ECE 5424: Introduction to
Machine Learning

Topics:
— Classification: Logistic Regression
— NB & LR connections

Readings: Barber 17.4

Stefan Lee
Virginia Tech
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e HW2
— Due: Monday, 10/3, 11:55pm

— Implement linear regression, Naive Bayes, Logistic
Regression

* Review Lecture Tues

« Midterm Thursday
— In class, class timing, open notes/book
— Closed internet

(C) Dhruv Batra 3



Recap of last time
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Naive Bayes
(your first probabilistic classifier)

x ) Classification  mmmmms) vy Discrete
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Classification

e Learn: h:X—> Y

— X —features
— Y — target classes

« Suppose you know P(Y|X) exactly, how should you
classify?
— Bayes classifier:

« Why?

Slide Credit: Carlos Guestrin
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Error Decomposition

Approximation/Modeling Error
— You approximated reality with model

Estimation Error
— You tried to learn model with finite data

Optimization Error
— You were lazy and couldn’t/didn’t optimize to completion

Bayes Error

— Reality just sucks
— http://psych.hanover.edu/JavaTest/SDT/ROC.html

(C) Dhruv Batra 7



.
Generative vs. Discriminative

@ Using Bayes rule, optimal classifier

h*(x) = argmax {logp(x|y =c¢) + logp(y = ¢)}

« (Generative Approach (Naive Bayes)
— Estimate p(x|y) and p(y)
— Use Bayes Rule to predict y

« Discriminative Approach
— Estimate p(y|x) directly (Logistic Regression)
— Learn “discriminant” function h(x) (Support Vector Machine)
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The Naive Bayes assumption

* Nailve Bayes assumption:
— Features are independent given class:

P(X1,X0Y) = P(X1]|X2,Y)P(X2|Y)
= P(X1]Y)P(X2]Y)

— More generally:

P(X1..X,|Y) = HP(XZ-|Y)‘

(]

 How many parameters now?
» Suppose X is composed of d binary features
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.
Generative vs. Discriminative

@ Using Bayes rule, optimal classifier

h*(x) = argmax {logp(x|y =c¢) + logp(y = ¢)}

« (Generative Approach (Naive Bayes)
— Estimate p(x|y) and p(y)
— Use Bayes Rule to predict y

« Discriminative Approach
— Estimate p(y|x) directly (Logistic Regression)
— Learn “discriminant” function h(x) (Support Vector Machine)
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Today: Logistic Regression

 Main idea
— Think about a 2 class problem {0,1}
— Can we regress to P(Y=1 | X=x)?

* Meet the Logistic or Sigmoid function
— Crunches real numbers down to 0-1

* Model
— Inregression: y ~ N(w'x, A?)
— Logistic Regression: y ~ Bernoulli(o(w’x))
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Understanding the sigmoid

1
o(wo + Z W) = 1 + e~ Wo—2_; Wi

Wo=2, W,=1 wp=0, w=1 wp=0, w,=0.5
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Visualization
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Expressing Conditional Log Likelihood

1

P =0[X,w) = 1+ exp(wo + >; w; X;)

I(w) = Z In P(y/ |x7, w)

J exp(wo + ¥ wiX;)

PY =1]X,w) = 14 exp(wg + >; w; X;)

I(w) = Y ¢/ InP(y =1x7,w)+ (1 —¢/) In P(y) = 0[x/, w)
j
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Maximizing Conditional Log Likelihood

P(Y =0|X,W) =

1 + exp(wo + >; w; X;)
exp(wo + > w; X;)
1 + exp(wg + > w; X;)

P(Y =1|X,W) =

[(w)

In ] P(y?|x?, w)
j

| d d, .
= 2 v/ (wo + > wi) — In(1 + exp(wo + > wia)
j i t

Bad news: no closed-form solution to maximize /(w)

Good news: /[(w) is concave function of w!
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Gradient Descent

@ Choose a starting point wg when t = 0 and the desired
tolerance e.

