Topics Covered

« K Nearest Neighbor Classifier / Regressor

« Distance Functions (L1, L2, Mahalanobis)
«  Weighted k-NN & Kernel Regression

o Statistical Estimation
* Basic Probability

 Random Variables, Bayes Rule, Chain Rule, Marginalization, Independence,
Conditional Independence, Entropy, KL Divergence

« Maximum Likelihood Estimation (MLE)
* General MLE strategy
« Bernoulli
» Categorical
* Normal/Gaussian

« Maximum A Posteriori (MAP)
 Effect of Priors

* Conjugate Priors

* Bernoulli * Beta = Beta
» Categorical * Dirichlet = Dirichlet
* Gaussian* Gaussian = Gaussian



-
Summary of Topics Covered (Cont'd)

» Linear Regression
* Ordinary Least Squares
* Robust Least Squares and Ridge Regression

* Naive Bayes
 Logistic Regression
* Regularized Logistic Regression
» General Machine Learning Know-how
* General Train/Val/Test Strategy
Underfitting / Overfitting

Error Decomposition
* Modelling, Estimation, Optimization, & Bayes

» Bias / Variance Tradeoff

Model Classes

Algorithm Evaluations and Diagnostics
* Loss Functions, Confusion Matrices, ROC Curves, Leaming Curves, Cross Validation

Curse of Dimensionality

Generative vs. Discriminative Models



-
Summary of Topics Covered (Cont'd)

« Other Important Mathematic Concepts
* VectorAlgebra
 Basic Calculus
« Convexity / Concavity
« Gradient Descent / Ascent



L
Know Your Models: kNN Classification / Regression

* The Model:

« Classification: Find nearest neighbors by distance metric and let them vote.

» Regression: Find nearest neighbors by distance metric and average them.

* Weighted Variants:
» Apply weights to neighbors based on distance (weighted voting/average)
» Kernel Regression / Classification
» Set k to n and weight based on distance
« Smoother than basic k-NN!
* Problems with k-NN
« Curse of dimensionality: distances in high d not very meaningful
* Irrelevant features make distance != similarity and degrade performance

» Slow NN search: Must remember (very large) dataset for prediction



R
Know Your Models: Linear Regression

« Linear model of Y given X:

« Assume: Y |[X =x; ~Nw'x;,0%) then wy,; = argmax P(D | w) =
argminY wix; —y,)? = XTX)1xTy

» Another name for this method is ordinary least squares or OLS.
* Other Variants:
- Robust Regression with Laplacian Likelihood (Y |X = x; ~ Lap(w”x;,6%)
- Ridge Regression with Gaussian Prior (w ~ N(o,t2) )
* General Additive Regression

» Learn non-linear functions in the original space by solving linear
regression in a non-linear spacei.e. Y |X = x; ~ NwT®(x;),0%)

* Example x; = [xq,x,,x3] and ®(x;) = [xq, x5, %3, %1%, %1, X3, X5,X3]
* Problems with Linear Regression
« (XTX)~! may not be invertible (or is huge!)

* OLS is not particularly good with outliers



-
Know Your Models: Naive Bayes Classifier
* Generative Model P(X |Y) P(Y):
- Optimal Bayes Classifier predicts argmax, P(X |Y = y) P(Y = y)

« Naive Bayes assume P(X | Y) = [[P(X;| Y) i.e. features are conditionally
independent in order to make learning P(X | Y) tractable.

 Learning model amounts to statistical estimation of P(X;| Y)'s and P(Y)
* Many Variants Depending on Choice of Distributions:
* Pick a distribution for each P(X; | Y = y) (Categorical, Normal, etc.)
 Categorical distribution on P(Y)
* Problems with Naive Bayes Classifiers
» Learning can leave 0 probability entries — solution is to add priors!
» Be careful of numerical underflow — try using log space in practice!
» Correlated features that violate assumption push outputs to extremes
« A notable usage: Bag of Words model

« Gaussian Naive Bayes with class-independent variances representationally
equivalent to Logistic Regression - Solution differs because of objective function



.
Know Your Models: Logistic Regression Classifier

 Discriminative Model P(Y |X) :

« Assume P(Y [X =x) = mﬁ’? < sigmoid/logistic fnction

» Learns a linear decision boundary (i.e. hyperplane in higher d)

* Other Variants:

« Can put priors on weights w just like in ridge regression

* Problems with Logistic Regression

* No closed form solution. Training requires optimization, but likelihood is
concave so there is a single maximum.

