
PLAYING ATARI WITH DEEP
REINFORCEMENT LEARNING

ARJUN CHANDRASEKARAN
DEEP LEARNING AND PERCEPTION (ECE 6504)

NEURAL NETWORK VISION FOR
ROBOT DRIVING

Attribution: Christopher T Cooper

NEURAL NETWORK VISION
FOR ROBOT DRIVING

PLAYING ATARI WITH DEEP
REINFORCEMENT LEARNING

OUTLINE

▸ Playing Atari with Deep Reinforcement Learning

▸ Motivation

▸ Intro to Reinforcement Learning (RL)

▸ Deep Q-Network (DQN)

▸ BroadMind

▸ Neural Network Vision for Robot Driving

PLAYING ATARI WITH DEEP
REINFORCEMENT LEARNING

DEEPMIND

OUTLINE

▸ Playing Atari with Deep Reinforcement Learning

▸ Motivation

▸ Intro to Reinforcement Learning (RL)

▸ Deep Q-Network (DQN)

▸ BroadMind

▸ Neural Network Vision for Robot Driving

AUTOMATICALLY CONVERT UNSTRUCTURED
INFORMATION INTO USEFUL, ACTIONABLE
KNOWLEDGE.

Demis Hassabis

MOTIVATION

Source: Nikolai Yakovenko

CREATE AN AI SYSTEM THAT HAS THE
ABILITY TO LEARN FOR ITSELF FROM
EXPERIENCE.

Demis Hassabis

MOTIVATION

Source: Nikolai Yakovenko

CAN DO STUFF THAT MAYBE WE DON’T
KNOW HOW TO PROGRAM.

Demis Hassabis

MOTIVATION

Source: Nikolai Yakovenko

CREATE ARTIFICIAL GENERAL
INTELLIGENCE

In short,

MOTIVATION

WHY GAMES

▸ Complexity.

▸ Diversity.

▸ Easy to create more data.

▸ Meaningful reward signal.

▸ Can train and learn to transfer knowledge
between similar tasks.

Adapted from Nikolai Yakovenko

OUTLINE

▸ Playing Atari with Deep Reinforcement Learning

▸ Motivation

▸ Intro to Reinforcement Learning (RL)

▸ Deep Q-Network (DQN)

▸ BroadMind

▸ Neural Network Vision for Robot Driving

AGENT AND ENVIRONMENT
Agent and Environment

state

reward

action

at

rt

st I At each step t the agent:
I Receives state st
I Receives scalar reward rt
I Executes action at

I The environment:
I Receives action at
I Emits state st
I Emits scalar reward rt

▸ At every time step t,

▸ Agent executes action At

▸ Receives observation Ot

▸ Receives scalar reward Rt

▸ Environment

▸ Receives action At

▸ Emits observation Ot+1

▸ Emits reward Rt+1

Source: David Silver

REINFORCEMENT LEARNING

▸ RL is a general-purpose framework for artificial intelligence

▸ RL is for an agent with the capacity to act.

▸ Each action influences the agent’s future state.

▸ Success is measured by a scalar reward signal

▸ RL in a nutshell:

▸ Select actions to maximise future reward.

Source: David Silver

POLICY AND ACTION-VALUE FUNCTION

▸ Policy (∏) is a behavior function selecting
actions given states: a = ∏(s)

Source: David Silver

▸ Action-Value function Q∏(s, a) is the expected
total reward from state s and action a under
policy ∏:

▸ Q∏(s, a) = E[rt+1 + γrt+2 + γ2rt+3 + … | s, a]

▸ Indicates “how good is action a in state s”

Q∏(s, a) = E[rt+1 + γrt+2 + γ2rt+3 + … | s, a]

Q FUNCTION / ACTION-VALUE FUNCTION

MAZE EXAMPLE

Lecture 1: Introduction to Reinforcement Learning

Inside An RL Agent

Maze Example

Start

Goal

Rewards: -1 per time-step

Actions: N, E, S, W

States: Agent’s location

Source: David Silver

TEXT

POLICY

Lecture 1: Introduction to Reinforcement Learning

Inside An RL Agent

Maze Example: Policy

Start

Goal

Arrows represent policy ⇡(s) for each state s

Source: David Silver

TEXT

VALUE FUNCTION: TO CHANGE PICTURE TO ACTION-VALUE FUNCTION

Lecture 1: Introduction to Reinforcement Learning

Inside An RL Agent

Maze Example: Value Function

-14 -13 -12 -11 -10 -9

-16 -15 -12 -8

-16 -17 -6 -7

-18 -19 -5

-24 -20 -4 -3

-23 -22 -21 -22 -2 -1

Start

Goal

Numbers represent value v⇡(s) of each state s

Source: David Silver

TEXT

APPROACHES TO REINFORCEMENT LEARNING

▸ Policy-based RL

▸ Search directly for the optimal policy ∏*

▸ This is the policy achieving maximum future reward

▸ Value-based RL

▸ Estimate the optimal value function Q*(s,a)

▸ This is the maximum value achievable under any policy

▸ Model-based RL

▸ Build a transition model of the environment

▸ Plan (e.g. by lookahead) using model

Source: David Silver

TEXT

APPROACHES TO REINFORCEMENT LEARNING

▸ Policy-based RL

▸ Search directly for the optimal policy ∏*

▸ This is the policy achieving maximum future reward

▸ Value-based RL

▸ Estimate the optimal value function Q*(s,a)

▸ This is the maximum value achievable under any policy

▸ Model-based RL

▸ Build a transition model of the environment

▸ Plan (e.g. by lookahead) using model

OUTLINE

▸ Playing Atari with Deep Reinforcement Learning

▸ Motivation

▸ Intro to Reinforcement Learning (RL)

▸ Deep Q-Network (DQN)

▸ BroadMind

▸ Neural Network Vision for Robot Driving

DEEP REINFORCEMENT LEARNING

▸ How to apply reinforcement learning to deep neural
networks?

▸ Use a deep network to represent value function/
policy/model.

▸ Optimize this value function/policy/model end-
to-end.

▸ Use SGD to learn the weights/parameters.

Source: David Silver

UNROLLING RECURSIVELY…

‣ Value function can be unrolled recursively
Qπ(s, a) = E[r + γrt+1 + γ2rt+2 + ... | s, a] = Es′[r + γQπ(s′,a′) | s, a]

‣ Optimal value function Q*(s,a) can be unrolled recursively
Q*(s, a) = Es′[r + γ maxa’ Q*(s′, a′) | s, a]

‣ Value iteration algorithms solve the Bellman equation
Qi+1(s, a) = Es′[r + γ maxa’ Qi(s′, a′) | s, a]

Source: David Silver

DEEP Q-LEARNING

▸ Represent action-value function using a deep Q-network with
weights w:

Q(s, a, w) ~ Qπ(s, a)

▸ Loss is the mean squared error defined in Q-values:

L(w) = E[(r + γmaxa’Q(s’, a’, w_) − Q(s, a, w))2]
‣ Gradient

∂L(w)/∂w = E[(r + γmaxa’Q(s’,a’, w_) − Q(s, a, w))2] * ∂Q(s, a, w)/∂w

Source: David Silver

STABILITY ISSUES WITH DEEP RL

‣ Naive Q-learning oscillates or diverges with neural nets
‣ Data is sequential
‣ Successive samples are correlated, non-iid

