ECE6504 – Deep Learning for Perception

Introduction to CAFFE

Ashwin Kalyan V

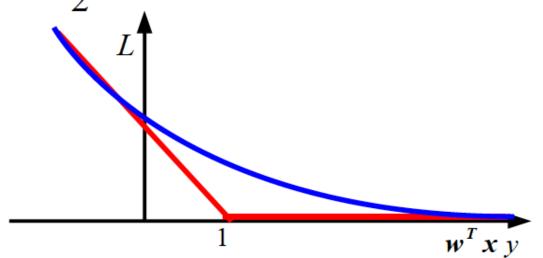
Linear Classifier: Logistic Regression

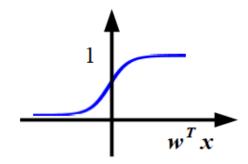
Input: $\mathbf{x} \in R^D$

Binary label: $y \in \{-1,+1\}$

Parameters: $\mathbf{w} \in \mathbb{R}^D$

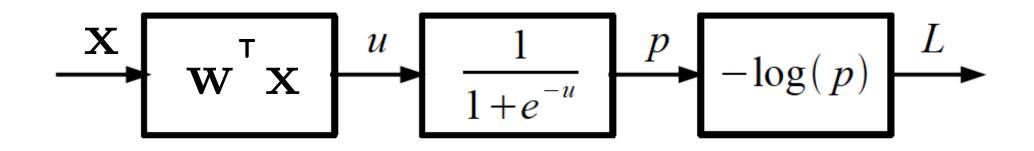
Output prediction: $p(y=1|\mathbf{x}) = \frac{1}{1+e^{-w^T x}}$ Loss: $L = \frac{1}{2} ||\mathbf{w}||^2 - \lambda \log(p(y|\mathbf{x}))$