» Can only do linear fits.... Oh wait! Can use same trick as generalized linear
regression and do linear fits on non-linear data transforms!
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s
Know: Difference between MLE and MAP

» Both are estimate of distribution parameters based on data but MAP
includes a prior specified by the model without respect to the data

Likelihood
Oy = argmax P(D|0)

Likelihood

/—'ﬁ

Oyap = argmax P(6|D) = argmax P(D|0) P(6)
Posterior E‘To-;‘

o If P(0) is uniform, Oy;.r = Oy ap
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s
Be Familiar: Distribution We Discussed

If random variable X is distributed as

« Bernoulli(6)then X is binary and P(X=1)=6 ,P(X=0)=1-6

xa1—1 (1_x)a0—1

B(a1,ap)

 Beta(a,a,)then Xbetween 0 and 1 and P(X = x) =

« Categorical(p4,...,pr) then Xis discrete {1,...,k} and P(X=k) = p,

 Dirichlet(ay, ..., a;)then X € R¥, ¥x; = 1, and P(X = x) = B(a) Hl 1x -1

(=)

- Gaussian(y, a%) then X is continuous and P(X = x) = ijz e 257

loc—p|
« Laplacian(y, b) then X is continuous and P(X = x) = Zl—be‘ 2b
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-
Know: Conjugate Priors / Effect of Priors

Bernoulli Beta Beta
Categorical Dirichlet Dirichlet
Gaussian Gaussian Gaussian
Example: Bernoulli with a Beta Prior 2 Srior
* Prior = Beta(2,2) 1
¢ eprior =0.5 o
(8] 0.5 1
= likelihood function
* Dataset = {H} 1}
* L(6)=0, Oue=1
0O 0.5 1
* Posterior = Beta(3,2) * [ posterior
* Omap = (3-1)/(3+2-2) =2/3 ol
00 0.5



-
Know: Bayesian Inference (aka appreciating posteriors)

Example: | want to estimate the chance I'll lose money on a bet.

* MLE strategy: find MLE estimate for chance of success under a Bernoulli
likelihood and look at expected loss on my gambling.
* This is a point estimate and requires that my MLE estimate is pretty good

* Bayesian strategy: find posterior over the chance of success and
compute expected loss over my beliefs of this chance

N

posterior

| ' x Cost db

* Lets us reason about the uncertainty of our estimate though the integral
of the posterior might be mess... conjugate priors ensure it isn’t!
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.
Skills: Be able to Compute MLE of Parameters

» Given i.i.d samples D ={ x4, ..., X} from P(X; 9)

1.  Write likelihood of D under P(X; 8) as a function of 8
« Likelihood L(8)=P(D | 0) =11}~ P(x;]6)

2. TakelogtogetLL(®)= X' ,log(P(x;|6))

3. Solve for argmax LL(0)
» First order methods sometimes give closed form solutions
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.
Practice: Compute MLE for Poisson Distribution

AXe—A

* Given i.i.d samples D ={xi, ..., Xy} from P(X;1) = —

1.  Write likelihood of D under P(X; A) as a function of 1

Axi -1 Ale -nA
« LA)=PD|A) =T, 2—=2"°

x;! X lkeeekoey !

2. TakelogtogetLL(A) = —nA+log(A) Xi* 1(x; —log(x;!))

0.40

| &9 o \=1

3. Solve for argmax LL(1) ool .« \—1
SLL(A) _ Sxi co02sf | * A=

o2~ Tt =0 X020l Lo
. “oisf o o
° A = — ) X: 0.10¢} .o o Q
MLE n Z l 0.05} . O 5 o '. » “ o) . J
.00l 8enoTan T®aass 000,

’ 0 5 10 15 20



.
Skills: Be able to Compute MAP of Parameters

* Given i.i.d samples D ={ x4, ..., X, } from P(X; 8) with prior P(9)

1. Write posterior of 8 under P(X; 8) as a function of 8
« P(8) xP(D | 8)P(theta) =T~ P(x;| 0)P(6)

2. Takelogto getLP(8)= I ,log(P(x;|0)) + log(P(8))

3. Solve for argmax LP(60)
» First order methods sometimes give closed form solutions
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.
Practice: Compute Map for Poisson Distribution
with Gamma Prior

* Given i.i.d samples D ={x, ...

A~ Gamma(a, B) = rﬁ()a) Qo1 ‘3’1

1.  Write posterior under P(X; 1) and P(1) as a function of A

Aie=2

+ P(ID) o P(D | 4) PR) o [Ty =7 A" PP cc A2t g=(n4h2

P(D|2)

l

—

2. LP(A)x —(n+ B)A+1log(d) (@ — 1+ 21 1%)

3. Solve for argmax LL(4)
=—(n+p)+

*  Apap = m(a -1+ Xx;) 18

6LL(A) a—1+ le

=0




.
Practice: What distribution is the posterior and what

are the parameters in terms of X,q, ,B’?