‣ Policy changes rapidly with slight changes to Q-values
‣ Policy may oscillate
‣ Distribution of data can swing from one extreme to

another
‣ Scale of rewards and Q-values is unknown
‣ Naive Q-learning gradients can be large unstable

when backpropagated

Source: David Silver

TEXT

DEEP Q-NETWORKS

‣ DQN provides a stable solution to deep value-based RL
‣ Use experience replay
‣ Break correlations in data, bring us back to iid setting
‣ Learn from all past policies

‣ Freeze target Q-network
‣ Avoid oscillations
‣ Break correlations between Q-network and target

‣ Clip rewards or normalize network adaptively to sensible range
‣ Robust gradients

Source: David Silver

TRICK 1 - EXPERIENCE REPLAY

‣ To remove correlations, build dataset from agent’s
own experience
‣ Take action at according to €-greedy policy
‣ Store transition (st, at, rt+1, st+1) in replay memory D
‣ Sample random mini-batch of transitions (s, a, r, s’)

from D
‣ Minimize MSE between Q-network and Q-

learning targets

Source: David Silver

TRICK 2 - FIXED TARGET Q-NETWORK

‣ To avoid oscillations, fix parameters used in Q-learning
target
‣ Compute Q-learning targets w.r.t. old, fixed

parameters w−

r + γ maxa’ Q(s’, a’, w−)
‣ Minimize MSE between Q-network and Q-learning

targets

L(w)=Es,a,r,s’~D [r+γ maxa’ Q(s’, a’, w−) − Q(s,a,w))2]

‣ Periodically update fixed parameters w− ← w

Source: David Silver

TRICK 3 - REWARD/VALUE RANGE

‣ Advantages
‣ DQN clips the rewards to [−1,+1]
‣ This prevents Q-values from becoming too large
‣ Ensures gradients are well-conditioned

‣ Disadvantages
‣ Can’t tell difference between small and large

rewards

Source: David Silver

BACK TO BROADMIND
Reinforcement Learning in Atari

state

reward

action

at

rt

st

Source: David Silver

INTRODUCTION - ATARI AGENT (AKA BROADMIND)

▸ Aim to create a single neural network agent that is able
to successfully learn to play as many of the games as
possible.

▸ Agent plays 49 Atari 2600 arcade games.

▸ Learns strictly from experience - no pre-training.

▸ Inputs: game screen + score.

▸ No game-specific tuning.

INTRODUCTION - ATARI AGENT (AKA BROADMIND)

▸ State — screen transitions from a sequence of 4 frames.

▸ Screen is 210*160 pixels with 128 color palette

▸ Actions — 18 corresponding to:

▸ 9 directions of joystick (including no input).

▸ 9 directions + button.

▸ Reward — Game score. 

difficult and engaging for human players. We used the same network
architecture, hyperparameter values (see Extended Data Table 1) and
learning procedure throughout—taking high-dimensional data (210|160
colour video at 60 Hz) as input—to demonstrate that our approach
robustly learns successful policies over a variety of games based solely
on sensory inputs with only very minimal prior knowledge (that is, merely
the input data were visual images, and the number of actions available
in each game, but not their correspondences; see Methods). Notably,
our method was able to train large neural networks using a reinforce-
ment learning signal and stochastic gradient descent in a stable manner—
illustrated by the temporal evolution of two indices of learning (the
agent’s average score-per-episode and average predicted Q-values; see
Fig. 2 and Supplementary Discussion for details).

We compared DQN with the best performing methods from the
reinforcement learning literature on the 49 games where results were
available12,15. In addition to the learned agents, we also report scores for
a professional human games tester playing under controlled conditions
and a policy that selects actions uniformly at random (Extended Data
Table 2 and Fig. 3, denoted by 100% (human) and 0% (random) on y
axis; see Methods). Our DQN method outperforms the best existing
reinforcement learning methods on 43 of the games without incorpo-
rating any of the additional prior knowledge about Atari 2600 games
used by other approaches (for example, refs 12, 15). Furthermore, our
DQN agent performed at a level that was comparable to that of a pro-
fessional human games tester across the set of 49 games, achieving more
than 75% of the human score on more than half of the games (29 games;

Convolution Convolution Fully connected Fully connected

No input

Figure 1 | Schematic illustration of the convolutional neural network. The
details of the architecture are explained in the Methods. The input to the neural
network consists of an 84 3 84 3 4 image produced by the preprocessing
map w, followed by three convolutional layers (note: snaking blue line

symbolizes sliding of each filter across input image) and two fully connected
layers with a single output for each valid action. Each hidden layer is followed
by a rectifier nonlinearity (that is, max 0,xð Þ).

a b

c d

 0
 200
 400
 600
 800

 1,000
 1,200
 1,400
 1,600
 1,800
 2,000
 2,200

 0 20 40 60 80 100 120 140 160 180 200

A
ve

ra
ge

 s
co

re
 p

er
 e

pi
so

de

Training epochs

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11

 0 20 40 60 80 100 120 140 160 180 200

A
ve

ra
ge

 a
ct

io
n

va
lu

e
(Q

)

Training epochs

 0

 1,000

 2,000

 3,000

 4,000

 5,000

 6,000

 0 20 40 60 80 100 120 140 160 180 200

A
ve

ra
ge

 s
co

re
 p

er
 e

pi
so

de

Training epochs

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 0 20 40 60 80 100 120 140 160 180 200

A
ve

ra
ge

 a
ct

io
n

va
lu

e
(Q

)

Training epochs

Figure 2 | Training curves tracking the agent’s average score and average
predicted action-value. a, Each point is the average score achieved per episode
after the agent is run with e-greedy policy (e 5 0.05) for 520 k frames on Space
Invaders. b, Average score achieved per episode for Seaquest. c, Average
predicted action-value on a held-out set of states on Space Invaders. Each point

on the curve is the average of the action-value Q computed over the held-out
set of states. Note that Q-values are scaled due to clipping of rewards (see
Methods). d, Average predicted action-value on Seaquest. See Supplementary
Discussion for details.

RESEARCH LETTER

5 3 0 | N A T U R E | V O L 5 1 8 | 2 6 F E B R U A R Y 2 0 1 5

Macmillan Publishers Limited. All rights reserved©2015

SCHEMATIC OF NETWORK

Mnih et. al.

NETWORK ARCHITECTURE

DQN in Atari

I End-to-end learning of values Q(s, a) from pixels s

I Input state s is stack of raw pixels from last 4 frames

I Output is Q(s, a) for 18 joystick/button positions

I Reward is change in score for that step

Network architecture and hyperparameters fixed across all games
[Mnih et al.]

Mnih et. al.

EVALUATION

 0

 50

 100

 150

 200

 250

 0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
g
e
 R

e
w

a
rd

 p
e
r

E
p
is

o
d
e

Training Epochs

Average Reward on Breakout

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 10 20 30 40 50 60 70 80 90 100
A

ve
ra

g
e
 R

e
w

a
rd

 p
e
r

E
p
is

o
d
e

Training Epochs

Average Reward on Seaquest

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
g
e
 A

ct
io

n
 V

a
lu

e
 (

Q
)

Training Epochs

Average Q on Breakout

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
g
e
 A

ct
io

n
 V

a
lu

e
 (

Q
)

Training Epochs

Average Q on Seaquest

Figure 2: The two plots on the left show average reward per episode on Breakout and Seaquest
respectively during training. The statistics were computed by running an ✏-greedy policy with ✏ =

0.05 for 10000 steps. The two plots on the right show the average maximum predicted action-value
of a held out set of states on Breakout and Seaquest respectively. One epoch corresponds to 50000
minibatch weight updates or roughly 30 minutes of training time.