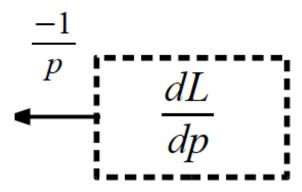




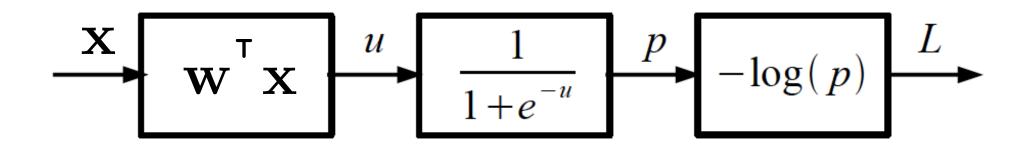
Log Loss

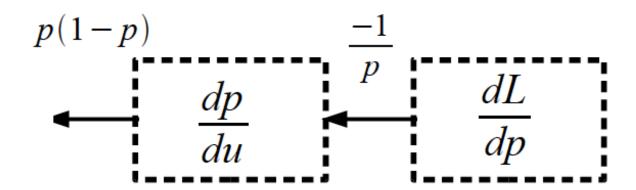
Logistic Regression as a Cascade



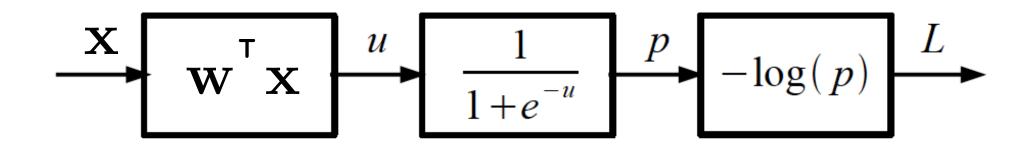


Logistic Regression as a Cascade



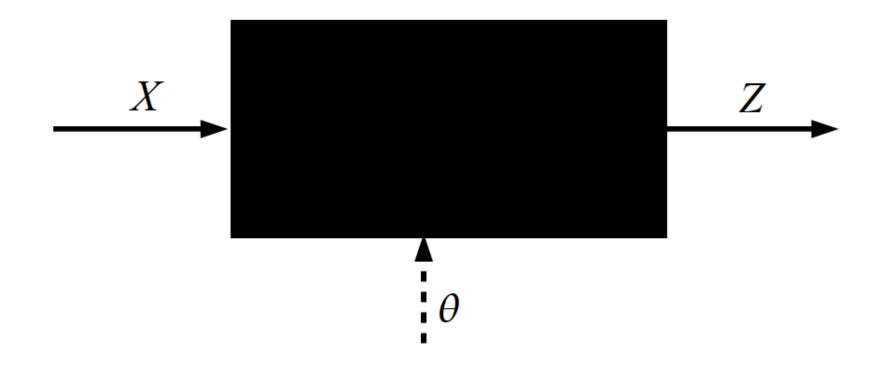


Logistic Regression as a Cascade

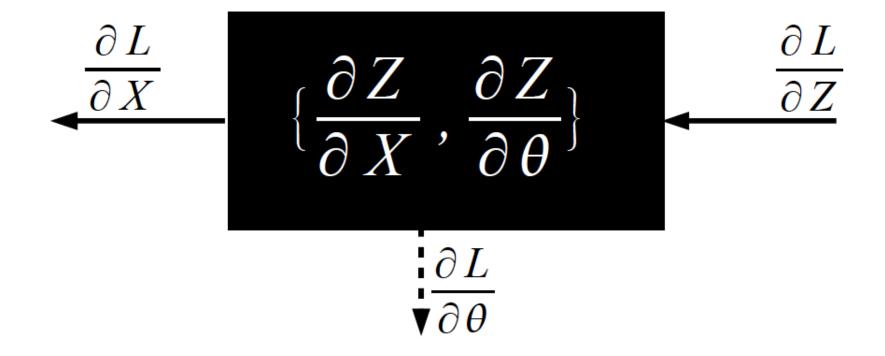


$$\frac{dL}{dW} = \frac{dL}{dp} \cdot \frac{dp}{du} \cdot \frac{du}{dW} = (p-1)\mathbf{X}$$
Slide Credit: Marc'Aurelio Ranzato, Yann LeCun

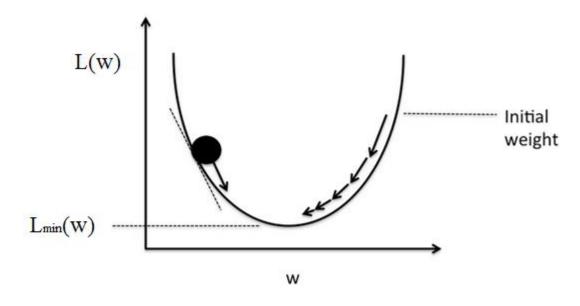
Key Computation: Forward-Prop



Key Computation: Back-Prop



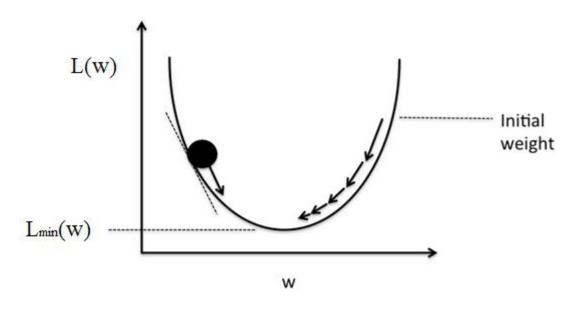
Training using Stochastic Gradient Descent



Schematic of gradient descent.

$$W \coloneqq W - \mu \nabla L$$

Training using Stochastic Gradient Descent

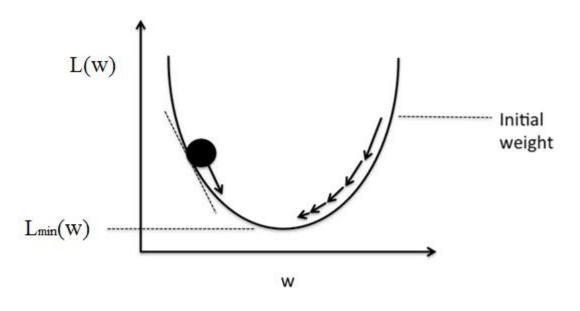


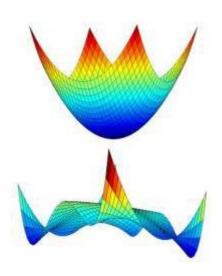
Schematic of gradient descent.

$$W \coloneqq W - \mu \nabla \mathbf{L}$$

Loss functions of NN are almost always non-convex

Training using Stochastic Gradient Descent





Schematic of gradient descent.

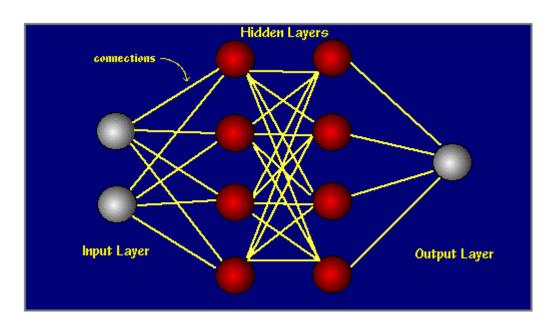
$$W \coloneqq W - \mu \nabla L$$

Loss functions of NN are almost always non-convex which makes training a little tricky.

