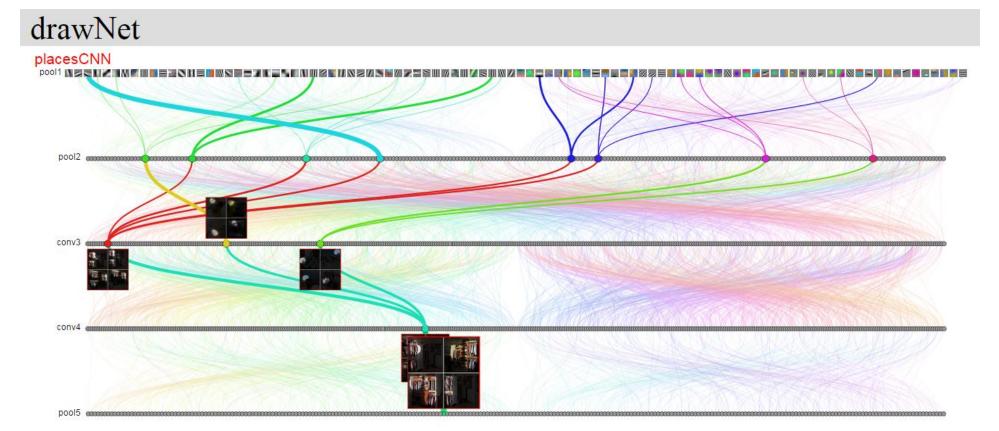
Visualizing Higher-Layer Features of a Deep Network

Dumitru Erhan, Yoshua Bengio, Aaron Courville, and Pascal Vincent Dept. IRO, Université de Montréal P.O. Box 6128, Downtown Branch, Montreal, H3C 3J7, QC, Canada first.last@umontreal.ca **Technical Report 1341** Département d'Informatique et Recherche Opérationnelle

June 9th, 2009

Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps

Karen Simonyan Andrea Vedaldi Andrew Zisserman Visual Geometry Group, University of Oxford {karen, vedaldi, az}@robots.ox.ac.uk



Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps

Karen Simonyan Andrea Vedaldi Andrew Zisserman Visual Geometry Group, University of Oxford {karen, vedaldi, az}@robots.ox.ac.uk

Contributions

- 1. Understandable visualizations using optimization on the input image [Similar to Activation Maximization, only applied to ImageNet]
- 2. Compute a spatial support of a given class in a given image
- 3. Relation DeConv Networks [Zeiler and Fergus, 2013]

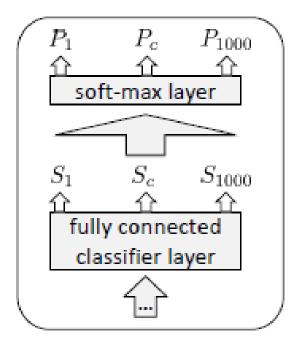
Class Model Visualization

Objective

Generating an image which is representative of the class in terms of a Class Scoring Model

 $S_c(I)$: Score of class c for an image I, we want to solve the following optimization problem

$$\arg\max_{I} S_{c}(I) - \lambda \|I\|_{2}^{2}$$



Method

Initialize with a zero image then backprop through the network to find the image instead of adjusting weights.

Class Model Visualization

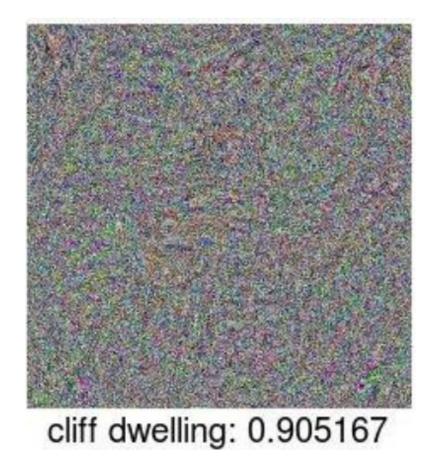
Numerically computed images, illustrating the class appearance models, learnt by a ConvNet, trained on ILSVRC-2013. Note how different aspects of class appearance are captured in a single image.

Class Model Visualization

Maximize the score and not the posterior probability

ostrich

Maximizing Score: Simonyan et al. 2014



Maximizing Probability: Nguyen et al. 2015

Image Specific Class Saliency Visualization

Objective

Rank the pixels in image I_0 in the order of their influence in the class score S_c for class c

Score Models

Linear Model (Motivating Example)

$$S_c(I) = w_c^T I + b_c$$

In this case, with Deep Conv Nets, S_c is a highly non-linear function of I

Image Specific Class Saliency Visualization

Score Models

 $f(x) \approx f(x_0) + f'(x_0)(x - x_0)$ Taylor Series Expansion, Local Linearity

For our case

$$S_{c}(I) \approx w^{T}I + b$$
 where, $w = \frac{\partial S_{c}}{\partial I} \Big|_{I}$

