
ECE6504 – Deep Learning for
Perception

Ashwin Kalyan V

Introduction to CAFFE

(C) Dhruv Batra 2

Logistic Regression as a Cascade

(C) Dhruv Batra 3

Slide Credit: Marc'Aurelio Ranzato, Yann LeCun

Logistic Regression as a Cascade

(C) Dhruv Batra 4

Slide Credit: Marc'Aurelio Ranzato, Yann LeCun

Logistic Regression as a Cascade

(C) Dhruv Batra 5

Slide Credit: Marc'Aurelio Ranzato, Yann LeCun

Key Computation: Forward-Prop

(C) Dhruv Batra 6

Slide Credit: Marc'Aurelio Ranzato, Yann LeCun

Key Computation: Back-Prop

(C) Dhruv Batra 7

Slide Credit: Marc'Aurelio Ranzato, Yann LeCun

Training using Stochastic Gradient Descent

𝑊 ≔𝑊 − 𝜇𝛻𝐿

Training using Stochastic Gradient Descent

𝑊 ≔𝑊 − 𝜇𝛻L
Loss functions of NN are almost always non-convex

Training using Stochastic Gradient Descent

𝑊 ≔𝑊 − 𝜇𝛻𝐿
Loss functions of NN are almost always non-convex
which makes training a little tricky.

Many methods to find the optimum, like momentum update, Nesterov momentum update, Adagrad, RMSPRop, etc

Network

• A network is a set of layers and its connections.

• Data and gradients move along the connections.

• Feed forward networks are Directed Acyclic graphs (DAG) i.e. they do
not have any recurrent connections.

12

input input

input

fe
e

d
-f

o
rw

a
rd

F
e

e
d

-b
a
c
k

B
i-

d
ir
e

c
ti
o

n
a

l

Neural nets

Conv Nets

Hierar. Sparse Coding

Deconv Nets

Stacked

Auto-encoders

DBM

input

R
e
c
u
rr

e
n
t

Recurrent Neural nets

Recursive Nets

LISTA

Main types of deep architectures

Slide Credit: Marc'Aurelio Ranzato, Yann LeCun(C) Dhruv Batra

13

input input

input

fe
e

d
-f

o
rw

a
rd

F
e

e
d

-b
a
c
k

B
i-

d
ir
e

c
ti
o

n
a

l

Neural nets

Conv Nets

Hierar. Sparse Coding

Deconv Nets

Stacked

Auto-encoders

DBM

input

R
e
c
u
rr

e
n
t

Recurrent Neural nets

Recursive Nets

LISTA

Focus of this course

Slide Credit: Marc'Aurelio Ranzato, Yann LeCun(C) Dhruv Batra

14

input input

input

fe
e

d
-f

o
rw

a
rd

F
e

e
d

-b
a
c
k

B
i-

d
ir
e

c
ti
o

n
a

l

Neural nets

Conv Nets

Hierar. Sparse Coding

Deconv Nets

Stacked

Auto-encoders

DBM

input

R
e
c
u
rr

e
n
t

Recurrent Neural nets

Recursive Nets

LISTA

Focus of this class

Slide Credit: Marc'Aurelio Ranzato, Yann LeCun(C) Dhruv Batra

15

input input

input

fe
e

d
-f

o
rw

a
rd

F
e

e
d

-b
a
c
k

B
i-

d
ir
e

c
ti
o

n
a

l

Neural nets

Conv Nets

Hierar. Sparse Coding

Deconv Nets

Stacked

Auto-encoders

DBM

input

R
e
c
u
rr

e
n
t

Recurrent Neural nets

Recursive Nets

LISTA

Focus of this class

Slide Credit: Marc'Aurelio Ranzato, Yann LeCun(C) Dhruv Batra

Why?

Because official

CAFFE release

supports DAG

Outline

• Caffe?

• Installation

• Key Ingredients

• Example: Softmax Classifier

• Pycaffe

• Roasting

• Resources

• References

16

What is Caffe?

Prototype Train Deploy

Open framework, models, and worked examples
for deep learning

- 1.5 years

- 450+ citations, 100+ contributors

- 2,500+ forks, >1 pull request / day average

- focus has been vision, but branching out:
sequences, reinforcement learning, speech + text

What is Caffe?

Prototype Train Deploy

Open framework, models, and worked examples
for deep learning

- Pure C++ / CUDA architecture for deep learning
- Command line, Python, MATLAB interfaces

- Fast, well-tested code

- Tools, reference models, demos, and recipes

- Seamless switch between CPU and GPU

Installation

Installation

Installation

• Strongly recommended that you use Linux (Ubuntu)/ OS X. Windows
has some unofficial support though.