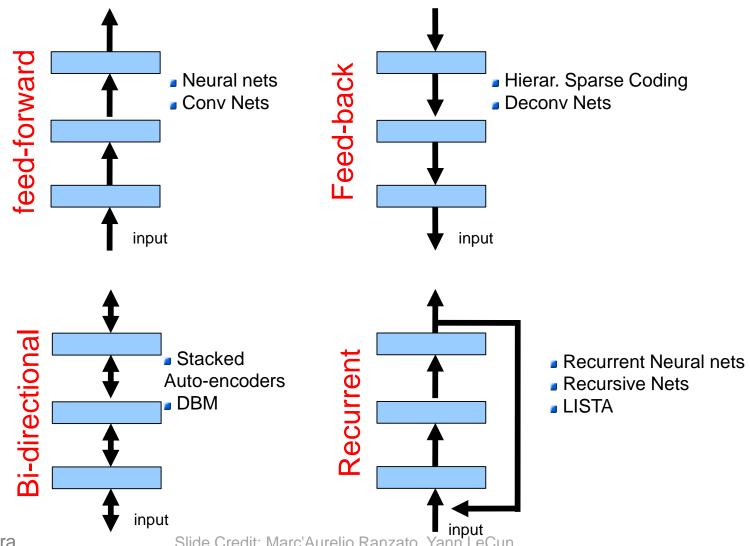
Many methods to find the optimum, like momentum update, Nesterov momentum update, Adagrad, RMSPRop, etc.

Network

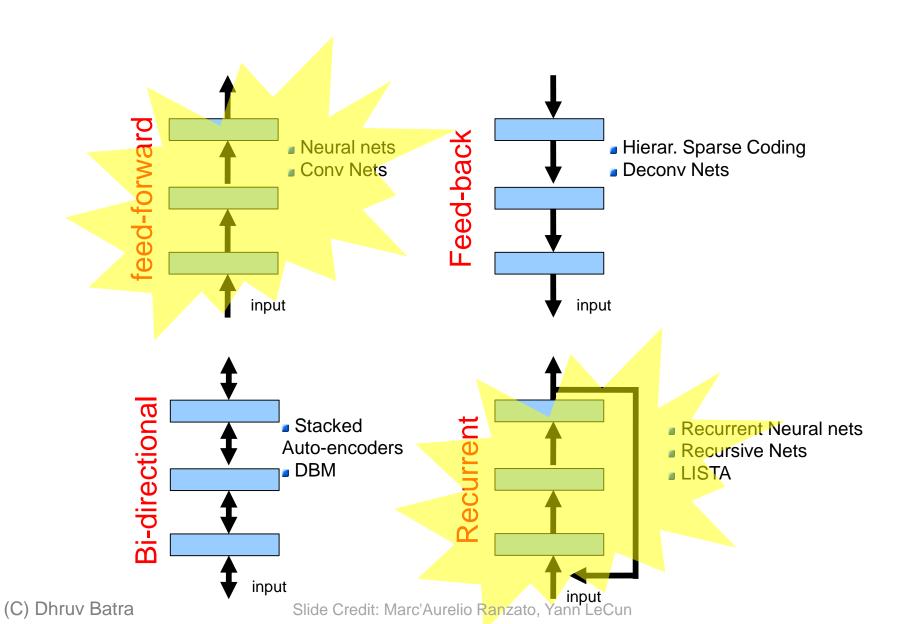
- A network is a set of layers and its connections.
- Data and gradients move along the connections.
- Feed forward networks are Directed Acyclic graphs (DAG) i.e. they do not have any recurrent connections.