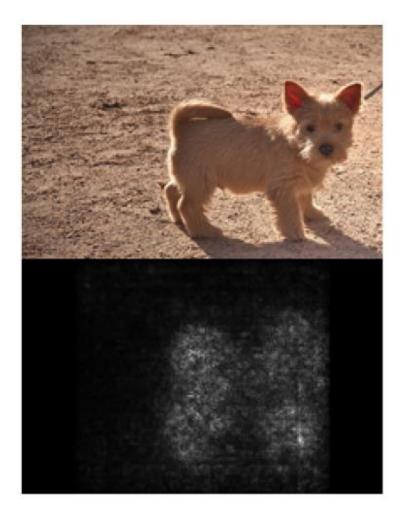
w is found by back prop and the saliency map is computed by:

$$M_{ij} = \left| w_{h(i,j)} \right| \qquad \qquad M_{ij} = \max_{c} \left| w_{h(i,j,c)} \right|$$

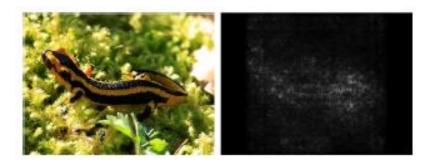
GravScale MultiChannel

where h(i,j) is the index of the vector w corresponding to the image pixel in the *i*-th row and *j*-th column

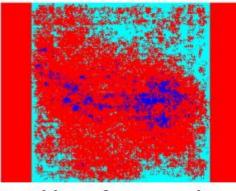
Image Specific Class Saliency Visualization



• Given an image and a saliency map

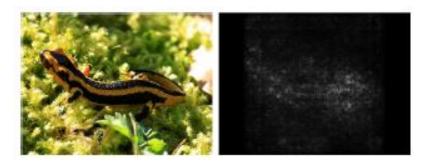


- Given an image and a saliency map
- Foreground/Background mask using thresholds on saliency. (Foreground > 95% quantile and Background < 30% quantile of saliency distribution)



blue – foreground cyan – background red – undefined

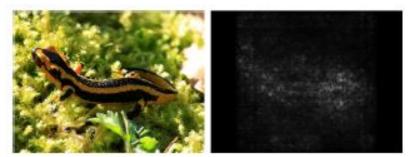
- Given an image and a saliency map
- Foreground/Background mask using thresholds on saliency. (Foreground > 95% quantile and Background < 30% quantile of saliency distribution)
- 2. GraphCut Color Segmentation [Boykov and Jolly, 2001]



- Given an image and a saliency map
- Foreground/Background mask using thresholds on saliency. (Foreground > 95% quantile and Background < 30% quantile of saliency distribution)

3. Bounding Box of largest connected component.

ILSVRC – 2013: Achieved a Top-5 Localization Error of 46.4 % with this weakly supervised approach. (Challenge winner had 29.9% with a supervised approach)



Relation to DeConvulation Networks and

Layer	Forward pass	DeconvNet [Zeiler & Fergus, 2013]	Back-prop w.r.t. input
Convolution	$X_{n+1} = X_n \star K_n$	$R_n = R_{n+1} \star \widehat{K_n}$ equiv	$\partial f/\partial X_n = \partial f/\partial X_{n+1} \star \widehat{K_n}$ relent
RELU	$X_{n+1} = \max(X_n, 0)$		$\partial f / \partial X_n = \partial f / \partial X_{n+1} 1 (X_n > 0)$ different: r output vs input
Max-pooling	$X_{n+1}(p) = \max_{q \in \Omega(p)} X_n(q)$	$R_n(s) = R_{n+1}(p) \cdot \frac{\max \text{ location}}{\text{"switch"}}$ $1(s = \arg \max R_n(q))$	$\partial f/\partial X_n(s) = \partial f/\partial X_{n+1}(p) \cdot 1(s = \arg \max_{q \in \Omega(p)} X_n(q))$

 $X_n - n_{th}$ layer activity; $R_n - n_{th}$ layer DeconvNet reconstruction; f – visualised neuron activity

Visualizing Higher-Layer Features of a Deep Network

Dumitru Erhan, Yoshua Bengio, Aaron Courville, and Pascal Vincent Dept. IRO, Université de Montréal P.O. Box 6128, Downtown Branch, Montreal, H3C 3J7, QC, Canada first.last@umontreal.ca **Technical Report 1341** Département d'Informatique et Recherche Opérationnelle

June 9th, 2009

Goal

- 1. To visualize what a unit computes in an arbitrary layer of a deep network in the input image space
- 2. Generalizing the method so that it is applicable to different models

Activation Maximization

Objective

Look for input patterns which maximize the activation of the *i*-th neuron of *j*-th layer

$$x^* = \underset{\|x\|=\rho}{\operatorname{arg\,max}} h_{ij}\left(\theta, x\right)$$

Sampling from a Deep Belief Network

- 1. Clamp the unit h_{ij} to 1.
- 2. Sample inputs x by performing ancestral top-down sampling going from layer *j*-1 to input.
- 3. Produces a conditional distribution $p_j(x | h_{ij} = 1)$
- 4. Characterize the unit h_{ij} by computing $E[x | h_{ij} = 1]$

Experiment Setup

Networks

- 1. Deep Belief Networks (DBN), Hinton et al. (2006)
- 2. Stacked Denoising Auto-Encoders, Vincent et al. (2007)