Figure 3: The leftmost plot shows the predicted value function for a 30 frame segment of the game
Seaquest. The three screenshots correspond to the frames labeled by A, B, and C respectively.

5.2 Visualizing the Value Function

Figure 3 shows a visualization of the learned value function on the game Seaquest. The figure shows
that the predicted value jumps after an enemy appears on the left of the screen (point A). The agent
then fires a torpedo at the enemy and the predicted value peaks as the torpedo is about to hit the
enemy (point B). Finally, the value falls to roughly its original value after the enemy disappears
(point C). Figure 3 demonstrates that our method is able to learn how the value function evolves for
a reasonably complex sequence of events.

5.3 Main Evaluation

We compare our results with the best performing methods from the RL literature [3, 4]. The method
labeled Sarsa used the Sarsa algorithm to learn linear policies on several different feature sets hand-
engineered for the Atari task and we report the score for the best performing feature set [3]. Con-
tingency used the same basic approach as Sarsa but augmented the feature sets with a learned
representation of the parts of the screen that are under the agent’s control [4]. Note that both of these
methods incorporate significant prior knowledge about the visual problem by using background sub-
traction and treating each of the 128 colors as a separate channel. Since many of the Atari games use
one distinct color for each type of object, treating each color as a separate channel can be similar to
producing a separate binary map encoding the presence of each object type. In contrast, our agents
only receive the raw RGB screenshots as input and must learn to detect objects on their own.

In addition to the learned agents, we also report scores for an expert human game player and a policy
that selects actions uniformly at random. The human performance is the median reward achieved
after around two hours of playing each game. Note that our reported human scores are much higher
than the ones in Bellemare et al. [3]. For the learned methods, we follow the evaluation strategy used
in Bellemare et al. [3, 5] and report the average score obtained by running an ✏-greedy policy with
✏ = 0.05 for a fixed number of steps. The first five rows of table 1 show the per-game average scores
on all games. Our approach (labeled DQN) outperforms the other learning methods by a substantial
margin on all seven games despite incorporating almost no prior knowledge about the inputs.

We also include a comparison to the evolutionary policy search approach from [8] in the last three
rows of table 1. We report two sets of results for this method. The HNeat Best score reflects the
results obtained by using a hand-engineered object detector algorithm that outputs the locations and

7

Mnih et. al.

EVALUATION

 0

 50

 100

 150

 200

 250

 0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
g

e
 R

e
w

a
rd

 p
e

r
E

p
is

o
d

e

Training Epochs

Average Reward on Breakout

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
g

e
 R

e
w

a
rd

 p
e

r
E

p
is

o
d

e

Training Epochs

Average Reward on Seaquest

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
g

e
 A

ct
io

n
 V

a
lu

e
 (

Q
)

Training Epochs

Average Q on Breakout

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 10 20 30 40 50 60 70 80 90 100
A

ve
ra

g
e

 A
ct

io
n

 V
a

lu
e

 (
Q

)

Training Epochs

Average Q on Seaquest

Figure 2: The two plots on the left show average reward per episode on Breakout and Seaquest
respectively during training. The statistics were computed by running an ✏-greedy policy with ✏ =

0.05 for 10000 steps. The two plots on the right show the average maximum predicted action-value
of a held out set of states on Breakout and Seaquest respectively. One epoch corresponds to 50000
minibatch weight updates or roughly 30 minutes of training time.

Figure 3: The leftmost plot shows the predicted value function for a 30 frame segment of the game
Seaquest. The three screenshots correspond to the frames labeled by A, B, and C respectively.

5.2 Visualizing the Value Function

Figure 3 shows a visualization of the learned value function on the game Seaquest. The figure shows
that the predicted value jumps after an enemy appears on the left of the screen (point A). The agent
then fires a torpedo at the enemy and the predicted value peaks as the torpedo is about to hit the
enemy (point B). Finally, the value falls to roughly its original value after the enemy disappears
(point C). Figure 3 demonstrates that our method is able to learn how the value function evolves for
a reasonably complex sequence of events.

5.3 Main Evaluation

We compare our results with the best performing methods from the RL literature [3, 4]. The method
labeled Sarsa used the Sarsa algorithm to learn linear policies on several different feature sets hand-
engineered for the Atari task and we report the score for the best performing feature set [3]. Con-
tingency used the same basic approach as Sarsa but augmented the feature sets with a learned
representation of the parts of the screen that are under the agent’s control [4]. Note that both of these
methods incorporate significant prior knowledge about the visual problem by using background sub-
traction and treating each of the 128 colors as a separate channel. Since many of the Atari games use
one distinct color for each type of object, treating each color as a separate channel can be similar to
producing a separate binary map encoding the presence of each object type. In contrast, our agents
only receive the raw RGB screenshots as input and must learn to detect objects on their own.

In addition to the learned agents, we also report scores for an expert human game player and a policy
that selects actions uniformly at random. The human performance is the median reward achieved
after around two hours of playing each game. Note that our reported human scores are much higher
than the ones in Bellemare et al. [3]. For the learned methods, we follow the evaluation strategy used
in Bellemare et al. [3, 5] and report the average score obtained by running an ✏-greedy policy with
✏ = 0.05 for a fixed number of steps. The first five rows of table 1 show the per-game average scores
on all games. Our approach (labeled DQN) outperforms the other learning methods by a substantial
margin on all seven games despite incorporating almost no prior knowledge about the inputs.

We also include a comparison to the evolutionary policy search approach from [8] in the last three
rows of table 1. We report two sets of results for this method. The HNeat Best score reflects the
results obtained by using a hand-engineered object detector algorithm that outputs the locations and

7

Mnih et. al.

EVALUATION

 0

 50

 100

 150

 200

 250

 0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
g
e
 R

e
w

a
rd

 p
e
r

E
p
is

o
d
e

Training Epochs

Average Reward on Breakout

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
g
e
 R

e
w

a
rd

 p
e
r

E
p
is

o
d
e

Training Epochs

Average Reward on Seaquest

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
g
e
 A

ct
io

n
 V

a
lu

e
 (

Q
)

Training Epochs

Average Q on Breakout

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
g
e
 A

ct
io

n
 V

a
lu

e
 (

Q
)

Training Epochs

Average Q on Seaquest

Figure 2: The two plots on the left show average reward per episode on Breakout and Seaquest
respectively during training. The statistics were computed by running an ✏-greedy policy with ✏ =

0.05 for 10000 steps. The two plots on the right show the average maximum predicted action-value
of a held out set of states on Breakout and Seaquest respectively. One epoch corresponds to 50000
minibatch weight updates or roughly 30 minutes of training time.

Figure 3: The leftmost plot shows the predicted value function for a 30 frame segment of the game
Seaquest. The three screenshots correspond to the frames labeled by A, B, and C respectively.

