Variance-based Stochastic
Gradient Descent (vSGD):

No More Pesky Learning Rates
Schaul et al., ICML13

http://arxiv.org/pdf/1206.1106v2.pdf
http://arxiv.org/pdf/1206.1106v2.pdf

The idea

- Remove need for setting learning rates by updating them optimally from the

Hessian values.

vE8GD-1 uses local gradient variance terms and the
local diagonal Hessian estimates, leading to 5] =

@)/ (ks -),
vSGD-g uses a global gradient variance term and an

upper bound on diagonal Hessian terms: n* =
2 (T (kT - 1),

v8GD-b operates like vSGD-g, but being only global
across multiple (architecture-specific) blocks of
parameters, with a different learning rate
per block. Similar ideas are adopted in
TONGA (Le Roux et al., 2008). In the experi-
ments. the parameters connecting every two lay-
ers of the network are regard as a block, with the
corresponding bias parameters in separate hlocks.

Algorithm 1: Stochastic gradient descent with

adaptive learning rates (element-wise, vSGD-1).

repeat

draw a sample ¢!, compute the gradient
‘C"E}, and compute the diagonal Hessian
estimates hgj} using the “bbprop” method
foric {1,..., d} do

update moving averages

® « (=rEert-vi

e -1y = 1 ury?
% +— (=1)T+ - ("Fﬁ,':)
hi « (1—-17") R+t |bhprop
(7)*
estimate learning rate 1 +— =—
it Uy

update memory size
2
ne(1-2) 41

i
L

update parameter #; « &; — :}??Ej
end

until stepping criterion is met

(07|

v8GD-1 vSGD-b vSGD-g 5GD ADAGRAD SMD Amari Almeida
MO 6.72% T.63 2.20% | 7.05% 6.97% 7.02% 7.33% 11.80%
M1 0.18% 0.78% 3.50% 0.30% 0.58% 0.40% 2.01% 8.49%
M2 | 0.05% 0.33% 2.91% 0.46% 0.41% 0.55% 1.68% 7.16%
C0 | 45.61% 52.45% 66.16% | D4.78% 54.36% — — =
Cl | 33.16% 45.14% 54.91% | 47.12% 45.20% - - -
CR 10.64 10.13 15.37 0.77 9.80 - - -

Table 2. Final classification error (and reconstruction error for CIFAR-2R) on the training set, obtained after 6 epochs
of training, and averaged over ten random initializations. Variants are marked in bold if they don't differ statistically
significantly from the best one (p = 0.01). Note that the tuning parameters of S3GD, ApaGrap, SMD, Amari and
Almeida are different for each benchmark (see Table 1). We observe the best results with the full element-wise learning
rate adaptation (*v8GD-1), almost always significantly better than the best-tuned SGD or best-tuned ApaGrap.

v8GD-l vSGD-b vSGD-g SGD ApaGrap SMD Amari Almeida
MO T.50% 780% 8.20% 7.607; T 520, T57% 7.69% 11.13%
M1 2.42% 2.44% 4.14% 2.34% 2.70% 2.37% 3.95% 8.30%
M2 2.16% 2.05% 3.65% 2.15% 2.34% 2.18% 297% 7.32%
o 66.05% 6lL.70% 61.10% | 61.06% 61.25% - P =
(o} | 57.72% 59.55% 60.62% | 58.85% 58.67T% - - -
CR 11.05 10.57 15.71 10.29 10.33 — = —
Fsettings | 1 1 1 () 17 476 119 110

Table 3. Final classification error (and reconstruction error for CIFAR-2R) on the test set, after 6 epochs of training,
averaged over ten random initializations. Variants are marked in bold if they don't differ statistically significantly from
the best one (p = 0.01). Note that the parameters of 3GD. ApaGrap, SMD, Amari and Almeida were finely tuned. on
this same test set. and were found to be different for each benchmark (see Table 1); the last line gives the total number
of parameter seltings over which the tuning was performed. Compared to training error, test set performance i& more
balanced, with v3GD-] being better or statistically equivalent to the best-tuned SGD in 4 out of 6 cases. The main
cutlier (0} is a case where the more aggressive element-wise learning rates led to overfitting (compare training error in
Table 2).

SGO =11
S5GD p=1
SGD pe=1t
aracle
wSGD
vSGD-fix
wsGD-lin

loss £

learning rate n

0 T 1000 1500
#samplas

Figure 4. Non-stationary loss. The loss is quadratic but now the target value () changes abruptly every 300 time-steps.
Above: loss as a function of time, below: corresponding learning rates. This illustrates the limitations of SGD with lxed or
decaying learning rates {full lines): any fixed learning rate limits the precision to which the optimum can be approximated
(progress stalls); any eooling schedule on the other hand cannot cope with the non-stationarity. In contrast, our adaptive
setting (vSGD’, red circles), as elosely resembles the optimal behavier {oracle, black dashes). The learning rate decays
like 1/t during the static part, but increases again after each abrupt change (with just a very small delay compared to
the oracle). The average loss across time is substantially better than for any SGD cooling schedule.