• Prior to installing look at the installation page and the wiki

- the wiki has more info. But all support needs to be taken with a
pinch of salt

- lots of dependencies

• Suggested that you back up your data!

http://caffe.berkeleyvision.org/installation.html
https://github.com/BVLC/caffe/wiki/Installation

Installation

• CUDA (Compute Unified Device Architecture) is a parallel computing
platform and application programming interface (API) model created
by NVIDIA

• Installing CUDA

– check if you have a cuda supported Graphics Processing Unit (GPU).

If not, go for a cpu only installation of CAFFE.

- Do not install the nvidia driver if you do not have a supported

GPU

Installation

• Clone the repo from here

• Depending on the system configuration, make modifications to the
Makefile.config file and proceed with the installation instructions.

• We suggest that you use Anaconda python for the installation as it
comes with the necessary python packages.

https://github.com/BVLC/caffe
https://store.continuum.io/cshop/anaconda/

Quick Questions?

Key Ingredients

DAG

Many current deep models
have linear structure

Caffe nets can have any directed
acyclic graph (DAG) structure.

LRCN joint vision-sequence
model

GoogLeNet Inception Module

SDS two-stream net

Data
Number x K Channel x Height x Width
256 x 3 x 227 x 227 for ImageNet train input

Blobs are N-D arrays for storing and
communicating information.

● hold data, derivatives, and parameters
● lazily allocate memory
● shuttle between CPU and GPU

Blob
name: "conv1"

type: CONVOLUTION

bottom: "data"

top: "conv1"

… definition …

top
blob

bottom
blob

Parameter: Convolution Weight
N Output x K Input x Height x Width
96 x 3 x 11 x 11 for CaffeNet conv1

Parameter: Convolution Bias
96 x 1 x 1 x 1 for CaffeNet conv1

Setup: run once for initialization.

Forward: make output given input.

Backward: make gradient of output
- w.r.t. bottom
- w.r.t. parameters (if needed)

Reshape: set dimensions.

Layer Protocol

Layer Development Checklist

Compositional Modeling
The Net’s forward and backward passes are
composed of the layers’ steps.

https://github.com/BVLC/caffe/wiki/Development-Hints#developing-new-layers

Layers

• Caffe divides layers into

- neuron layers (eg: Inner product),

- Vision layers (Convolutional, pooling,etc)

- Data layers (to read in input)

- Loss layers

• You can write your own layers. More development guidelines are here

https://github.com/BVLC/caffe/wiki/Development

Classification
SoftmaxWithLoss

HingeLoss

Linear Regression
EuclideanLoss

Attributes / Multiclassification
SigmoidCrossEntropyLoss

Others…

New Task
NewLoss

Loss

What kind of model is this?

Define the task by the loss.

loss (LOSS_TYPE)

message ConvolutionParameter {

// The number of outputs for the layer

optional uint32 num_output = 1;

// whether to have bias terms

optional bool bias_term = 2 [default = true];

}

layer {

name: "ip"

type: "InnerProduct"

bottom: "data"

top: "ip"

inner_product_param {

num_output: 2

}

}

- Strongly typed format

- Auto-generates code

- Developed by Google

- Defines Net / Layer / Solver

schemas in caffe.proto

Protobuf Model Format

Softmax Classifier

𝑊𝑥 + 𝑏
𝑥

𝑦

𝑝

𝐿𝑜𝑠𝑠(𝑝, 𝑦)

Neural Network

Activation function

Rectified Linear Unit (ReLU) Activation

Recipe for brewing a net

• Convert the data to caffe-supported format
LMDB, HDF5, list of images

• Define the net

• Configure the solver

• Start train from supported interface (command line, python, etc)

Layers – Data Layers

• Data Layers : gets data into the net

- Data: LMDB/LEVELDB
efficient way to input data, only for 1-of-k classification tasks

- HDF5Data: takes in HDF5 format
- easy to create custom non-image datasets but supports only float32/float64

- Data can be written easily in the above formats using python support. (using
lmdb and h5py respectively). We will see how to write hdf5 data shortly

- Image Data: Reads in directly from images. Can be a little slow.