5.2 Visualizing the Value Function

Figure 3 shows a visualization of the learned value function on the game Seaquest. The figure shows
that the predicted value jumps after an enemy appears on the left of the screen (point A). The agent
then fires a torpedo at the enemy and the predicted value peaks as the torpedo is about to hit the
enemy (point B). Finally, the value falls to roughly its original value after the enemy disappears
(point C). Figure 3 demonstrates that our method is able to learn how the value function evolves for
a reasonably complex sequence of events.

5.3 Main Evaluation

We compare our results with the best performing methods from the RL literature [3, 4]. The method
labeled Sarsa used the Sarsa algorithm to learn linear policies on several different feature sets hand-
engineered for the Atari task and we report the score for the best performing feature set [3]. Con-
tingency used the same basic approach as Sarsa but augmented the feature sets with a learned
representation of the parts of the screen that are under the agent’s control [4]. Note that both of these
methods incorporate significant prior knowledge about the visual problem by using background sub-
traction and treating each of the 128 colors as a separate channel. Since many of the Atari games use
one distinct color for each type of object, treating each color as a separate channel can be similar to
producing a separate binary map encoding the presence of each object type. In contrast, our agents
only receive the raw RGB screenshots as input and must learn to detect objects on their own.

In addition to the learned agents, we also report scores for an expert human game player and a policy
that selects actions uniformly at random. The human performance is the median reward achieved
after around two hours of playing each game. Note that our reported human scores are much higher
than the ones in Bellemare et al. [3]. For the learned methods, we follow the evaluation strategy used
in Bellemare et al. [3, 5] and report the average score obtained by running an ✏-greedy policy with
✏ = 0.05 for a fixed number of steps. The first five rows of table 1 show the per-game average scores
on all games. Our approach (labeled DQN) outperforms the other learning methods by a substantial
margin on all seven games despite incorporating almost no prior knowledge about the inputs.

We also include a comparison to the evolutionary policy search approach from [8] in the last three
rows of table 1. We report two sets of results for this method. The HNeat Best score reflects the
results obtained by using a hand-engineered object detector algorithm that outputs the locations and

7

 0

 50

 100

 150

 200

 250

 0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
g

e
 R

e
w

a
rd

 p
e

r
E

p
is

o
d

e

Training Epochs

Average Reward on Breakout

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
g

e
 R

e
w

a
rd

 p
e

r
E

p
is

o
d

e

Training Epochs

Average Reward on Seaquest

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
g

e
 A

ct
io

n
 V

a
lu

e
 (

Q
)

Training Epochs

Average Q on Breakout

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
g

e
 A

ct
io

n
 V

a
lu

e
 (

Q
)

Training Epochs

Average Q on Seaquest

Figure 2: The two plots on the left show average reward per episode on Breakout and Seaquest
respectively during training. The statistics were computed by running an ✏-greedy policy with ✏ =

0.05 for 10000 steps. The two plots on the right show the average maximum predicted action-value
of a held out set of states on Breakout and Seaquest respectively. One epoch corresponds to 50000
minibatch weight updates or roughly 30 minutes of training time.

Figure 3: The leftmost plot shows the predicted value function for a 30 frame segment of the game
Seaquest. The three screenshots correspond to the frames labeled by A, B, and C respectively.

5.2 Visualizing the Value Function

Figure 3 shows a visualization of the learned value function on the game Seaquest. The figure shows
that the predicted value jumps after an enemy appears on the left of the screen (point A). The agent
then fires a torpedo at the enemy and the predicted value peaks as the torpedo is about to hit the
enemy (point B). Finally, the value falls to roughly its original value after the enemy disappears
(point C). Figure 3 demonstrates that our method is able to learn how the value function evolves for
a reasonably complex sequence of events.

5.3 Main Evaluation

We compare our results with the best performing methods from the RL literature [3, 4]. The method
labeled Sarsa used the Sarsa algorithm to learn linear policies on several different feature sets hand-
engineered for the Atari task and we report the score for the best performing feature set [3]. Con-
tingency used the same basic approach as Sarsa but augmented the feature sets with a learned
representation of the parts of the screen that are under the agent’s control [4]. Note that both of these
methods incorporate significant prior knowledge about the visual problem by using background sub-
traction and treating each of the 128 colors as a separate channel. Since many of the Atari games use
one distinct color for each type of object, treating each color as a separate channel can be similar to
producing a separate binary map encoding the presence of each object type. In contrast, our agents
only receive the raw RGB screenshots as input and must learn to detect objects on their own.

In addition to the learned agents, we also report scores for an expert human game player and a policy
that selects actions uniformly at random. The human performance is the median reward achieved
after around two hours of playing each game. Note that our reported human scores are much higher
than the ones in Bellemare et al. [3]. For the learned methods, we follow the evaluation strategy used
in Bellemare et al. [3, 5] and report the average score obtained by running an ✏-greedy policy with
✏ = 0.05 for a fixed number of steps. The first five rows of table 1 show the per-game average scores
on all games. Our approach (labeled DQN) outperforms the other learning methods by a substantial
margin on all seven games despite incorporating almost no prior knowledge about the inputs.

We also include a comparison to the evolutionary policy search approach from [8] in the last three
rows of table 1. We report two sets of results for this method. The HNeat Best score reflects the
results obtained by using a hand-engineered object detector algorithm that outputs the locations and

7

 0

 50

 100

 150

 200

 250

 0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
g
e
 R

e
w

a
rd

 p
e
r

E
p
is

o
d
e

Training Epochs

Average Reward on Breakout

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
g
e
 R

e
w

a
rd

 p
e
r

E
p
is

o
d
e

Training Epochs

Average Reward on Seaquest

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
g
e
 A

ct
io

n
 V

a
lu

e
 (

Q
)

Training Epochs

Average Q on Breakout

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
g
e
 A

ct
io

n
 V

a
lu

e
 (

Q
)

Training Epochs

Average Q on Seaquest

Figure 2: The two plots on the left show average reward per episode on Breakout and Seaquest
respectively during training. The statistics were computed by running an ✏-greedy policy with ✏ =

0.05 for 10000 steps. The two plots on the right show the average maximum predicted action-value
of a held out set of states on Breakout and Seaquest respectively. One epoch corresponds to 50000
minibatch weight updates or roughly 30 minutes of training time.

Figure 3: The leftmost plot shows the predicted value function for a 30 frame segment of the game
Seaquest. The three screenshots correspond to the frames labeled by A, B, and C respectively.

5.2 Visualizing the Value Function

Figure 3 shows a visualization of the learned value function on the game Seaquest. The figure shows
that the predicted value jumps after an enemy appears on the left of the screen (point A). The agent
then fires a torpedo at the enemy and the predicted value peaks as the torpedo is about to hit the
enemy (point B). Finally, the value falls to roughly its original value after the enemy disappears
(point C). Figure 3 demonstrates that our method is able to learn how the value function evolves for
a reasonably complex sequence of events.