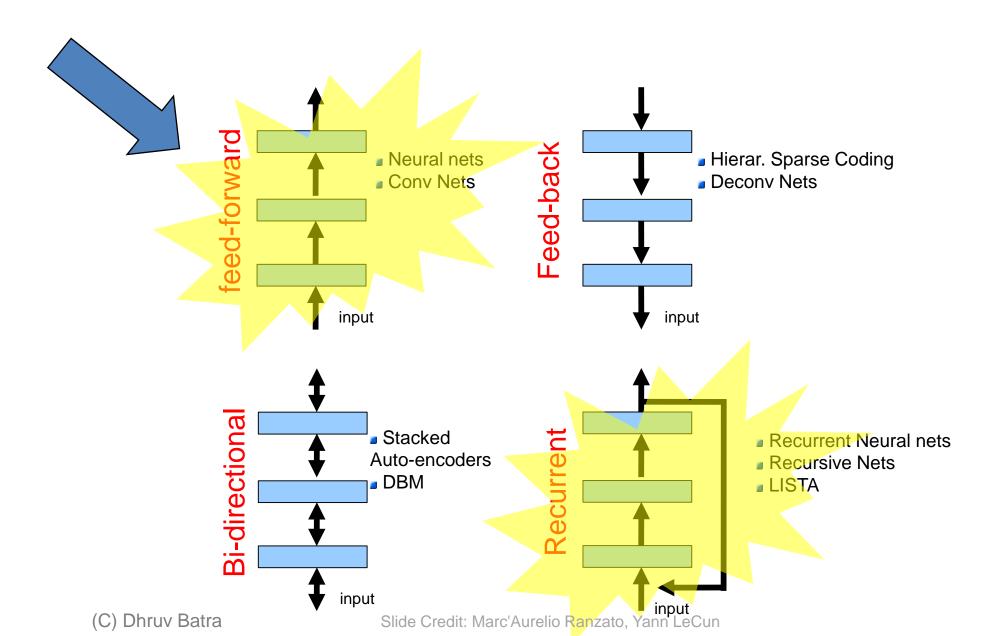
Main types of deep architectures



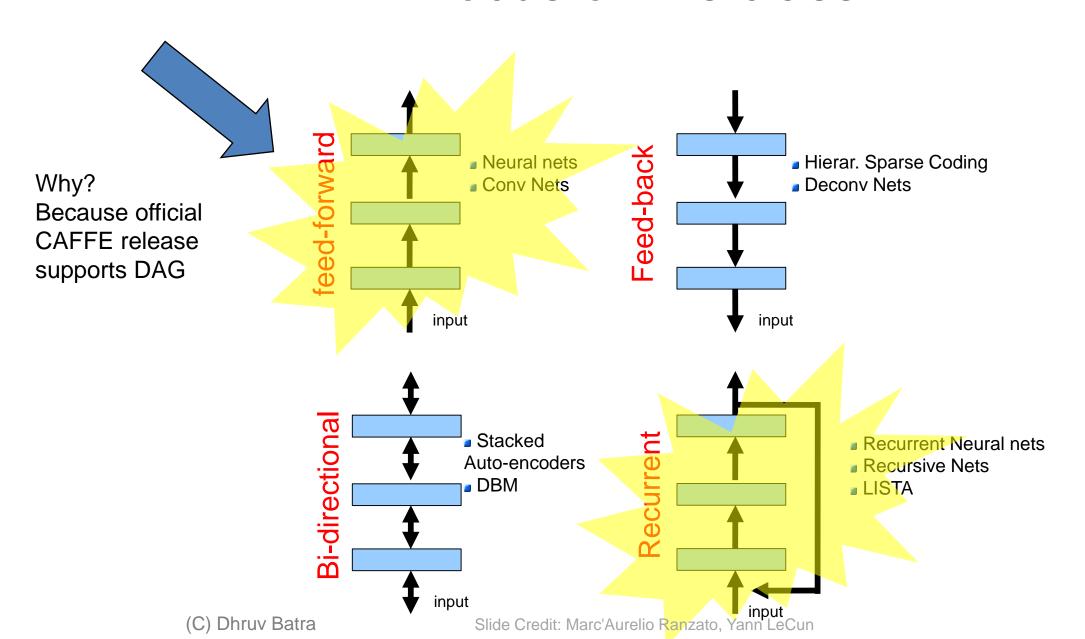
Focus of this course



Focus of this class



Focus of this class



Outline

- Caffe?
- Installation
- Key Ingredients
- Example: Softmax Classifier
- Pycaffe
- Roasting
- Resources
- References

What is Caffe?

Open framework, models, and worked examples for deep learning

- 1.5 years
- 450+ citations, 100+ contributors
- 2,500+ forks, >1 pull request / day average
- focus has been vision, but branching out:
 sequences, reinforcement learning, speech + text

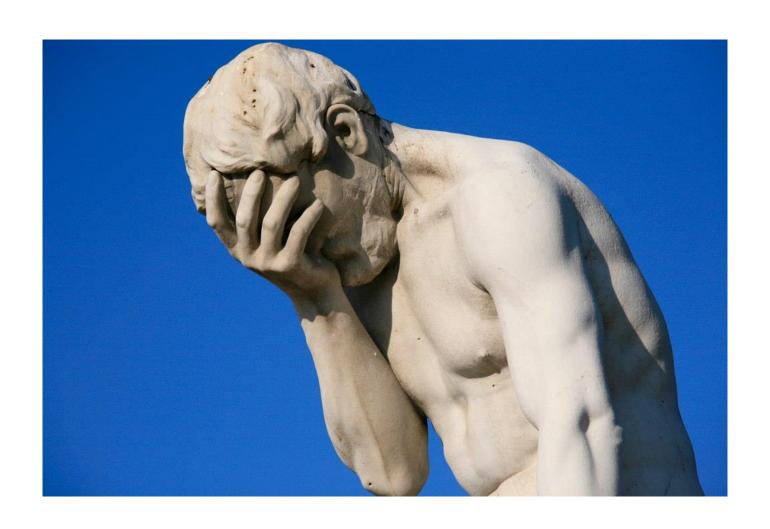
Prototype Train Deploy

What is Caffe?