@ Repeat until ||V f(w,)|| < € is satisfied

i1 = we — eV f(we)

S <O
SIS
XSS SIS
S
S
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Careful about step-size

Quadratic bowl

=1 n=.3
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Local vs. global optimal

For general objective  Consider rolling a ball on a hill
functions f(x)
Lo
We get local optimum WL \N f
Ve \'\.. /
\'\.\\ ll
/ Ne /
depends on where you
start

does not dependon %/
where you start /,}‘-._-,/
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When does it work?
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Local vs. global optimal

In practice, convexity can be a very nice thing

In general, convex problems -- minimizing a convex
function over a convex set -- can be solved humerically

very efficiently

This is advantageous especially if stationary points
cannot be found analytically in closed-form

Convex: unique global optimum nonconvex: local optimum

/ e
.u’ l\ \ / /.\\ \ /

‘.\'.\ /"I \ »
\\ e e ,'/
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Convex Functions

o f: R > RN is a convex function if domain of f is a convex
set and for all A € [0, 1]

f(/\'wl + (1 — /\)’wg) < /\f(’LL'l) + (1 — )\)f(ﬂlg)

e ‘:_'(y» f(y))
(@, f@)<—"
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Multivariate functions

Definition
f(x) is convex if
fAa+(1-A)b) < Af(a)+(1-A)f(D)
How to determine convexity in this case?

Second-order derivative becomes Hessian matrix

ERC)) f(e) . Of(m) T
amf Ox10x2 Ox10xD
0% f (=) Pfx) 0 f(=)
H = Ox10xo amg Oxo0xp
0% f (=) f(e) . Of(=)
| O0xz10xp Ox20xp 3:1:2D |
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Convexity for multivariate
function

If the Hessian is positive semidefinite, then the
function is convex

2
xr
Ex: f(,’L') — -1
o
-2 __2x1 T
* g_| | _ 2| a3 —aa
22 3 2 1
_ 2 2 -
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Verify that the Hessian is positive

definite

Assume X2 is positive, then

For any vector

i

2 3 — 2129

vIHv = vT—3 9 v
ry | —T1T2 L

2

= —(a*z3 — 2abz 2o + b°27)
Lo
2 2

= —(axrg —bx1)” >0
Lo
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What does this function look like?
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Gradient ascent

« Conditional likelihood for Logistic Regression is concave
-> Find optimum with gradient ascent

ol(w ol(w
Gradient: le(W) . [8500)’ e a(T)
n

]/

Learning rate, >0

Update rule:

AW = nVwl(w)
wz_(t+1) — w® . n@l(w)

1
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R EEEEEEEEEE————=
Maximize Conditional Log Likelihood:

Gradient ascent

. d . d |
(W) = Yo (wo+ Y wial) = In(1 + eap(wo + Y wiz)))
J v )
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Gradient Ascent for LR

Gradient ascent algorithm: iterate until change <

w(()t—l-l) - w(()t) 4+ WZ[yj —P(YI=1|x,w)]
J

For i=1,...,n,

wi(t+1) — wz-(t) + nZa;g[yj —P(Y? =1|x7,w)]
J

repeat
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Teacher Out

t

Error

O

Perceptron Learning
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That's all M(C)LE. How about M(C)AP?

p(w|Y,X) o PV [X,w)p(wW)

* One common approach is to define priors on w

— Normal distribution, zero mean, identity covariance
— “Pushes” parameters towards zero

» Corresponds to Regularization
— Helps avoid very large weights and overfitting
— More on this later in the semester

« MAP estimate

N
p— J | xJ
w* = argmaxin |p(w) 'H1 P(y) | x),w)
j:
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Large parameters  Overfitting

1 1 1
1+e 7 14 e 27 1+ ¢— 100z

 If data is linearly separable, weights go to infinity
« Leads to overfitting

* Penalizing high weights can prevent overfitting
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Gradient of M(C)AP

O N o 1 —w?
oI |p(w) ] P |5, w) ot
w; j=1
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MLE vs MAP

« Maximum conditional likelihood estimate

N
p— J | xJ
w* = arg maxIn LH1P(y | x ,w)]

wz'(t_I—l) - wi(t) 4+ szg[yj _ p(yj =1 Xj’w):
J

 Maximum conditional a posteriori estimate

N
p— J | ~J
w* = arg maxin [p(w) .Hl P(y | x ,w)]
J:

wi(t_l_l) - wz-(t)-l-n {)\wi(t) 4+ ng[y]’ —P(YI =1 ijw)]}
J
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HW?2 Tips