5.3 Main Evaluation

We compare our results with the best performing methods from the RL literature [3, 4]. The method
labeled Sarsa used the Sarsa algorithm to learn linear policies on several different feature sets hand-
engineered for the Atari task and we report the score for the best performing feature set [3]. Con-
tingency used the same basic approach as Sarsa but augmented the feature sets with a learned
representation of the parts of the screen that are under the agent’s control [4]. Note that both of these
methods incorporate significant prior knowledge about the visual problem by using background sub-
traction and treating each of the 128 colors as a separate channel. Since many of the Atari games use
one distinct color for each type of object, treating each color as a separate channel can be similar to
producing a separate binary map encoding the presence of each object type. In contrast, our agents
only receive the raw RGB screenshots as input and must learn to detect objects on their own.

In addition to the learned agents, we also report scores for an expert human game player and a policy
that selects actions uniformly at random. The human performance is the median reward achieved
after around two hours of playing each game. Note that our reported human scores are much higher
than the ones in Bellemare et al. [3]. For the learned methods, we follow the evaluation strategy used
in Bellemare et al. [3, 5] and report the average score obtained by running an ✏-greedy policy with
✏ = 0.05 for a fixed number of steps. The first five rows of table 1 show the per-game average scores
on all games. Our approach (labeled DQN) outperforms the other learning methods by a substantial
margin on all seven games despite incorporating almost no prior knowledge about the inputs.

We also include a comparison to the evolutionary policy search approach from [8] in the last three
rows of table 1. We report two sets of results for this method. The HNeat Best score reflects the
results obtained by using a hand-engineered object detector algorithm that outputs the locations and

7

A

B C

 0

 50

 100

 150

 200

 250

 0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
g
e
 R

e
w

a
rd

 p
e
r

E
p
is

o
d
e

Training Epochs

Average Reward on Breakout

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
g
e
 R

e
w

a
rd

 p
e
r

E
p
is

o
d
e

Training Epochs

Average Reward on Seaquest

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
g
e
 A

ct
io

n
 V

a
lu

e
 (

Q
)

Training Epochs

Average Q on Breakout

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
g
e
 A

ct
io

n
 V

a
lu

e
 (

Q
)

Training Epochs

Average Q on Seaquest

Figure 2: The two plots on the left show average reward per episode on Breakout and Seaquest
respectively during training. The statistics were computed by running an ✏-greedy policy with ✏ =

0.05 for 10000 steps. The two plots on the right show the average maximum predicted action-value
of a held out set of states on Breakout and Seaquest respectively. One epoch corresponds to 50000
minibatch weight updates or roughly 30 minutes of training time.

Figure 3: The leftmost plot shows the predicted value function for a 30 frame segment of the game
Seaquest. The three screenshots correspond to the frames labeled by A, B, and C respectively.

5.2 Visualizing the Value Function

Figure 3 shows a visualization of the learned value function on the game Seaquest. The figure shows
that the predicted value jumps after an enemy appears on the left of the screen (point A). The agent
then fires a torpedo at the enemy and the predicted value peaks as the torpedo is about to hit the
enemy (point B). Finally, the value falls to roughly its original value after the enemy disappears
(point C). Figure 3 demonstrates that our method is able to learn how the value function evolves for
a reasonably complex sequence of events.

5.3 Main Evaluation

We compare our results with the best performing methods from the RL literature [3, 4]. The method
labeled Sarsa used the Sarsa algorithm to learn linear policies on several different feature sets hand-
engineered for the Atari task and we report the score for the best performing feature set [3]. Con-
tingency used the same basic approach as Sarsa but augmented the feature sets with a learned
representation of the parts of the screen that are under the agent’s control [4]. Note that both of these
methods incorporate significant prior knowledge about the visual problem by using background sub-
traction and treating each of the 128 colors as a separate channel. Since many of the Atari games use
one distinct color for each type of object, treating each color as a separate channel can be similar to
producing a separate binary map encoding the presence of each object type. In contrast, our agents
only receive the raw RGB screenshots as input and must learn to detect objects on their own.

In addition to the learned agents, we also report scores for an expert human game player and a policy
that selects actions uniformly at random. The human performance is the median reward achieved
after around two hours of playing each game. Note that our reported human scores are much higher
than the ones in Bellemare et al. [3]. For the learned methods, we follow the evaluation strategy used
in Bellemare et al. [3, 5] and report the average score obtained by running an ✏-greedy policy with
✏ = 0.05 for a fixed number of steps. The first five rows of table 1 show the per-game average scores
on all games. Our approach (labeled DQN) outperforms the other learning methods by a substantial
margin on all seven games despite incorporating almost no prior knowledge about the inputs.

We also include a comparison to the evolutionary policy search approach from [8] in the last three
rows of table 1. We report two sets of results for this method. The HNeat Best score reflects the
results obtained by using a hand-engineered object detector algorithm that outputs the locations and

7

Mnih et. al.

Indeed, in certain games DQN is able to discover a relatively long-term
strategy (for example, Breakout: the agent learns the optimal strategy,
which is to first dig a tunnel around the side of the wall allowing the ball
to be sent around the back to destroy a large number of blocks; see Sup-
plementary Video 2 for illustration of development of DQN’s perfor-
mance over the course of training). Nevertheless, games demanding more
temporally extended planning strategies still constitute a major chal-
lenge for all existing agents including DQN (for example, Montezuma’s
Revenge).

In this work, we demonstrate that a single architecture can success-
fully learn control policies in a range of different environments with only
very minimal prior knowledge, receiving only the pixels and the game
score as inputs, and using the same algorithm, network architecture and
hyperparameters on each game, privy only to the inputs a human player
would have. In contrast to previous work24,26, our approach incorpo-
rates ‘end-to-end’ reinforcement learning that uses reward to continu-
ously shape representations within the convolutional network towards
salient features of the environment that facilitate value estimation. This
principle draws on neurobiological evidence that reward signals during
perceptual learning may influence the characteristics of representations
within primate visual cortex27,28. Notably, the successful integration of
reinforcement learning with deep network architectures was critically
dependent on our incorporation of a replay algorithm21–23 involving the
storage and representation of recently experienced transitions. Conver-
gent evidence suggests that the hippocampus may support the physical

realization of such a process in the mammalian brain, with the time-
compressed reactivation of recently experienced trajectories during
offline periods21,22 (for example, waking rest) providing a putative mech-
anism by which value functions may be efficiently updated through
interactions with the basal ganglia22. In the future, it will be important
to explore the potential use of biasing the content of experience replay
towards salient events, a phenomenon that characterizes empirically
observed hippocampal replay29, and relates to the notion of ‘prioritized
sweeping’30 in reinforcement learning. Taken together, our work illus-
trates the power of harnessing state-of-the-art machine learning tech-
niques with biologically inspired mechanisms to create agents that are
capable of learning to master a diverse array of challenging tasks.

Online Content Methods, along with any additional Extended Data display items
andSourceData, are available in the online version of the paper; references unique
to these sections appear only in the online paper.

Received 10 July 2014; accepted 16 January 2015.

1. Sutton, R. & Barto, A. Reinforcement Learning: An Introduction (MIT Press, 1998).
2. Thorndike, E. L. Animal Intelligence: Experimental studies (Macmillan, 1911).
3. Schultz, W., Dayan, P. & Montague, P. R. A neural substrate of prediction and

reward. Science 275, 1593–1599 (1997).
4. Serre, T., Wolf, L. & Poggio, T. Object recognition with features inspired by visual

cortex. Proc. IEEE. Comput. Soc. Conf. Comput. Vis. Pattern. Recognit. 994–1000
(2005).

