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MOTIVATION
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MOTIVATION

In short,

CREATE ARTIFICIAL GENERAL
INTELLIGENCE



WHY GAMES

» Complexity.

» Diversity.

» Easy to create more data.
» Meaningful reward signal.

» Can train and learn to transfer knowledge
between similar tasks.

Adapted from Nikolai Yakovenko
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Source: David Silver

At every time step t,
Agent executes action At
Receives observation Ot
Receives scalar reward Rt
Environment
Receives action At
Emits observation Ot+1

Emits reward Rt+1



REINFORCEMENT LEARNING

» RLis a general-purpose framework for artificial intelligence

» RLis for an with the capacity to
» Each influences the agent's future
» Success is measured by a scalar signal

» RLin a nutshell:

» Select to maximise future

Source: David Silver



POLICY AND ACTION-VALUE FUNCTION

» Policy ([]) is a behavior function selecting
actions given states: a = | |(s)

» Action-Value function Qll(s, a) is the expected
total reward from state s and action a under

policy []:
} QI—'(S, a) = E[rt+1 + Yrt+2 + Y2rt+3 + coe ‘ S, a]

» Indicates “how good is action a in state s”

Source: David Silver



A FUNCTION / ACTION-VALUE FUNCTION

QH(SI a) = E[rt+1 + Yrt+2 + ert+3 + ... ‘ S, a]



Source: David Silver
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TEXT

APPROACHES TO REINFORCEMENT LEARNING

» Policy-based RL

» Search directly for the optimal policy [ ]*

» This is the policy achieving maximum future reward
» Value-based RL

» Estimate the optimal value function Q*(s,a)

» This is the maximum value achievable under any policy
» Model-based RL

» Build a transition model of the environment

» Plan (e.g. by lookahead) using model

Source: David Silver



TEXT

APPROACHES TO REINFORCEMENT LEARNING

» Policy-based RL

» Search directly for the optimal policy []*

» This is the policy achieving maximum future reward
» Value-based RL

» Estimate the optimal value function Q*(s,a)

» This is the maximum value achievable under any policy
» Model-based RL

» Build a transition model of the environment

» Plan (e.g. by lookahead) using model



OUTLINE

» Playing Atari with Deep Reinforcement Learning
» Motivation
» Intro to Reinforcement Learning (RL)
» Deep Q-Network (DQN)

» BroadMind

» Neural Network Vision for Robot Driving



DEEP REINFORCEMENT LEARNING

» How to apply reinforcement learning to deep neural
networks?

» Use a deep network to represent value function/
policy/model.

» Optimize this value function/policy/model end-
to-end.

» Use SGD to learn the weights/parameters.

Source: David Silver



UNROLLING RECURSIVELY...

» Value function can be unrolled recursively

Q'(s,a) = E[r + yr,q + ert+2 +...|s,al=E[r+ yQ'(s’,a’") |'s, a]

» Optimal value function Q (s,a) can be unrolled recursively

Q*(s, a) = E,[r + y max, Q*(s’, a’) | s, a]

» Value iteration algorithms solve the Bellman equation

Q;,+(s, a) = E,[r + y max, Qi(s’, a’) | s, a]

Source: David Silver



DEEP Q-LEARNING

» Represent action-value function using a deep Q-network with
weights w:

Q(s, a, w) ~ Q' (s, a)

» Loss is the mean squared error defined in Q-values:

L(w) = E[(r + YmaxalQ(s', a, w) — Qfs, a, w))2

» Gradient

]

AL(w)/dw = E[(r + ymax,Q(s,a, w) = Q(s, a, w))’] * 3Q(s, a, w)/dw

Source: David Silver



STABILITY ISSUES WITH DEEP RL

» Naive Q-learning oscillates or diverges with neural nets
» Data is sequential
» Successive samples are correlated, non-iid
» Policy changes rapidly with slight changes to Q-values
» Policy may oscillate

» Distribution of data can swing from one extreme to
another

» Scale of rewards and Q-values is unknown

» Naive Q-learning gradients can be large unstable
when backpropagated

Source: David Silver



TEXT

DEEP Q-NETWORKS

» DQN provides a stable solution to deep value-based RL

> Use experience replay

» Break correlations in data, bring us back to iid setting
» Learn from all past policies

» Freeze target Q-network
» Avoid oscillations
» Break correlations between Q-network and target

» Clip rewards or normalize network adaptively to sensible range

» Robust gradients

Source: David Silver



TRICK 1 - EXPERIENCE REPLAY

» To remove correlations, build dataset from agent's
own experience

» Take action at according to €-greedy policy
» Store transition (s, a;, rs1, Str1) in replay memory D

» Sample random mini-batch of transitions (s, a, r, s')
from D

» Minimize MSE between Q-network and Q-
learning targets

Source: David Silver



TRICK 2 - FIXED TARGET Q-NETWORK

» To avoid oscillations, fix parameters used in Q-learning
target
» Compute Q-learning targets w.r.t. old, fixed

parameters w—
I I
r+ y max,Q(s,a,w™)

» Minimize MSE between Q-network and Q-learning
targets

L(w)=E [ r+y max, Q(s, a, w™) — Q(s,a,w))’

s,a,r,s'~D

]

» Periodically update fixed parameters w=— « w

Source: David Silver



TRICK 3 - REWARD/VALUE RANGE

» Advantages
» DQN clips the rewards to [—1,+1]
» This prevents Q-values from becoming too large

» Ensures gradients are well-conditioned

» Disadvantages

» Can't tell difference between small and large
rewards

Source: David Silver
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INTRODUCTION - ATARI AGENT (AKA BROADMIND)

» Aim to create a single neural network agent that is able

to successfully learn to play as many of the games as
possible.