Open framework, models, and worked examples for deep learning

- Pure C++ / CUDA architecture for deep learning
- Command line, Python, MATLAB interfaces
- Fast, well-tested code
- Tools, reference models, demos, and recipes
- Seamless switch between CPU and GPU

Prototype Train Deploy



- Strongly recommended that you use Linux (Ubuntu)/ OS X. Windows has some unofficial support though.
- Prior to installing look at the <u>installation page</u> and the <u>wiki</u>
- the wiki has more info. But all support needs to be taken with a pinch of salt
 - lots of dependencies
- Suggested that you back up your data!

- CUDA (Compute Unified Device Architecture) is a parallel computing platform and application programming interface (API) model created by NVIDIA
- Installing CUDA
 - check if you have a cuda supported Graphics Processing Unit (GPU).
 If not, go for a cpu only installation of CAFFE.
 - Do not install the nvidia driver if you do not have a supported
 GPU

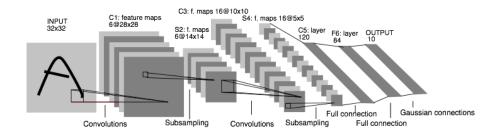
- Clone the repo from <u>here</u>
- Depending on the system configuration, make modifications to the **Makefile.config** file and proceed with the installation instructions.
- We suggest that you use <u>Anaconda python</u> for the installation as it comes with the necessary python packages.

Quick Questions?

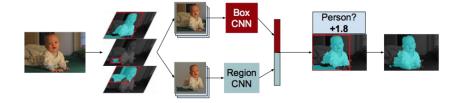
Key Ingredients

DAG

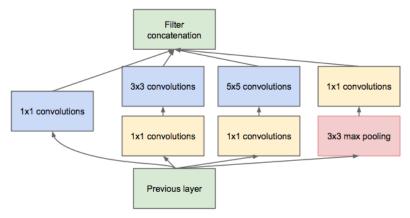
Many current deep models have linear structure



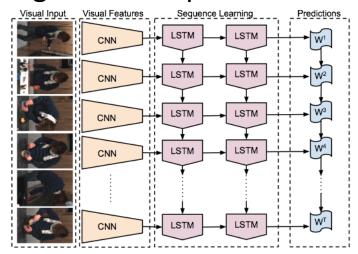
Caffe nets can have any directed acyclic graph (DAG) structure.



SDS two-stream net



GoogLeNet Inception Module

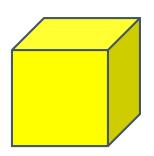


LRCN joint vision-sequence model

Blob

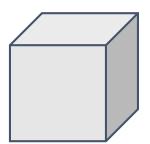
Blobs are N-D arrays for storing and communicating information.

- hold data, derivatives, and parameters
- lazily allocate memory
- shuttle between CPU and GPU



Data

Number x K Channel x Height x Width 256 x 3 x 227 x 227 for ImageNet train input



Parameter: Convolution Weight

N Output x K Input x Height x Width 96 x 3 x 11 x 11 for CaffeNet conv1

Parameter: Convolution Bias

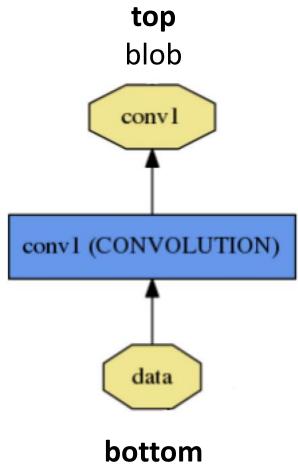
96 x 1 x 1 x 1 for CaffeNet conv1

name: "conv1"

type: CONVOLUTION

bottom: "data"
top: "conv1"

... definition ...



ottom blob

Layer Protocol

Setup: run once for initialization.

Forward: make output given input.

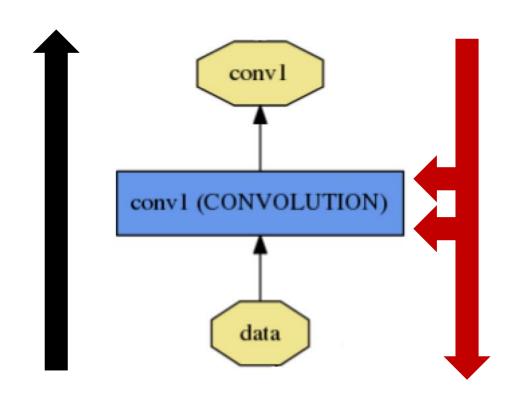
Backward: make gradient of output

- w.r.t. bottom

- w.r.t. parameters (if needed)

Reshape: set dimensions.