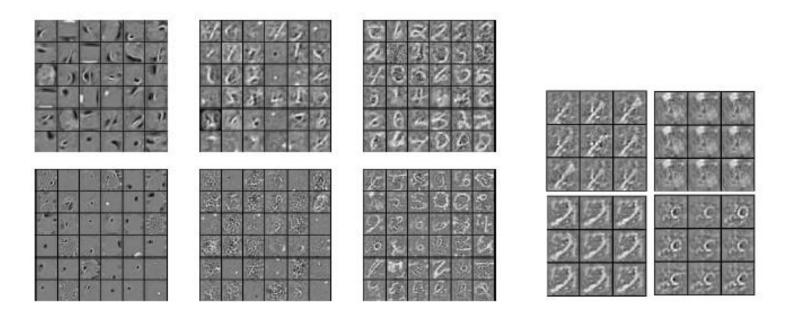
Datasets

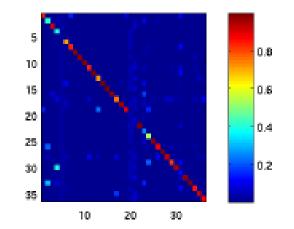
- 1. Extended MNIST Dataset, Loosli et al., 2007: 2.5 Million 28x28 Grayscale Images
- 2. Nautral Image Patches, Olshaushen and Field, 1996: 100000 12x12 Patches of whitened natural image patches

For Activation Maximization

Random Test vector sampled from [0,1] of dimensions 28x28 or 12x12 and gradient ascent is applied. Re-normalization of x* to the average norm of the dataset is done.

Activation Maximization





Sensitivity Analysis The post-sigmoidal activation of unit j (columns) when the input to the network is the "optimal" pattern i (rows)

Figure 1: Activation maximization applied on MNIST. On the left side: visualization of 36 units from the first (1st column), second (2nd column) and third (3rd column) hidden layers of a DBN (top) and SDAE (bottom), using the technique of maximizing the activation of the hidden unit. On the right side: 4 examples of the solutions to the optimization problem for units in the 3rd layer of the SDAE, from 9 random initializations.

Activation Maximization

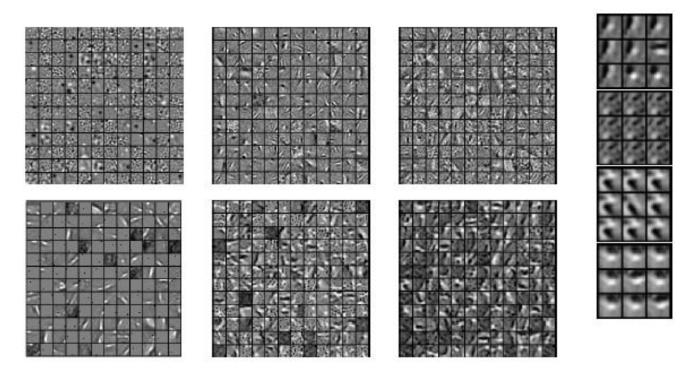


Figure 2: On the left side: Visualization of 144 units from the first (1st column), second (2nd column) and third (3rd column) hidden layers of a DBN (top) and an SDAE (bottom), using the technique of maximizing the activation of the hidden unit. On the right side: 4 examples of the solutions to the optimization problem for units in the 3rd layer of the SDAE, subject to 9 random initializations.

Comparison of Different Methods

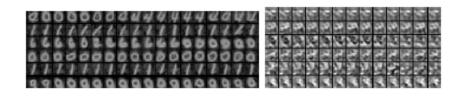


Figure 3: Visualization of 6 units from the second hidden layer of a DBN trained on MNIST (left) and natural image patches (right). The visualizations are produced by sampling from the DBN and clamping the respective unit to 1. Each unit's distribution is a row of samples; the mean of each row is in the first column of Figure 4 (left).

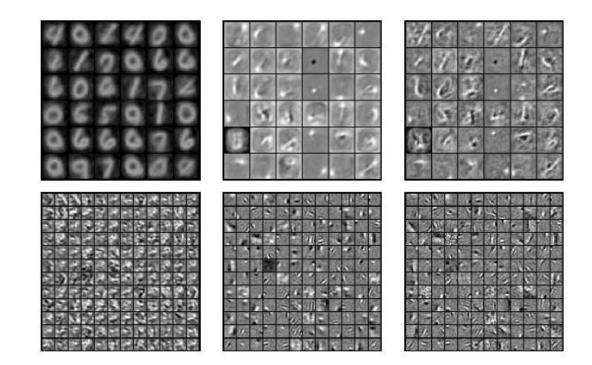


Figure 4: Visualization of 36 units from the second hidden layer of a DBN trained on MNIST (top) and 144 units from the second hidden layer of a DBN trained on natural image patches (bottom). Left: sampling with clamping, Centre: linear combination of previous layer filters, Right: maximizing the activation of the unit. Black is negative, white is positive and gray is zero.

Demo

- 1. Drawnet: http://people.csail.mit.edu/torralba/research/drawCNN/drawNet.html
- 2. DeepVis: https://www.youtube.com/watch?v=AgkflQ4IGaM