5. Fukushima, K. Neocognitron: A self-organizing neural network model for a
mechanism of pattern recognition unaffected by shift in position. Biol. Cybern. 36,
193–202 (1980).

V

Figure 4 | Two-dimensional t-SNE embedding of the representations in the
last hidden layer assigned by DQN to game states experienced while playing
Space Invaders. The plot was generated by letting the DQN agent play for
2 h of real game time and running the t-SNE algorithm25 on the last hidden layer
representations assigned by DQN to each experienced game state. The
points are coloured according to the state values (V, maximum expected reward
of a state) predicted by DQN for the corresponding game states (ranging
from dark red (highest V) to dark blue (lowest V)). The screenshots
corresponding to a selected number of points are shown. The DQN agent

predicts high state values for both full (top right screenshots) and nearly
complete screens (bottom left screenshots) because it has learned that
completing a screen leads to a new screen full of enemy ships. Partially
completed screens (bottom screenshots) are assigned lower state values because
less immediate reward is available. The screens shown on the bottom right
and top left and middle are less perceptually similar than the other examples but
are still mapped to nearby representations and similar values because the
orange bunkers do not carry great significance near the end of a level. With
permission from Square Enix Limited.

RESEARCH LETTER

5 3 2 | N A T U R E | V O L 5 1 8 | 2 6 F E B R U A R Y 2 0 1 5

Macmillan Publishers Limited. All rights reserved©2015

VISUALIZATION OF GAME STATES IN LAST HIDDEN LAYER

Mnih et. al.

AVERAGE TOTAL REWARD

SINGLE BEST PERFORMING EPISODE

B. Rider Breakout Enduro Pong Q*bert Seaquest S. Invaders
Random 354 1.2 0 �20.4 157 110 179

Sarsa [3] 996 5.2 129 �19 614 665 271

Contingency [4] 1743 6 159 �17 960 723 268

DQN 4092 168 470 20 1952 1705 581
Human 7456 31 368 �3 18900 28010 3690

HNeat Best [8] 3616 52 106 19 1800 920 1720
HNeat Pixel [8] 1332 4 91 �16 1325 800 1145

DQN Best 5184 225 661 21 4500 1740 1075

Table 1: The upper table compares average total reward for various learning methods by running
an ✏-greedy policy with ✏ = 0.05 for a fixed number of steps. The lower table reports results of
the single best performing episode for HNeat and DQN. HNeat produces deterministic policies that
always get the same score while DQN used an ✏-greedy policy with ✏ = 0.05.

types of objects on the Atari screen. The HNeat Pixel score is obtained by using the special 8 color
channel representation of the Atari emulator that represents an object label map at each channel.
This method relies heavily on finding a deterministic sequence of states that represents a successful
exploit. It is unlikely that strategies learnt in this way will generalize to random perturbations;
therefore the algorithm was only evaluated on the highest scoring single episode. In contrast, our
algorithm is evaluated on ✏-greedy control sequences, and must therefore generalize across a wide
variety of possible situations. Nevertheless, we show that on all the games, except Space Invaders,
not only our max evaluation results (row 8), but also our average results (row 4) achieve better
performance.

Finally, we show that our method achieves better performance than an expert human player on
Breakout, Enduro and Pong and it achieves close to human performance on Beam Rider. The games
Q*bert, Seaquest, Space Invaders, on which we are far from human performance, are more chal-
lenging because they require the network to find a strategy that extends over long time scales.

6 Conclusion
This paper introduced a new deep learning model for reinforcement learning, and demonstrated its
ability to master difficult control policies for Atari 2600 computer games, using only raw pixels
as input. We also presented a variant of online Q-learning that combines stochastic minibatch up-
dates with experience replay memory to ease the training of deep networks for RL. Our approach
gave state-of-the-art results in six of the seven games it was tested on, with no adjustment of the
architecture or hyperparameters.

References

[1] Leemon Baird. Residual algorithms: Reinforcement learning with function approximation. In
Proceedings of the 12th International Conference on Machine Learning (ICML 1995), pages
30–37. Morgan Kaufmann, 1995.

[2] Marc Bellemare, Joel Veness, and Michael Bowling. Sketch-based linear value function ap-
proximation. In Advances in Neural Information Processing Systems 25, pages 2222–2230,
2012.

[3] Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning
environment: An evaluation platform for general agents. Journal of Artificial Intelligence

Research, 47:253–279, 2013.

[4] Marc G Bellemare, Joel Veness, and Michael Bowling. Investigating contingency awareness
using atari 2600 games. In AAAI, 2012.

[5] Marc G. Bellemare, Joel Veness, and Michael Bowling. Bayesian learning of recursively fac-
tored environments. In Proceedings of the Thirtieth International Conference on Machine

Learning (ICML 2013), pages 1211–1219, 2013.

8

B. Rider Breakout Enduro Pong Q*bert Seaquest S. Invaders
Random 354 1.2 0 �20.4 157 110 179

Sarsa [3] 996 5.2 129 �19 614 665 271

Contingency [4] 1743 6 159 �17 960 723 268

DQN 4092 168 470 20 1952 1705 581
Human 7456 31 368 �3 18900 28010 3690

HNeat Best [8] 3616 52 106 19 1800 920 1720
HNeat Pixel [8] 1332 4 91 �16 1325 800 1145

DQN Best 5184 225 661 21 4500 1740 1075

Table 1: The upper table compares average total reward for various learning methods by running
an ✏-greedy policy with ✏ = 0.05 for a fixed number of steps. The lower table reports results of
the single best performing episode for HNeat and DQN. HNeat produces deterministic policies that
always get the same score while DQN used an ✏-greedy policy with ✏ = 0.05.

types of objects on the Atari screen. The HNeat Pixel score is obtained by using the special 8 color
channel representation of the Atari emulator that represents an object label map at each channel.
This method relies heavily on finding a deterministic sequence of states that represents a successful
exploit. It is unlikely that strategies learnt in this way will generalize to random perturbations;
therefore the algorithm was only evaluated on the highest scoring single episode. In contrast, our
algorithm is evaluated on ✏-greedy control sequences, and must therefore generalize across a wide
variety of possible situations. Nevertheless, we show that on all the games, except Space Invaders,
not only our max evaluation results (row 8), but also our average results (row 4) achieve better
performance.

Finally, we show that our method achieves better performance than an expert human player on
Breakout, Enduro and Pong and it achieves close to human performance on Beam Rider. The games
Q*bert, Seaquest, Space Invaders, on which we are far from human performance, are more chal-
lenging because they require the network to find a strategy that extends over long time scales.

6 Conclusion
This paper introduced a new deep learning model for reinforcement learning, and demonstrated its
ability to master difficult control policies for Atari 2600 computer games, using only raw pixels
as input. We also presented a variant of online Q-learning that combines stochastic minibatch up-
dates with experience replay memory to ease the training of deep networks for RL. Our approach
gave state-of-the-art results in six of the seven games it was tested on, with no adjustment of the
architecture or hyperparameters.

References

[1] Leemon Baird. Residual algorithms: Reinforcement learning with function approximation. In
Proceedings of the 12th International Conference on Machine Learning (ICML 1995), pages
30–37. Morgan Kaufmann, 1995.

