1. How do we pick \(d \) in polynomial regression?

One Idea:

\[
\begin{align*}
\hat{y}(0) &= w_0 + \epsilon \in \mathbb{R}^1 \\
\hat{y}(1) &= w_0 + w_1 x' \\
& \vdots \\
\hat{y}(d) &= w_0 + w_1 x' + \cdots + w_d x^d
\end{align*}
\]

\[\hat{\theta}(d) = \arg\min_{\theta} \sum_{i=1}^{n} (y_i - \hat{y}(d))^2 \]

\[d = \arg\min_{d=0,1,\ldots,100} \sum_{i=1}^{n} (y_i - \hat{y}(d))^2 \]

Won't work too well. Model classes are needed. \(d=100 \) will always give lowest training error.

All \(10^\text{th} \) order polynomials

This is called the problem of "Model Selection".

\(\rightarrow \) How do I pick a model class to search in?
2. Types of Error

- Larger Model Classes will always do better on training error, but that's not what we care about.

What we really care about → Expected loss/Error

\[X, Y \sim P(x, y) \text{ [unknown]} \]

\[E_{P(x,y)} \left[L(y, g(x; w)) \right] \]

all parameters to hyperparameters

What we ideally want to do

\[\min_w \int \int L(y, g(x; w)) p(x, y) \, dx \, dy \]

Two problems

→ Integral hard to compute
→ \(p(x, y) \) unknown

So let's approximate integral with sample \((x_i, y_i) \sim P(x, y)\)

\[E_{\text{approx}}(w) = \frac{1}{N} \sum_{i=1}^{N} L(y_i, g(x_i; w)) \]
So here's how we optimize various quantities:

<table>
<thead>
<tr>
<th>ALL DATA</th>
<th>TRAIN</th>
<th>VAL</th>
<th>TEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>~60%</td>
<td>~20%</td>
<td>~20%</td>
<td></td>
</tr>
</tbody>
</table>

\(E_{\text{Train}} \) Used to fit model parameters

\(\hat{\theta} = \arg \min_{\theta} E_{\text{Train}} \)

\(\hat{\theta} \) Used to choose model classes

\(\hat{\theta} = \arg \min_{\theta} E_{\text{Eval}} \) (say \(d \))

Used to estimate

Expected Error/LOO,

No tweaking, No

booming on this,

otherwise becomes a biased estimate.

If not enough data to do: \((\text{train}, \text{val})\) split

we do cross-validation.

3. Overfitting vs Underfitting

\(E_{\text{Train}} \rightarrow \text{Model Complexity} \)

\(E_{\text{Eval}} \)

\(E_{\text{Train}} \rightarrow \text{high} \) \(\Rightarrow \) Underfitting

\(E_{\text{Train}} \rightarrow \text{low} \) \(\Rightarrow \) Overfitting
Overfitting \Rightarrow Model class too large, too expressive
Need more assumptions, need smaller model class

Underfitting \Rightarrow Model class too small, too simple
Need fewer assumptions

4. Bias - Variance

Error is high for both overfitting & underfitting
Can we differentiate?

Yes

Bias \quad Variance

Back to basics: Coin Toss

$D = \{x_1, \ldots, x_n\} \sim \text{Ber}(\theta^*)$ (say $\theta^* = 0.5$)

$$\text{IID}$$

<table>
<thead>
<tr>
<th>D</th>
<th>$\hat{\theta}_{MLE} = \frac{1}{N} \sum x_i$</th>
<th>$\hat{\theta}_{Bayes} = x_i$</th>
<th>$\hat{\theta}_{Silly} = 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>${H, H, T}$</td>
<td>$2/3$</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>${T, T, H}$</td>
<td>$1/3$</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>${H, T, H}$</td>
<td>$2/3$</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

$$\mathbb{E}[\hat{\theta}_{MLE}] = \frac{1}{N} \sum \mathbb{E}[x_i] = \frac{1}{N} \sum_{i=1}^{N} [1 \cdot \theta^* + 0.6 \cdot (1 - \theta^*)]$$

$$= \frac{1}{N} \cdot N \cdot \theta^* = \theta^*$$
bias = \hat{E}[\hat{\theta} - \theta^*]

Difference between what your estimator aspode on average to the Truth.

\hat{\theta}_{MLE} is UNBIASED \Rightarrow E[\hat{\theta}_{MLE}] = \theta^*

What about others?

\[E[\hat{\theta}_{easy}] = E[X] = \theta^* \] (Also Unbiased)

\[E[\hat{\theta}_{silly}] = E[1] = 1 \] (Biased if \theta^* \neq 1)

\[\text{Variance} \Rightarrow \text{No Variance} \]

\[\text{Variance} = E[(\hat{\theta} - E[\hat{\theta}])^2] \]

P(\theta)

Low Bias Low Variance (This what we want)

Low Bias High Variance (Easy)

High Bias Low Variance (Silly)

High bias

High Variance

0

\theta^*

1
5. **Bias-Variance Decomposition for Squared Loss**

Say we want to estimate \(\theta^* \)

Let \(\hat{\theta} = E[\hat{\theta}] \)

Now \(E[\text{loss}] = E[(\hat{\theta} - \theta^*)^2] \)

\[= E[(\hat{\theta} - \theta + \theta - \theta^*)^2] \]

\[= E[(\hat{\theta} - \theta)^2 + (\theta - \theta^*)^2 - 2(\hat{\theta} - \theta)(\theta - \theta^*)] \]

\[= E[(\hat{\theta} - \theta)^2] + E[(\theta - \theta^*)^2] - 2(\hat{\theta} - \theta)E[\theta - \theta^*] \]

\[= \text{Var}(\hat{\theta}) + \text{Var}(\theta - \theta^*) - 2(\hat{\theta} - \theta)(E[\theta] - \theta^*) \]

\[= \text{Var}(\hat{\theta}) + \text{bias}^2 \]

So \(E[\text{loss}] = \text{bias}^2 + \text{Var}(\hat{\theta}) \)

2 predictors (one with high bias, one with high loss can have the same \(L_2 \) loss)

6. **General Error Decomposition**

Expected Error = "Approximation Error" (\(\text{bias} \))

- you approximated reality with your model

+ "Estimation Error" (\(\text{variance} \))

- you estimated with finite data

+ "Optimization Error" (\(\text{longer bound on error} \))

+ "Bregman Error"
7. Model Selection via Regularization
 (it's put in a preference for simpler models)

\[
\min_{\mathbf{w}} \sum_{i=1}^{N} (y_i - \hat{y}(x_i; \mathbf{w}))^2 + \lambda \|\mathbf{w}\|^2
\]

Can also be viewed as a Gaussian prior on \(\mathbf{w}\) (MAP estimator)

8. Effect of Data / Learning Curves

Simple Model Class
 \(\Rightarrow\) More dat won't help

Too Expressive Model Class
 \(\Rightarrow\) More data will help, but very slowly

\[\text{Train} \quad \text{Eval} \quad \text{Data} \quad \text{Eval} \quad \text{Data} \quad \text{Eval} \quad \text{Data} \]