* Given i.i.d samples D ={x4, ..., x,} from P(X; 1
A~ Gamma(a, B) = rﬁ()a) Qa1 =B

1. P(A|D) < P(D | 1) P(1) o [T~ A: 10—1 g=BA ¢ Ja—1+3x; o—(n+B)A

N— —

P(D|1)

Gamma(Qx; + a,n + B)
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.
Skills: Be Able to Compare and Contrast Classifiers

* K Nearest Neighbors
» Assumption: f(x) is locally constant
 Training: N/A
* Testing: Majority (or weighted) vote of k nearest neighbors

* Logistic Regression
« Assumption: P(Y|X=x;) = sigmoid( w'x;)
* Training: SGD based
 Test: Plug x into learned P(Y | X) and take argmax over Y

* Naive Bayes
« Assumption: P(X4,..,. X [ Y) = P(X; | Y)"..." P(X; | Y)
 Training: Statistical Estimation of P(X | Y) and P(Y)
 Test: Plug x into P(X | Y) and find argmax P(X | Y)P(Y)
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-
Practice: What classifier(s) for this data”? Why?

21



-
Practice: What classifier for this data? Why?

==
+ --
+ T
= ++
- +
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.
Know: Error Decomposition

Approximation/Modeling Error
— You approximated reality with model

Estimation Error
— You learned a model with finite data

Optimization Error
— You were lazy and couldn’t/didn’t optimize to completion

Bayes Error
— there is a lower bound on error for all models, usually non-zero

23



-
Know: How Error Types Change w.r.t Other Things

More Training Data ‘ Reality Sucks

Larger Model Class ‘ f (maybe) ' Reality Still Sucks

How to change model class?

« Same model with more/fewer features
 Different model with more/fewer parameters

« Different model with different assumptions (linear? Non-linear?

How much data do | need?

« Depends on the model.. Gaussian Naive Bayes and Logistic
regression give same result in the limit if GNB assumptions hold

» GNB typically needs less data to approach this limit but if the
assumptions don’t hold LR is expected to do better.
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.
Know: Bias vs Variance

* Bias: difference between what you expect to learn
and truth i.e. E|0] — 0~
* Measures how well you expect to represent true solution
* Decreases with more complex model

* Variance: difference between what you expect to
learn and what you learn from a from a particular
dataset i.e E[(8 — E[0])?]

* Measures how sensitive learner is to specific dataset
* Increases with more complex model
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-
Know: Learning Curves

* Plot error as a function of training dataset size

Low Variance but bad model,

more data wont help

g Validation Error I

0..... .
EEEEEEEEEEY RN EENAggEEs
A

., Validation Error
...lllIlllllll-llllll..l..

|/f Train Error

Error

High Variance but

Error

more data will help

v

/ Train Error

# Samples Trained On

# Samples Trained On
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Know: Underfitting & Overfitting

* Plot errorthrough training (for models without closed form solutions

H
“ ~ )
Validation Error
v
o“
L'y
. | 3
. o’
: i
ks |
Train Error
QnQerf Training Ith Overfitting
itting

. Ovedrfiltting is easier with more complex models butis possibleforany
mode

 More data helps avoid overfitting as do regularizers
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s
Know: Train/Val/Test and Cross Validation

Train — used to learn model parameters
Validation — used to tune hyper-parameters of model

Test — used to estimate expected error

@ The improved holdout method: k-fold cross-validation

e Partition data into k roughly equal parts;
e Train on all but j-th part, test on j-th part

1 LN
@ An extreme case: leave-one-out cross-validation
1 N
- A 2
ch — F Z (yi — f(xi; W—i))
i=1

where w_; is fit to all the data but the i-th example.



-
Skills: Be Able to Argue for Concavity/Convexity

» Today’s readings help a great deal!

o f: R > RN is a convex function if domain of f is a convex
set and for all A € [0, 1]

f(Aw, + (1 = Nwsg) < Af(wq) + (1 = A) f(ws)

(:U f(y))
(2, fla))""

 Alternative: show the Hessian matrix is positive semidefinite

* Alternative: argue with properties of convexity i.e. affine functions are
convex, min of convex functions are convex , sum of convex functions
IS convex, efc..
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-
Practice: Show if f(x) is convex

« f(x) = x?

=]

dx?

] =2. ax*2*a=2a® > 0Va, therefore convex

* f(x,y) = x*—log(y)

- Of Of ) 0
A2 2
e H = (f;; (ngx = [O L], a’Ha = 2a? +;—§ > 0Va,y,  convex!
2
| 5x 6y  Sy? | Y
* f(x,y) =log(x/y)
Ji S5f 7 T 1 O-
5 2 5 5 __2 2 2 .
« H = 63; 36]fx = Ox i,aTHa=—i—;+%<Olfal>az
| Sx 8y  Sy? | i yZ |

 Non-convex!
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