[2] Marc Bellemare, Joel Veness, and Michael Bowling. Sketch-based linear value function ap-
proximation. In Advances in Neural Information Processing Systems 25, pages 2222–2230,
2012.

[3] Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning
environment: An evaluation platform for general agents. Journal of Artificial Intelligence

Research, 47:253–279, 2013.

[4] Marc G Bellemare, Joel Veness, and Michael Bowling. Investigating contingency awareness
using atari 2600 games. In AAAI, 2012.

[5] Marc G. Bellemare, Joel Veness, and Michael Bowling. Bayesian learning of recursively fac-
tored environments. In Proceedings of the Thirtieth International Conference on Machine

Learning (ICML 2013), pages 1211–1219, 2013.

8

B. Rider Breakout Enduro Pong Q*bert Seaquest S. Invaders
Random 354 1.2 0 �20.4 157 110 179

Sarsa [3] 996 5.2 129 �19 614 665 271

Contingency [4] 1743 6 159 �17 960 723 268

DQN 4092 168 470 20 1952 1705 581
Human 7456 31 368 �3 18900 28010 3690

HNeat Best [8] 3616 52 106 19 1800 920 1720
HNeat Pixel [8] 1332 4 91 �16 1325 800 1145

DQN Best 5184 225 661 21 4500 1740 1075

Table 1: The upper table compares average total reward for various learning methods by running
an ✏-greedy policy with ✏ = 0.05 for a fixed number of steps. The lower table reports results of
the single best performing episode for HNeat and DQN. HNeat produces deterministic policies that
always get the same score while DQN used an ✏-greedy policy with ✏ = 0.05.

types of objects on the Atari screen. The HNeat Pixel score is obtained by using the special 8 color
channel representation of the Atari emulator that represents an object label map at each channel.
This method relies heavily on finding a deterministic sequence of states that represents a successful
exploit. It is unlikely that strategies learnt in this way will generalize to random perturbations;
therefore the algorithm was only evaluated on the highest scoring single episode. In contrast, our
algorithm is evaluated on ✏-greedy control sequences, and must therefore generalize across a wide
variety of possible situations. Nevertheless, we show that on all the games, except Space Invaders,
not only our max evaluation results (row 8), but also our average results (row 4) achieve better
performance.

Finally, we show that our method achieves better performance than an expert human player on
Breakout, Enduro and Pong and it achieves close to human performance on Beam Rider. The games
Q*bert, Seaquest, Space Invaders, on which we are far from human performance, are more chal-
lenging because they require the network to find a strategy that extends over long time scales.

6 Conclusion
This paper introduced a new deep learning model for reinforcement learning, and demonstrated its
ability to master difficult control policies for Atari 2600 computer games, using only raw pixels
as input. We also presented a variant of online Q-learning that combines stochastic minibatch up-
dates with experience replay memory to ease the training of deep networks for RL. Our approach
gave state-of-the-art results in six of the seven games it was tested on, with no adjustment of the
architecture or hyperparameters.

References

[1] Leemon Baird. Residual algorithms: Reinforcement learning with function approximation. In
Proceedings of the 12th International Conference on Machine Learning (ICML 1995), pages
30–37. Morgan Kaufmann, 1995.

[2] Marc Bellemare, Joel Veness, and Michael Bowling. Sketch-based linear value function ap-
proximation. In Advances in Neural Information Processing Systems 25, pages 2222–2230,
2012.

[3] Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning
environment: An evaluation platform for general agents. Journal of Artificial Intelligence

Research, 47:253–279, 2013.

[4] Marc G Bellemare, Joel Veness, and Michael Bowling. Investigating contingency awareness
using atari 2600 games. In AAAI, 2012.

[5] Marc G. Bellemare, Joel Veness, and Michael Bowling. Bayesian learning of recursively fac-
tored environments. In Proceedings of the Thirtieth International Conference on Machine

Learning (ICML 2013), pages 1211–1219, 2013.

8

Mnih et. al.

DQN PERFORMANCE

see Fig. 3, Supplementary Discussion and Extended Data Table 2). In
additional simulations (see Supplementary Discussion and Extended
Data Tables 3 and 4), we demonstrate the importance of the individual
core components of the DQN agent—the replay memory, separate target
Q-network and deep convolutional network architecture—by disabling
them and demonstrating the detrimental effects on performance.

We next examined the representations learned by DQN that under-
pinned the successful performance of the agent in the context of the game
Space Invaders (see Supplementary Video 1 for a demonstration of the
performance of DQN), by using a technique developed for the visual-
ization of high-dimensional data called ‘t-SNE’25 (Fig. 4). As expected,
the t-SNE algorithm tends to map the DQN representation of percep-
tually similar states to nearby points. Interestingly, we also found instances
in which the t-SNE algorithm generated similar embeddings for DQN
representations of states that are close in terms of expected reward but

perceptually dissimilar (Fig. 4, bottom right, top left and middle), con-
sistent with the notion that the network is able to learn representations
that support adaptive behaviour from high-dimensional sensory inputs.
Furthermore, we also show that the representations learned by DQN
are able to generalize to data generated from policies other than its
own—in simulations where we presented as input to the network game
states experienced during human and agent play, recorded the repre-
sentations of the last hidden layer, and visualized the embeddings gen-
erated by the t-SNE algorithm (Extended Data Fig. 1 and Supplementary
Discussion). Extended Data Fig. 2 provides an additional illustration of
how the representations learned by DQN allow it to accurately predict
state and action values.

It is worth noting that the games in which DQN excels are extremely
varied in their nature, from side-scrolling shooters (River Raid) to box-
ing games (Boxing) and three-dimensional car-racing games (Enduro).

Montezuma's Revenge
Private Eye

Gravitar
Frostbite
Asteroids

Ms. Pac-Man
Bowling

Double Dunk
Seaquest

Venture
Alien

Amidar

River Raid
Bank Heist

Zaxxon

Centipede
Chopper Command

Wizard of Wor
Battle Zone

Asterix
H.E.R.O.

Q*bert
Ice Hockey

Up and Down
Fishing Derby

Enduro
Time Pilot

Freeway
Kung-Fu Master

Tutankham
Beam Rider

Space Invaders
Pong

James Bond
Tennis

Kangaroo
Road Runner

Assault
Krull

Name This Game
Demon Attack

Gopher
Crazy Climber

Atlantis
Robotank

Star Gunner
Breakout

Boxing
Video Pinball

At human-level or above

Below human-level

0 100 200 300 400 4,500%500 1,000600

Best linear learner

DQN

Figure 3 | Comparison of the DQN agent with the best reinforcement
learning methods15 in the literature. The performance of DQN is normalized
with respect to a professional human games tester (that is, 100% level) and
random play (that is, 0% level). Note that the normalized performance of DQN,
expressed as a percentage, is calculated as: 100 3 (DQN score 2 random play
score)/(human score 2 random play score). It can be seen that DQN

outperforms competing methods (also see Extended Data Table 2) in almost all
the games, and performs at a level that is broadly comparable with or superior
to a professional human games tester (that is, operationalized as a level of
75% or above) in the majority of games. Audio output was disabled for both
human players and agents. Error bars indicate s.d. across the 30 evaluation
episodes, starting with different initial conditions.

LETTER RESEARCH

2 6 F E B R U A R Y 2 0 1 5 | V O L 5 1 8 | N A T U R E | 5 3 1

Macmillan Publishers Limited. All rights reserved©2015

Mnih et. al.