Compositional Modeling
The Net's forward and backward passes are composed of the layers' steps.



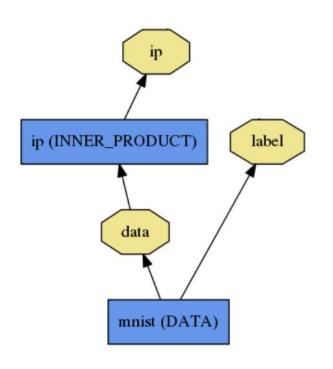
Layer Development Checklist

Layers

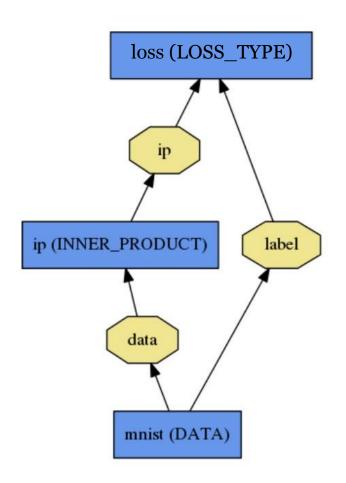
- Caffe divides layers into
 - neuron layers (eg: Inner product),
 - Vision layers (Convolutional, pooling, etc)
 - Data layers (to read in input)
 - Loss layers
- You can write your own layers. More development guidelines are <u>here</u>

Loss

What kind of model is this?



Define the task by the loss.



Classification

SoftmaxWithLoss HingeLoss

Linear Regression

EuclideanLoss

Attributes / Multiclassificat

SigmoidCrossEntropyLoss

Others...

New Task

NewLoss

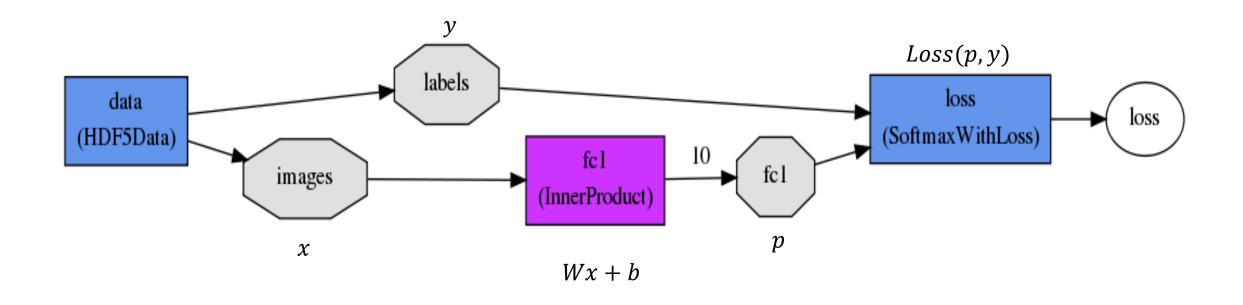
Protobuf Model Format

- Strongly typed format
- Auto-generates code
- Developed by Google
- Defines Net / Layer / Solver schemas in caffe.proto

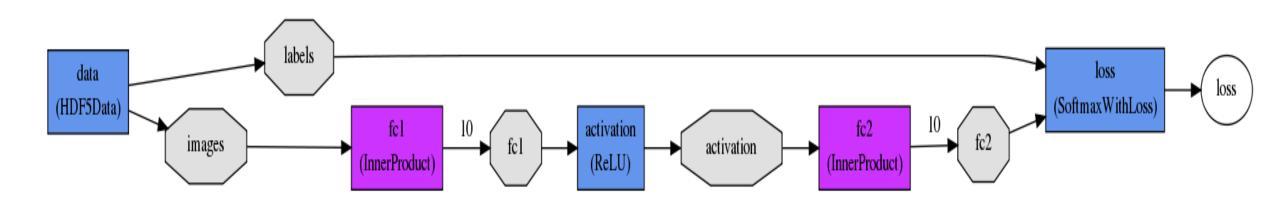
```
message ConvolutionParameter {
   // The number of outputs for the layer
   optional uint32 num_output = 1;
   // whether to have bias terms
   optional bool bias_term = 2 [default = true];
}
```

```
layer {
 name: "ip"
type: "InnerProduct"
 bottom: "data"
top: "ip"
inner_product_param {
  num_output: 2
```