 Nailve Bayes
— Train_NB
« Implement “factor_tables” -- |X|| x [Y| matrices

« Prior|Y| x 1 vector
 Fill entries by counting + smoothing

— Test NB
« argmax_y P(Y=y) P(Xi=x,)...
— TIP: work in log domain

* Logistic Regression
— Use small step-size at first
— Make sure you maximize log-likelihood not minimize it
— Sanity check: plot objective
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Finishing up:
Connections between NB & LR
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Logistic regression vs Nalve Bayes

* Consider learning f: X =2 Y, where
— Xis a vector of real-valued features, <X1 ... Xd>
— Y is boolean

« (Gaussian Nailve Bayes classifier

— assume all X, are conditionally independent given Y
— model P(X; | Y = k) as Gaussian N( i, i)
— model P(Y) as Bernoulli(6,1-6)

 What does that imply about the form of P(Y|X)?

1

PlY=1|X = —
( | z) 1+ exp(—wo — >, w;ix;)

Coolllll
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Derive form for P(Y|X) for continuous X

P(Y =1)P(X|Y = 1)

P =11X) = P(Y =1)P(X|Y = 1)+ P(Y = 0)P(X|Y = 0)

1

P(Y=0)P(X[Y=0)
1+ P(Yzl)P(XIYzl)

1

1+ exp(In pgyzlﬁpﬁxly:lb

1

1+ exp( (In159) + 52 In i =)
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-
Ratio of class-conditional probabilities

P(X;|Y = 0) o)
P(X;lY =1) P(Xi=w!Y=yk)=0im e
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R EEEEEEEE—————
Derive form for P(Y|X) for continuous X

P(Y =1)P(X|Yy = 1)
P(Y =1)P(X|Y =1)+ P(Y =0)P(X|Y =0)

1
1+ exp( (In159) 4+ In S =33)

/

Z HiQ — MuX, 4 M7;21 - /%'20
- 0'.2 v 20‘2
/A 7\ 7

P(Y =1|X) =

1

PlY=1|X = —
( | z) 1+ exp(—wo — >, w;ix;)
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Gaussian Naive Bayes vs Logistic Regression

Set of Gaussian

Naive Bayes parameters Set of Logistic
(feature variance Regression parameters
independent of class label)

Not necessarily

* Representation equivalence

— But only in a special case!!! (GNB with class-independent variances)
« But what's the difference???
* LR makes no assumptions about P(X|Y) in learning!!!

* Loss function!!!
— Optimize different functions - Obtain different solutions
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Nalve Bayes vs Logistic Regression

Consider Y boolean, Xi continuous, X=<X1 ... Xd>

 Number of parameters:
— NB: 4d +1 (or 3d+1)
— LR: d+1

« Estimation method:
— NB parameter estimates are uncoupled
— LR parameter estimates are coupled
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R EEEEEEEE—————
G. Naive Bayes vs. Logistic Regression 1

[Ng & Jordan, 2002]

» Generative and Discriminative classifiers

« Asymptotic comparison
(# training examples -2 infinity)

— when model correct

« GNB (with class independent variances) and
LR produce identical classifiers

— when model incorrect

LR is less biased — does not assume conditional independence
— therefore LR expected to outperform GNB
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R EEEEEEEE—————
G. Naive Bayes vs. Logistic Regression 2

[Ng & Jordan, 2002]

 Generative and Discriminative classifiers

* Non-asymptotic analysis

— convergence rate of parameter estimates,
d = # of attributes in X
« Size of training data to get close to infinite data solution
 GNB needs O(log d) samples
* LR needs O(d) samples

— GNB converges more quickly to its (perhaps less
helpful) asymptotic estimates
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Figure 1: Results of 15 experiments on datasets from the UCT Machine Learnin
repository. Plots are of generalization error vs. m (averaged over 1000 randor
train/test splits). Dashed line is logistic regression: solid line is naive Bayes,



What you should know about LR

« Gaussian Naive Bayes with class-independent variances
representationally equivalent to LR

— Solution differs because of objective (loss) function

* Ingeneral, NB and LR make different assumptions
— NB: Features independent given class assumption on P(X]Y)
— LR: Functional form of P(Y|X), no assumption on P(X|Y)

« LR s a linear classifier
— decision rule is a hyperplane

* LR optimized by conditional likelihood
— no closed-form solution
— Concave - global optimum with gradient ascent
— Maximum conditional a posteriori corresponds to regularization

« Convergence rates

— GNB (usually) needs less data
— LR (usually) gets to better solutions in the limit
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