» Agent plays 49 Atari 2600 arcade games.
» Learns strictly from experience - no pre-training.
» Inputs: game screen + score.

» No game-specific tuning.



INTRODUCTION - ATARI AGENT (AKA BROADMIND)

» State — screen transitions from a sequence of 4 frames.
» Screen is 210*160 pixels with 128 color palette

» Actions — 18 corresponding to:
» 9 directions of joystick (including no input).
» 9 directions + button.

» Reward — Game score.
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32 4x4 filters 256 hidden units Fully-connected linear
output layer

| 6 8x8 filters

4x84x84

Stack of 4 previous . Fully-connected layer
frames Convolutional layer Convolutional layer of rectified linear units
of rectified linear units of rectified linear units

Mnih et. al.
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Average Q on Breakout Average Q on Seaquest
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VISUALIZATION OF GAME STATES IN LAST HIDDEN LAYER
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Mnih et. al.
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TEXT

BROADMIND LEARNS OPTIMAL STRATEGY

https://www.youtube.com/watch?v=rbsqaJwpubA


https://www.youtube.com/watch?v=rbsqaJwpu6A

VISUALIZATION OF VALUE FUNCTION
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Mnih et. al.



STRENGTHS AND WEAKNESSES

» Good at

» Quick-moving, complex, short-horizon games
» Semi-independent trails within the game
* Negative feedback on failure
» Pinball
» Bad at:
» long-horizon games that don’t converge

» Any “walking around” game

» Pac-Man

Source: Nikolai Yakovenko



TEXT

FAILURE CASES

» Montezuma's revenge

» Single reward at the end of the level. No
intermediate rewards

» Worldly knowledge helps humans play these
games relatively easily.

» https://www.youtube.com/watch?v=1rwPI3RG-|U



https://www.youtube.com/watch?v=1rwPI3RG-lU

JUERGEN SCHMIDHUBER'S TEAM

Evolving Large-Scale Neural Networks for Vision-Based
Reinforcement Learning

» Evolutionary Computation based deep NN for RL

» Learns to play a car-racing video game

» No pre-training or hand-coding of features

» Video



RELATED TOPICS/PAPERS

» Universal Value Function Approximators, DeepMind

» http://jmlr.org/proceedings/papers/v37/schaul15.pdf

* Deep Learning for Real-Time Atari Game Play Using Offline Monte-
Carlo Tree Search Planning , UMich

> http://papers.nips.cc/paper/5421-deep-learning-for-real-time-

atari-game-play-using-offline-monte-carlo-tree-search-planning

> On Learning to Think: Algorithmic Information Theory for Novel
Combinations of Reinforcement Learning Controllers and Recurrent
Neural World Models, Juergen Schmidhuber

> http://arxiv.org/abs/1511.09249



http://jmlr.org/proceedings/papers/v37/schaul15.pdf
http://papers.nips.cc/paper/5421-deep-learning-for-real-time-atari-game-play-using-offline-monte-carlo-tree-search-planning
http://arxiv.org/abs/1511.09249

DEAN POMERLEAU

NEURAL NETWORK VISION
FOR ROBOT DRIVING



ALVINN - AUTONOMOUS DRIVING SYSTEM

» ALVINN has successfully driven autonomously at
speeds of up to 70 mph, and for distances of over
90 miles on a public highway north of Pittsburgh.

» Multiple NNs trained to handle: single lane dirt roads,
single lane paved bike paths, two lane suburban
neighborhood streets, and lined two lane highways.




Output Units

Person’s
Steering
Direction







ARCHITECTURE

» 1-hidden layer NN.
» Input layer contains 960 neurons.
» 1 hidden layer containing 4 neurons.

» Output layer contains 30 neurons.



INPUT

» Input “retina” of size 30*32 can take down sampled
input from video camera/scanning laser.

» These days, LIDAR is commonly used to generate
a 3D point cloud of the observed environment.

» Affine transforms of input image to augment
training set.




Potential issues:
Misalignment errors never seen during training.

Lack of diversity in training set.

Solution: Transform original image to augment training set.

Original Image Transformed Image
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Field of
View
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| Position

Transformed
-a— Vehicle
Position

Transformed
Field of View

Original Extrapolation
Scheme

Improved Extrapolation
Scheme




Networks output the correct direction to steer,
and a confidence score.

Output from network with highest confidence
is chosen.

Direction to steer is the center of mass of “hill
of activation”.



Network’s Steering
Error = ~3.5 units

Gaussian Peak =
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Original sensor image is shifted and rotated to
create 14 training exemplars.

Buffer of 200 exemplar patterns used to train the
network.

Each exemplar is replaced with another with a
constant probability to ensure diversity.

2.5sec per training cycle. Total training time = 4 min.



Low value throughout is better.
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ALVINN

» ALVINN (1995)

» https://www.youtube.com/watch?
v=ilP4aPDTBPE



https://www.youtube.com/watch?v=ilP4aPDTBPE

TAKEAWAY
» Creating AGl is hard.

» Tangible first step.

» RNNAIs, Memory Networks + RL etc.
promise an exciting future



THANK YOU!