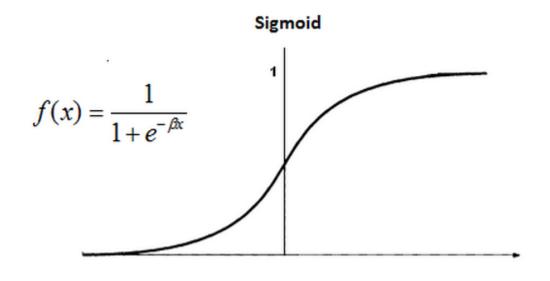
Softmax Classifier

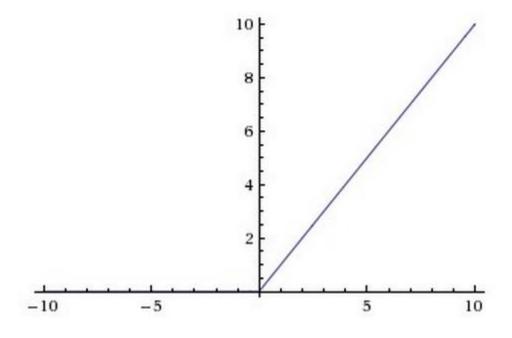


Neural Network



Activation function





Rectified Linear Unit (ReLU) Activation

Recipe for brewing a net

- Convert the data to caffe-supported format LMDB, HDF5, list of images
- Define the net
- Configure the solver
- Start train from supported interface (command line, python, etc)

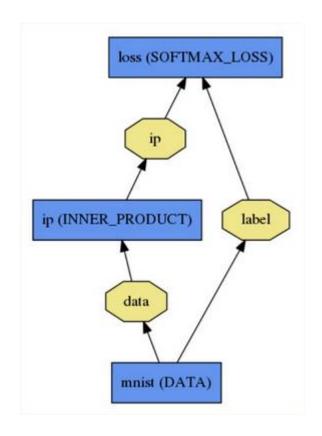
Layers – Data Layers

- Data Layers : gets data into the net
- Data: LMDB/LEVELDB efficient way to input data, only for 1-of-k classification tasks
- HDF5Data: takes in HDF5 format
- easy to create custom non-image datasets but supports only float32/float64
- Data can be written easily in the above formats using python support. (using lmdb and h5py respectively). We will see how to write hdf5 data shortly
- Image Data: Reads in directly from images. Can be a little slow.
- All layers (except hdf5) support standard data augmentation tasks

Recipe for brewing a net

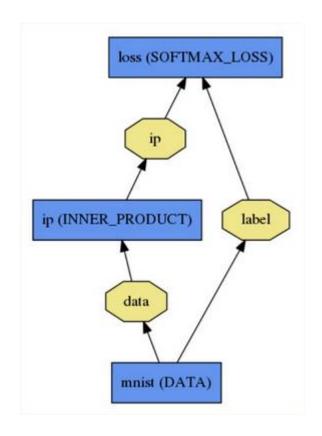
- Convert the data to caffe-supported format LMDB, HDF5, list of images
- Define the network/architecture
- Configure the solver
- Start train from supported interface (command line, python, etc)

Architecture file



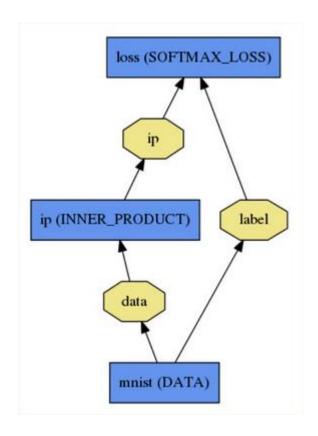
```
name: "LogReg"
layer {
  name: "mnist"
  type: "Data"
  top: "data"
  top: "label"
  data_param {
    source: "input_leveldb"
    batch_size: 64
  }
}
```

Architecture file



```
name: "LogReg"
layer {
name: "mnist"
type: "Data"
top: "data"
top: "label"
 data_param {
 source: "input_leveldb"
  batch_size: 64
layer {
name: "ip"
type: "InnerProduct"
bottom: "data"
top: "ip"
inner_product_param {
  num_output: 2
```

Architecture file



```
name: "LogReg"
layer {
name: "mnist"
type: "Data"
top: "data"
top: "label"
 data_param {
 source: "input_leveldb"
  batch_size: 64
layer {
name: "ip"
type: "InnerProduct"
bottom: "data"
top: "ip"
inner_product_param {
  num_output: 2
layer {
name: "loss"
type: "SoftmaxWithLoss"
bottom: "ip"
bottom: "label"
top: "loss"
```

Recipe for brewing a net

- Convert the data to caffe-supported format LMDB, HDF5, list of images
- Define the net
- Configure the solver
- Start train from supported interface (command line, python, etc)