ADAM:

A Method For Stochastic Optimization
Kingma & Ba, arXiv14

http://arxiv.org/pdf/1412.6980v8.pdf
http://arxiv.org/pdf/1412.6980v8.pdf

The idea

Algorithm 1: Adam, our proposed algorithm for stochastic optimization. See section 2 for details,

Esta bl |S h a nd u pd a‘te tr‘u S‘t and for a slightly more efficient (but less clear) order of computation. g¢ indicates the elementwise

square gy) ;. Good defanlt settings for the tested machine learning problems are &« = 0.001,

M =09, 3; = 0.999 and ¢ = 1075 All operations on vectors are element-wise. With 3} and 3%

reglon Whel'e the grad |ent |S we denote 3y and 32 to the power £.
Require: n: Stepsize
assum ed to h o) | d . R.L-gu.in': 3. 82 € [0.1): Exponential decay rates for the moment estimates
. Requ.in': fia): Stochastic objective function with parameters §
- Attempts to combine the b T s
vy + 0 (Initialize 2™ moment vector)

robustness to sparse gradients F ¢ 0 (Rnitiakizn imesiep)

while &; not converged do

of AdaGrad and the robustness bt

gi +— Vafe(#—1) (Get gradients w.r.t. stochastic objective at timestep)

. my + By - mp—q + (1 — 51) - g; (Update biased first moment estimate)
Of RM S PI’Op tO non'Statlonary U E{— ﬁzl- u,_il -l|— £1 — ﬁz}] g7 :’Ll'pdam biased second raw moment estimate))
. . iy + m (1 — 51) (Compute bias-corrected first moment estimate)
ObJeCt|VeS . t — v /(1 — #%) (Compute bias-corrected second raw moment estimate)
fh + By_1 — a - iiig /(/T; + €) (Update parameters)
end while

return f, (Resulting parameters)

Alternative form: AdaMax

The second moment is
calculated as a sum of squares
and its square root is used in the
update in ADAM.

Changing that from power of two
to power of p as p goes to infinity
yields AdaMax.

Algorithm 2: AdaMax, a variant of Adam based on the infinity norm. See section 7.1 for details.
Good default settings for the tested machine learmning problems are o = 0.002, 3, = 0.9 and
Ha = 0.999. With 3] we denote 4, to the power t. Here, (a/(1 — 3%)) is the learning rate with the
bias-comrection term for the first moment. All operations on vectors are element-wise.

Require: o: Stepsize
Require: 3, 32 € [0. 1): Exponential decay rates
Require: f{#): Stochastic objective function with parameters &
Require: fy: Imtial parameter vector
g +— 0 (Initialize 1* moment vector)
iy +— () (Initialize the exponentially weighted infinity norm)
t + () (Initialize timestep)
while #; not converged do
te—141
gr +— Vafe(#—1) (Get gradients w.r.t. stochastic objective at timestep)
my + 3y - g + (1 — 81) - g¢ (Update biased first moment estimate)
g +— max(3 - wp_q, |g¢|) (Update the exponentially weighted infinity norm)
B +— By — (/{1 — 38)) - my fuy (Update parameters)
end while
return), (Resulting parameters)

Results

— AdaGrad
— RMSProp
— SGDNesterov
— AdaDelta
Adam

training cost

st e HMEST MU sl s

- e i
EQ) 150 00 w
iteratians aver entive dataset
"
ettt
(a) (b)

Figure 2: Training of multilayer neural networks on MNIST images. (a) Neural networks using
dropout stochastic regularization. (b) Neural networks with deterministic cost function. We compare
with the sum-of-functions (SFO) optimizer (Sohl-Dickstein et al., 2014)

Figure 3: Convolutional neural networks training cost. (left) Training cost for the first three epochs.

training cast

CIFARLO ConwMet First 3 Epoches

CIFARLO Convhet

— AdaGrad
AdaGrad+dropout
SGDONesteroy
SGOMNesterov+dropol
Adam
Adam+dropout

trairing cost

[— adaGrad

— AdaGrad+dropout

— SGDNesterov

| SGDNesterov+dropout
— Adam

Adam-+dropout

Rx

05

1.0 15 2.0 25 30
iteratians over entire dataset

5 10 15 20 25 30 35 40 45
iterations aver entire dataset

(right) Training cost over 45 epochs. CIFAR-10 with c64-c64-c¢128-1000 architecture.

AdaGrad:

Adaptive Subgradient Methods for Online Learning
and Stochastic Optimization
Duchi et al., COLT10

http://www.magicbroom.info/Papers/DuchiHaSi10.pdf
http://www.magicbroom.info/Papers/DuchiHaSi10.pdf
http://www.magicbroom.info/Papers/DuchiHaSi10.pdf
http://www.magicbroom.info/Papers/DuchiHaSi10.pdf

The idea

- Decrease the update over time by penalizing quickly moving values.

gy = = f gt

The problem

- The learning rate only ever decreases.
- Complex problems may need more freedom.

Precursor to

- AdaDelta (Zeiler, ArXiv12)

- Uses the square root of exponential moving average of squares instead of just accumulating.
- Approximate a Hessian correction using the same moving impulse over the weight updates.
- Removes need for learning rate

E[¢®l: = p E[¢%]s—1 + (1 — p) g2 RMS|g]; = VE[¢?]; + € Au, — — RMS[Az]i

RMS[g];

- AdaSecant (Gulcehre et al., ArXivi14)

- Uses expected values to reduce variance.

7= gi +7Elgi] Elg;| = E|g;| and Var(g;) = —1 Var(g;
g9i = W (9] [9i] (gi) 1+) (9:)

[i
Time elapsed for epochs in sees,

Comparisons

- https://cs.stanford.edu/people/karpathy/convnetjs/demo/trainers.html
- Doesn’'t have ADAM in the default run, but ADAM is implemented and can be
added.

- Doesn’t have Batch Normalization, vSGD, AdaMax, or AdaSecant.

https://cs.stanford.edu/people/karpathy/convnetjs/demo/trainers.html
https://cs.stanford.edu/people/karpathy/convnetjs/demo/trainers.html

Questions?

