
ECE 6504: Deep Learning 
for Perception 

 
Dhruv Batra  
Virginia Tech 

Topics:  
–  (Finish) Backprop 
–  Convolutional Neural Nets 



Administrativia 
•  Presentation Assignments 

–  https://docs.google.com/spreadsheets/d/
1m76E4mC0wfRjc4HRBWFdAlXKPIzlEwfw1-u7rBw9TJ8/
edit#gid=2045905312 
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Recap of last time 
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Last Time 
•  Notation + Setup 
•  Neural Networks 
•  Chain Rule + Backprop 
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Recall: The Neuron Metaphor 
•  Neurons 

•  accept information from multiple inputs,  
•  transmit information to other neurons. 

•  Artificial neuron 
•  Multiply inputs by weights along edges 
•  Apply some function to the set of inputs at each node 
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Activation Functions 
•  sigmoid vs tanh 
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A quick note 
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Rectified Linear Units (ReLU) 
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Visualizing Loss Functions 
•  Sum of individual losses 
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Detour 
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Logistic Regression as a Cascade 
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Slide Credit: Marc'Aurelio Ranzato, Yann LeCun 



Key Computation: Forward-Prop 
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Key Computation: Back-Prop 
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Plan for Today 
•  MLPs 

–  Notation 
–  Backprop 

•  CNNs 
–  Notation 
–  Convolutions 
–  Forward pass 
–  Backward pass 

(C) Dhruv Batra  16 



Multilayer Networks 
•  Cascade Neurons together 
•  The output from one layer is the input to the next 
•  Each Layer has its own sets of weights 
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Equivalent Representations 
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Question: Does BPROP work with ReLU layers only? 
 

Answer: Nope, any a.e. differentiable transformation works. 

Question: What's the computational cost of BPROP? 
 

Answer: About twice FPROP (need to compute gradients w.r.t. input 
and parameters at every layer).  

Note: FPROP and BPROP are dual of each other. E.g.,:  

+ 

+ 

FPROP BPROP 

S
U

M 
C

O
P

Y 

 

Slide Credit: Marc'Aurelio Ranzato, Yann LeCun (C) Dhruv Batra  

Backward Propagation 
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Example:  200x200 image 
                  40K hidden units 

           ~2B parameters!!! 

- Spatial correlation is local 
- Waste of resources + we have not enough          
training samples anyway.. 

Fully Connected Layer 

Slide Credit: Marc'Aurelio Ranzato 
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Example: 200x200 image 
                40K hidden units 
                Filter size: 10x10 

        4M parameters 

Note: This parameterization is good 
when input image is registered (e.g., 
face recognition). 

Locally Connected Layer 

Slide Credit: Marc'Aurelio Ranzato 
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STATIONARITY? Statistics is similar at 
different locations 

Note: This parameterization is good 
when input image is registered (e.g., 
face recognition). 

Example: 200x200 image 
                40K hidden units 
                Filter size: 10x10 

        4M parameters 

Locally Connected Layer 

Slide Credit: Marc'Aurelio Ranzato 
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Share the same parameters across 
different locations (assuming input is 
stationary): 
Convolutions with learned kernels 

Convolutional Layer 

Slide Credit: Marc'Aurelio Ranzato 
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"Convolution of box signal with itself2" by Convolution_of_box_signal_with_itself.gif: Brian Ambergderivative work: Tinos (talk) 
- Convolution_of_box_signal_with_itself.gif. Licensed under CC BY-SA 3.0 via Commons - https://commons.wikimedia.org/

wiki/File:Convolution_of_box_signal_with_itself2.gif#/media/File:Convolution_of_box_signal_with_itself2.gif 



Convolution Explained 
•  http://setosa.io/ev/image-kernels/ 

•  https://github.com/bruckner/deepViz 
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Convolutional Layer 
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Convolutional Layer 
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Convolutional Layer 
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Convolutional Layer 

Slide Credit: Marc'Aurelio Ranzato (C) Dhruv Batra  29 



Convolutional Layer 
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Convolutional Layer 
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Convolutional Layer 
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Convolutional Layer 
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Convolutional Layer 
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Convolutional Layer 
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Convolutional Layer 
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Convolutional Layer 
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Convolutional Layer 
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Convolutional Layer 
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Convolutional Layer 
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Mathieu et al. “Fast training of CNNs through FFTs” ICLR 2014 

Convolutional Layer 
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Convolutional Layer 
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Learn multiple filters. 

E.g.: 200x200 image 
        100 Filters 
        Filter size: 10x10 

    10K parameters 
 

 

Convolutional Layer 
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Convolutional Nets 
a 
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INPUT 
32x32

Convolutions SubsamplingConvolutions

C1: feature maps 
6@28x28

Subsampling

S2: f. maps
6@14x14

S4: f. maps 16@5x5
C5: layer
120

C3: f. maps 16@10x10

F6: layer
 84

Full connection
Full connection

Gaussian connections

OUTPUT
 10

Image Credit: Yann LeCun, Kevin Murphy 
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Question: What is the size of the output? What's the computational 
cost? 
 