Solver file

```
net: "logreg_train_val.prototxt"
test_iter: 10
test_interval: 500
base Ir: 0.000001
momentum: 0.0
weight_decay: 50000
lr_policy: "step"
stepsize: 2000
display: 100
max_iter: 2000
snapshot: 1000
snapshot_prefix: "logreg-snapshot/"
solver_mode: GPU
```

Solver file

```
net: "logreg_train_val.prototxt"
```

test_iter: 10

test_interval: 500 base_lr: 0.0000001

momentum: 0.0

weight_decay: 50000

lr_policy: "step"
stepsize: 2000

display: 100

max_iter: 2000 snapshot: 1000

snapshot_prefix: "logreg-snapshot/"

solver_mode: GPU

CAFFE has many common solver methods:

- > SGD
- Adagrad
- ➤ RMSProp
- Nesterov Momentum, etc

More details in this page

Recipe for brewing a net

- Convert the data to caffe-supported format LMDB, HDF5, list of images
- Define the net
- Configure the solver
- Train from supported interface (command line, python, etc)

Softmax Classifier Demo

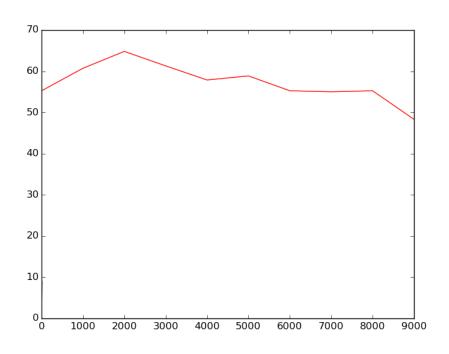
Command line interface

< Ipython notebook>

Pycaffe Demo

Softmax Classifier example on pycaffe

Need for tuning Hyper - parameters



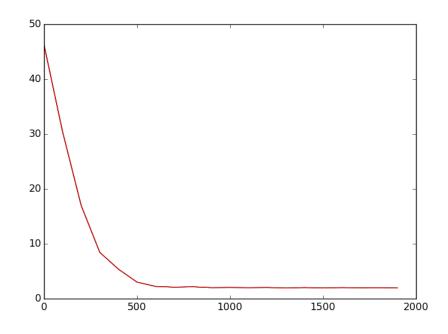


Figure on the left has a high learning rate and the loss on the training set does not converge. When hyper-parameters like learning rate and weight-decay are tuned, the loss decreases rapidly as shown in the figure on the right.

Logging

- It is use full to generate a log file where caffe dumps values like training loss, iteration number, norm of the weights of each blob, etc.
- Parse log file to obtain useful hints about training process
 - see caffe/tools/extra/parse_log.py
- The above is a generic function. Custom log parsing can be created by you keeping the above as an example.

Log Parse Demo

Pycaffe Demo

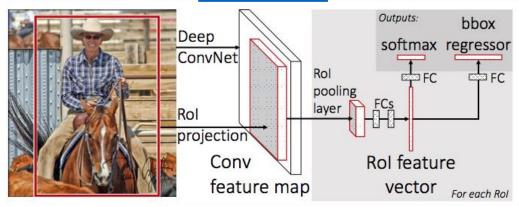
- pycaffe to visualize weights of a pre-trained model
- Model Zoo has pretrained models of deep learning architectures like alexnet
- Running a forward pass to
 - predict class

Pycaffe documentation is sparse!

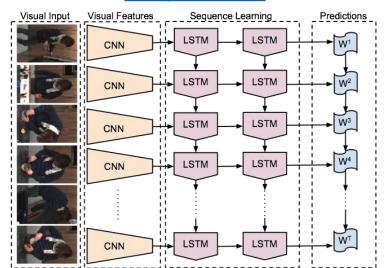
Looking at examples and reading code is inevitable if you want to make the best use of CAFFE!

Up Next The Latest Roast

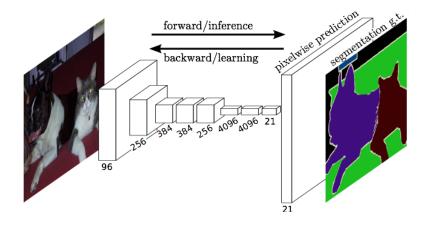
Detection



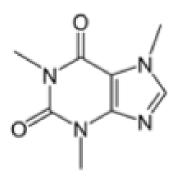
Sequences



Pixelwise Prediction



Framework Future



Resources

- Many examples are provided in the caffe-master/examples directory
- Ipython notebooks for common Neural network tasks like filter visualization, fine-tuning, etc
- Caffe-tutorials
- Caffe chat
- Caffe-users group
- Watch out for new features!

References

- 1. http://caffe.berkeleyvision.org/
- 2. DIY Deep Learning for Vision with Caffe

THANK YOU