- All layers (except hdf5) support standard data augmentation tasks

Recipe for brewing a net

• Convert the data to caffe-supported format
LMDB, HDF5, list of images

• Define the network/architecture

• Configure the solver

• Start train from supported interface (command line, python, etc)

Example: Softmax Classifier
Architecture file

name: "LogReg"
layer {

name: "mnist"
type: "Data"
top: "data"
top: "label"
data_param {

source: "input_leveldb"
batch_size: 64

}
}

Example: Softmax Classifier
Architecture file

name: "LogReg"
layer {

name: "mnist"
type: "Data"
top: "data"
top: "label"
data_param {

source: "input_leveldb"
batch_size: 64

}
}
layer {

name: "ip"
type: "InnerProduct"
bottom: "data"
top: "ip"
inner_product_param {

num_output: 2
}

}

Example: Softmax Classifier
Architecture file

name: "LogReg"
layer {

name: "mnist"
type: "Data"
top: "data"
top: "label"
data_param {

source: "input_leveldb"
batch_size: 64

}
}
layer {

name: "ip"
type: "InnerProduct"
bottom: "data"
top: "ip"
inner_product_param {

num_output: 2
}

}
layer {

name: "loss"
type: "SoftmaxWithLoss"
bottom: "ip"
bottom: "label"
top: "loss"

}

Recipe for brewing a net

• Convert the data to caffe-supported format
LMDB, HDF5, list of images

• Define the net

• Configure the solver

• Start train from supported interface (command line, python, etc)

Example: Softmax Classifier
Solver file

net: "logreg_train_val.prototxt”
test_iter: 10
test_interval: 500
base_lr: 0.0000001
momentum: 0.0
weight_decay: 50000
lr_policy: "step”
stepsize: 2000
display: 100
max_iter: 2000
snapshot: 1000
snapshot_prefix: "logreg-snapshot/”
solver_mode: GPU

Example: Softmax Classifier
Solver file

net: "logreg_train_val.prototxt”
test_iter: 10
test_interval: 500
base_lr: 0.0000001
momentum: 0.0
weight_decay: 50000
lr_policy: "step”
stepsize: 2000
display: 100
max_iter: 2000
snapshot: 1000
snapshot_prefix: "logreg-snapshot/”
solver_mode: GPU

CAFFE has many common
solver methods:
 SGD
 Adagrad
 RMSProp
 Nesterov Momentum,

etc

More details in this page

http://caffe.berkeleyvision.org/tutorial/solver.html

Recipe for brewing a net

• Convert the data to caffe-supported format
LMDB, HDF5, list of images

• Define the net

• Configure the solver

• Train from supported interface (command line, python, etc)

Softmax Classifier Demo

Command line interface

< Ipython notebook>

Pycaffe Demo

Softmax Classifier example on pycaffe

Need for tuning Hyper - parameters

Figure on the left has a high learning rate and the loss on the training set does not converge. When
hyper-parameters like learning rate and weight-decay are tuned, the loss decreases rapidly as
shown in the figure on the right.

Logging

• It is use full to generate a log file where caffe dumps values like
training loss, iteration number, norm of the weights of each blob, etc.

• Parse log file to obtain useful hints about training process
- see caffe/tools/extra/parse_log.py

• The above is a generic function. Custom log parsing can be created by
you keeping the above as an example.

Log Parse Demo

Pycaffe Demo

• pycaffe to visualize weights of a pre-trained model

• Model Zoo has pretrained models of deep learning architectures like
alexnet

• Running a forward pass to

- predict class

Pycaffe documentation is sparse!

Looking at examples and reading code is inevitable if you want to make the
best use of CAFFE!

http://caffe.berkeleyvision.org/model_zoo.html

Up Next The Latest Roast

Pixelwise PredictionDetection

Sequences
Framework Future

http://tutorial.caffe.berkeleyvision.org/caffe-cvpr15-pixels.pdf
http://tutorial.caffe.berkeleyvision.org/caffe-cvpr15-detection.pdf
http://tutorial.caffe.berkeleyvision.org/caffe-cvpr15-sequences.pdf
http://tutorial.caffe.berkeleyvision.org/caffe-cvpr15-improving.pdf

Resources

• Many examples are provided in the caffe-master/examples directory

• Ipython notebooks for common Neural network tasks like filter
visualization, fine-tuning, etc

• Caffe-tutorials

• Caffe chat

• Caffe-users group

• Watch out for new features!

http://caffe.berkeleyvision.org/tutorial/
https://gitter.im/BVLC/caffe
https://groups.google.com/forum/#!forum/caffe-users

References

1. http://caffe.berkeleyvision.org/

2. DIY Deep Learning for Vision with Caffe

http://caffe.berkeleyvision.org/
https://docs.google.com/presentation/d/1UeKXVgRvvxg9OUdh_UiC5G71UMscNPlvArsWER41PsU/edit#slide=id.p

THANK YOU

