Week/Day | Date | Topic | Notes |
---|---|---|---|
1 T | Aug 23 |
Overview of Machine Learning Slides (pptx), Slides (pdf) |
HW0 is out. Due: Aug 25. Readings: Barber Chap 1, 13.1. [Optional] Video: Sam Roweis -- What is Machine Learning? |
1 R | Aug 25 | Supervised Learning
|
Reading: Barber Chap 14. [Optional] Video: Pedro Domingos -- The K-NN Algorithm |
2 T | Aug 30 |
|
|
2 R | Sept 1 |
|
HW1 is out. Due: Sept 14. |
3 T | Sept 6 |
Project Details Supervised Statistical Learning
|
Readings: Barber 8.1, 8.2. [Optional] Videos: Probability Primer. [Optional] Video: Michael Jordon -- Bayesian or Frequentist: Which Are You? |
3 R | Sept 8 |
|
[Optional] Video: Daphne Koller -- Coursera: Probabilistic Graphical Models,
MLE Lecture,
MAP
Lecture. Readings: Barber 8.6, 8.7. |
4 T | Sept 13 |
|
Readings: Barber 8.4, 17.1, 17.2. |
4 R | Sept 15 |
|
HW2 is out. Due: Oct. 3rd. Readings: 17.1, 17.2. |
5 T | Sept 20 |
|
Project proposal is due: Sept 23. |
5 R | Sept 22 |
|
Readings: Barber 10.1-3. [Optional] Video: Andrew Ng -- Naive Bayes |
6 T | Sept 27 |
|
|
6 R | Sept 29 |
|
Readings: Barber 17.4. [Optional] Video: Andrew Ng -- Logistic Regression. Reading: Tom Mitchell -- Book Chapter: Naive Bayes and Logistic Regression |
7 T | Oct 4 |
Midterm Review Slides (pptx) , Slides (pdf) |
Readings: Boyd and Vandenberghe
Chap 2 (Convex Sets): 2.1, 2.2, 2.3; Chap 3 (Convex Functions): 3.1, 3.2. [Optional] Video: Stephen Boyd -- Convex Optimization. |
7 R | Oct 6 | In class Mid-Term | |
8 T | Oct 11 |
|
Readings: Barber 17.5. [Optional] Video: Andrew Ng -- KKT Conditions and SVM Duality. [Optional] Video: Stephen Boyd -- Lagrangian Duality. |
8 R | Oct 13 |
|
|
9 T | Oct 18 |
|
HW3 is out. Due Nov 7th. |
9 R | Oct 20 |
|
Reading: Murphy 16.5. [Optional] Reading: Hastie, Tibshirani, Friedman -- Chap 11. [Optional] Video: Andrew Ng -- Coursera: Machine Learning, Neural Networks lecture, Backpropagation lecture. |
10 T | Oct 25 |
|
Reading: Murphy 16.5. [Optional] Reading: Hastie, Tibshirani, Friedman -- Chap 11. [Optional] Reading: Yann LeCun et al. -- Efficient BackProp |
10 R | Oct 27 |
|
Reading: Murphy 16.1-16.2.
[Optional] Reading: Hastie, Tibshirani, Friedman -- Chap 9.2. [Optional] Video: Pedro Domingos -- Coursera: Machine Learning, Decision Trees lecture, |
11 T | Nov 1 |
|
|
11 R | Nov 3 |
Ensemble Methods
|
Reading: Murphy 16.4. [Optional] Video: Robert Schapire -- Boosting [Optional] Reading: Tom Dietterich -- Ensemble Methods in Machine Learning. |
12 T | Nov 8 | In-class project presentations. |
HW4 is out. Due: Nov 21. |
12 R | Nov 10 | In-class project presentations. | |
13 T | Nov 15 |
CVPR Deadline - No Class |
|
13 R | Nov 17 |
Unsupervised Learning
|
Readings: Barber 20.1-20.3. [Optional] Video: Andrew Ng -- Clustering, GMT |
14 T | Nov 22 | Thanksgiving Break - No Class | |
14 R | Nov 24 | Thanksgiving Break - No Class | |
15 T | Nov 29 |
|
|
15 R | Dec 1 |
|
Readings: Barber 15.1-15.4. [Optional] Video: Andrew Ng -- PCA |
Dec 6 | Project Poster+Demo Presentation | Location TBA | |
Dec 14 | Final Exam | In class (DURH 261); 2:05 - 4:05 pm |
© 2016 Virginia Tech
Webpage CSS courtesy Bootstrap and Polo Chau.