Answer: It is proportional to the number of filters and depends on 
the stride. If kernels have size KxK, input has size DxD, stride is 1, 
and there are M input feature maps and N output feature maps then: 
- the input has size M@DxD  
- the output has size N@(D-K+1)x(D-K+1) 
- the kernels have MxNxKxK coefficients (which have to be learned) 
- cost: M*K*K*N*(D-K+1)*(D-K+1) 

Question: How many feature maps? What's the size of the filters? 
 

Answer: Usually, there are more output feature maps than input 
feature maps. Convolutional layers can increase the number of 
hidden units by big factors (and are expensive to compute). 
The size of the filters has to match the size/scale of the patterns we 
want to detect (task dependent). 

Convolutional Layer 

Slide Credit: Marc'Aurelio Ranzato (C) Dhruv Batra  48 



A standard neural net applied to images: 
 

- scales quadratically with the size of the input 
 

- does not leverage stationarity 

Solution: 
 

- connect each hidden unit to a small patch of the input 
 

- share the weight across space 
 

This is called: convolutional layer. 
A network with convolutional layers is called convolutional network. 

LeCun et al. “Gradient-based learning applied to document recognition” IEEE 1998 

Key Ideas 

Slide Credit: Marc'Aurelio Ranzato (C) Dhruv Batra  49 



Let us assume filter is an “eye” detector. 

Q.: how can we make the detection robust to 
the exact location of the eye? 
 

Pooling Layer 

Slide Credit: Marc'Aurelio Ranzato (C) Dhruv Batra  50 



By “pooling” (e.g., taking max) filter 

responses at different locations we gain 
robustness to the exact spatial location of 
features. 

Pooling Layer 

Slide Credit: Marc'Aurelio Ranzato (C) Dhruv Batra  51 



Max-pooling: 

Average-pooling: 

L2-pooling: 

L2-pooling over features: 

Pooling Layer: Examples 
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Question: What is the size of the output? What's the computational 
cost? 
 

Answer: The size of the output depends on the stride between the 
pools. For instance, if pools do not overlap and have size KxK, and 
the input has size DxD with M input feature maps, then: 
- output is M@(D/K)x(D/K) 
- the computational cost is proportional to the size of the input 
(negligible compared to a convolutional layer) 

Question: How should I set the size of the pools? 
 

Answer: It depends on how much “invariant” or robust to distortions 
we want the representation to be. It is best to pool slowly (via a few 
stacks of conv-pooling layers). 

Pooling Layer 

Slide Credit: Marc'Aurelio Ranzato (C) Dhruv Batra  53 



Task: detect orientation L/R 

Conv layer: 
linearizes manifold 

Pooling Layer: Interpretation 
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Conv layer: 
linearizes manifold 

Pooling layer: 
collapses manifold 

Task: detect orientation L/R 
Pooling Layer: Interpretation 

Slide Credit: Marc'Aurelio Ranzato (C) Dhruv Batra  55 



Conv. 

layer 

hn− 1 hn

Pool. 

layer 

hn 1

If convolutional filters have size KxK and stride 1, and pooling 
layer has pools of size PxP, then each unit in the pooling layer 
depends upon a patch (at the input of the preceding conv. layer) of 
size: (P+K-1)x(P+K-1) 

Pooling Layer: Receptive Field Size 

Slide Credit: Marc'Aurelio Ranzato (C) Dhruv Batra  56 
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If convolutional filters have size KxK and stride 1, and pooling 
layer has pools of size PxP, then each unit in the pooling layer 
depends upon a patch (at the input of the preceding conv. layer) of 
size: (P+K-1)x(P+K-1) 

Pooling Layer: Receptive Field Size 
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Convol. Pooling 

One stage (zoom) 
ConvNets: Typical Stage 

courtesy of 
 K. Kavukcuoglu 
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Convol. Pooling 

One stage (zoom) 
ConvNets: Typical Stage 

Conceptually similar to: SIFT, HoG, etc. 

Slide Credit: Marc'Aurelio Ranzato (C) Dhruv Batra  59 



courtesy of 
 K. Kavukcuoglu 

Note: after one stage the number of feature maps is usually increased 
(conv. layer) and the spatial resolution is usually decreased (stride in 
conv. and pooling layers). Receptive field gets bigger. 
 

Reasons: 
- gain invariance to spatial translation (pooling layer) 
- increase specificity of features (approaching object specific units) 

Slide Credit: Marc'Aurelio Ranzato (C) Dhruv Batra  60 



One stage (zoom) 

Fully Conn.  
Layers 

Whole system 

1st stage 2nd stage 3rd stage 

Input 
Image 

Class 
Labels 

Convol. Pooling 

ConvNets: Typical Architecture 
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Visualizing Learned Filters 
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Visualizing Learned Filters 
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Visualizing Learned Filters 
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Frome et al. “Devise: a deep visual semantic embedding model” NIPS 2013 

CNN 
Text 

Embedding 

tiger 

Matching 
shared representation 

Fancier Architectures: Multi-Modal 
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Zhang et al. “PANDA..” CVPR 2014 
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Fancier Architectures: Multi-Task 
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Any DAG of differentialble 
modules is allowed! 

Fancier Architectures: Generic DAG 
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