ECE 6504: Deep Learning for Perception

Topics:

- Neural Networks
 - Backprop
 - Modular Design

Dhruv Batra Virginia Tech

Administrativia

- Scholar
 - Anybody not have access?
 - Please post questions on Scholar Forum.
 - Please check scholar forums. You might not know you have a doubt.
- Sign up for Presentations
 - <u>https://docs.google.com/spreadsheets/d/</u>
 <u>1m76E4mC0wfRjc4HRBWFdAIXKPIzIEwfw1-u7rBw9TJ8/</u>
 <u>edit#gid=2045905312</u>

Plan for Today

- Notation + Setup
- Neural Networks
- Chain Rule + Backprop

Supervised Learning

- Input: x (images, text, emails...)
- Output: y (spam or non-spam...)
- (Unknown) Target Function

 f: X → Y
 (the "true" mapping / reality)
- Data

 (x₁,y₁), (x₂,y₂), ..., (x_N,y_N)
- Model / Hypothesis Class
 g: X → Y
 - $y = g(x) = sign(w^T x)$
- Learning = Search in hypothesis space
 - Find best g in model class.

Basic Steps of Supervised Learning

- Set up a supervised learning problem
- Data collection
 - Start with training data for which we know the correct outcome provided by a teacher or oracle.
- Representation
 - Choose how to represent the data.
- Modeling
 - Choose a hypothesis class: $H = \{g: X \rightarrow Y\}$
- Learning/Estimation
 - Find best hypothesis you can in the chosen class.
- Model Selection
 - Try different models. Picks the best one. (More on this later)
- If happy stop
 - Else refine one or more of the above

Error Decomposition

Error Decomposition

Error Decomposition

Biological Neuron

Recall: The Neuron Metaphor

- Neurons
 - accept information from multiple inputs,
 - transmit information to other neurons.

• Artificial neuron

- Multiply inputs by weights along edges
- Apply some function to the set of inputs at each node

Slide Credit: HKUST

Activation Functions

• sigmoid vs tanh

A quick note

Fig. 4. (a) Not recommended: the standard logistic function, $f(x) = 1/(1 + e^{-x})$. (b) Hyperbolic tangent, $f(x) = 1.7159 \tanh\left(\frac{2}{3}x\right)$.

Rectified Linear Units (ReLU)

[Krizhevsky et al., NIPS12]

Limitation

- A single "neuron" is still a linear decision boundary
- What to do?
- Idea: Stack a bunch of them together!

Multilayer Networks

- Cascade Neurons together
- The output from one layer is the input to the next
- Each Layer has its own sets of weights

Universal Function Approximators

- Theorem
 - 3-layer network with linear outputs can uniformly approximate any continuous function to arbitrary accuracy, given enough hidden units [Funahashi '89]

Neural Networks

- Demo
 - <u>http://neuron.eng.wayne.edu/bpFunctionApprox/</u> <u>bpFunctionApprox.html</u>

Key Computation: Forward-Prop

Key Computation: Back-Prop

Linear Classifier: SVM

Input: $x \in R^{D}$ Binary label: $y \in [-1, +1]$ Parameters: $w \in R^{D}$ Output prediction: $w^T x$ Loss: $L = \frac{1}{2} ||w||^2 + \lambda \max[0, 1 - w^T x y]$ **Hinge Loss** 44 $w^T x y$ Ranzato

Linear Classifier: Logistic Regression

Input: $x \in R^{D}$

Binary label: $y \in [-1,+1]$

Parameters: $w \in R^{D}$

Visualizing Loss Functions

• Sum of individual losses

Logistic Regression as a Cascade

$$\xrightarrow{\mathbf{X}} \mathbf{w}^{\mathsf{T}} \mathbf{x} \xrightarrow{u} \underbrace{\frac{1}{1+e^{-u}}}_{p} -\log(p) \xrightarrow{L}$$

$$\frac{dL}{dW} = \frac{dL}{dp} \cdot \frac{dp}{dy} \cdot \frac{du}{dW} = (p-1)\mathbf{X}$$

Forward Propagation

• On board