TEXT

BROADMIND LEARNS OPTIMAL STRATEGY

https://www.youtube.com/watch?v=rbsqaJwpu6A

https://www.youtube.com/watch?v=rbsqaJwpu6A

VISUALIZATION OF VALUE FUNCTION

Extended Data Figure 2 | Visualization of learned value functions on two
games, Breakout and Pong. a, A visualization of the learned value function on
the game Breakout. At time points 1 and 2, the state value is predicted to be ,17
and the agent is clearing the bricks at the lowest level. Each of the peaks in
the value function curve corresponds to a reward obtained by clearing a brick.
At time point 3, the agent is about to break through to the top level of bricks and
the value increases to ,21 in anticipation of breaking out and clearing a
large set of bricks. At point 4, the value is above 23 and the agent has broken
through. After this point, the ball will bounce at the upper part of the bricks
clearing many of them by itself. b, A visualization of the learned action-value
function on the game Pong. At time point 1, the ball is moving towards the
paddle controlled by the agent on the right side of the screen and the values of

all actions are around 0.7, reflecting the expected value of this state based on
previous experience. At time point 2, the agent starts moving the paddle
towards the ball and the value of the ‘up’ action stays high while the value of the
‘down’ action falls to 20.9. This reflects the fact that pressing ‘down’ would lead
to the agent losing the ball and incurring a reward of 21. At time point 3,
the agent hits the ball by pressing ‘up’ and the expected reward keeps increasing
until time point 4, when the ball reaches the left edge of the screen and the value
of all actions reflects that the agent is about to receive a reward of 1. Note,
the dashed line shows the past trajectory of the ball purely for illustrative
purposes (that is, not shown during the game). With permission from Atari
Interactive, Inc.

LETTER RESEARCH

Macmillan Publishers Limited. All rights reserved©2015

Mnih et. al.

STRENGTHS AND WEAKNESSES

‣Good at

‣Quick-moving, complex, short-horizon games

‣Semi-independent trails within the game

‣Negative feedback on failure

‣Pinball

‣Bad at:

‣ long-horizon games that don’t converge

‣Any “walking around” game

‣ Pac-Man 

Source: Nikolai Yakovenko

TEXT

FAILURE CASES

▸ Montezuma’s revenge

▸ Single reward at the end of the level. No
intermediate rewards

▸ Worldly knowledge helps humans play these
games relatively easily.

▸ https://www.youtube.com/watch?v=1rwPI3RG-lU

https://www.youtube.com/watch?v=1rwPI3RG-lU

JUERGEN SCHMIDHUBER’S TEAM

Evolving Large-Scale Neural Networks for Vision-Based
Reinforcement Learning

▸ Evolutionary Computation based deep NN for RL

▸ Learns to play a car-racing video game

▸ No pre-training or hand-coding of features

▸ Video

RELATED TOPICS/PAPERS

▸ Universal Value Function Approximators, DeepMind

▸ http://jmlr.org/proceedings/papers/v37/schaul15.pdf

‣ Deep Learning for Real-Time Atari Game Play Using Offline Monte-
Carlo Tree Search Planning , UMich

‣ http://papers.nips.cc/paper/5421-deep-learning-for-real-time-
atari-game-play-using-offline-monte-carlo-tree-search-planning

‣ On Learning to Think: Algorithmic Information Theory for Novel
Combinations of Reinforcement Learning Controllers and Recurrent
Neural World Models, Juergen Schmidhuber
‣ http://arxiv.org/abs/1511.09249

http://jmlr.org/proceedings/papers/v37/schaul15.pdf
http://papers.nips.cc/paper/5421-deep-learning-for-real-time-atari-game-play-using-offline-monte-carlo-tree-search-planning
http://arxiv.org/abs/1511.09249

NEURAL NETWORK VISION
FOR ROBOT DRIVING

DEAN POMERLEAU

ALVINN - AUTONOMOUS DRIVING SYSTEM

▸ ALVINN has successfully driven autonomously at
speeds of up to 70 mph, and for distances of over
90 miles on a public highway north of Pittsburgh.

▸ Multiple NNs trained to handle: single lane dirt roads,
single lane paved bike paths, two lane suburban
neighborhood streets, and lined two lane highways.

Input Retina

Output Units

Person’s
Steering
Direction

Sensor
Image

SCHEMATIC OF LEARNING ON THE FLY

Sharp
 Left

Sharp
Right

4 Hidden
 Units

30 Output
 Units

 30x32 Sensor
 Input Retina

Straight
 Ahead

NN ARCHITECTURE FOR AUTONOMOUS DRIVING

ARCHITECTURE

▸ 1-hidden layer NN.

▸ Input layer contains 960 neurons.

▸ 1 hidden layer containing 4 neurons.

▸ Output layer contains 30 neurons.

INPUT

▸ Input “retina” of size 30*32 can take down sampled
input from video camera/scanning laser.

▸ These days, LIDAR is commonly used to generate
a 3D point cloud of the observed environment.

▸ Affine transforms of input image to augment
training set.

Original Extrapolation
 Scheme

Improved Extrapolation
 Scheme

Camera

Original
Field of
 View

Original
Vehicle
Position

Transformed
 Vehicle
 Position

Transformed
Field of View

A

C

B

 Road
Boundaries

DATA AUGMENTATION
▸ Potential issues:

▸ Misalignment errors never seen during training.

▸ Lack of diversity in training set.

Original Image Transformed Image

Area to
 fill in

▸ Solution: Transform original image to augment training set.

Original Extrapolation
 Scheme

Improved Extrapolation
 Scheme

Camera

Original
Field of
 View

Original
Vehicle
Position

Transformed
 Vehicle
 Position

Transformed
Field of View

A

C

B

 Road
Boundaries

EXTRAPOLATION

OUTPUT

▸ Networks output the correct direction to steer,
and a confidence score.

▸ Output from network with highest confidence
is chosen.

▸ Direction to steer is the center of mass of “hill
of activation”.

 Best Fit
Gaussian

 Gaussian Peak =
Network Steering
 Direction

Person’s Steering
 Direction

Network’s Steering
Error = ~3.5 units

A
ct

iv
at

io
n 1.0

0.0

-1.0
1 15 30

Output Unit

STEERING ERROR

TRAINING

▸ Original sensor image is shifted and rotated to
create 14 training exemplars.

▸ Buffer of 200 exemplar patterns used to train the
network.

▸ Each exemplar is replaced with another with a
constant probability to ensure diversity.

▸ 2.5sec per training cycle. Total training time = 4 min.

150

100

50

0

-50

-100

-150

0 25 50 75 100

Distance Travelled (meters)

D
isp

la
ce

m
en

t f
ro

m
 R

oa
d

C
en

te
r

(c
m

)

- trans -buff

+ trans -buff

+ trans +buff

PERFORMANCE

Low value throughout is better.

ALVINN

▸ ALVINN (1995)

▸ https://www.youtube.com/watch?
v=ilP4aPDTBPE

https://www.youtube.com/watch?v=ilP4aPDTBPE

TAKEAWAY

▸ Creating AGI is hard.

▸ RNNAIs, Memory Networks + RL etc.
promise an exciting future

▸ Tangible first step.

THANK YOU!

