Hyper-parameters/Tweaking

Yufeng Ma, Chris Dusold

Virginia Tech

November 17, 2015

Yufeng Ma, Chris Dusold (Virginia Tech)

Hyper-parameters/Tweaking

November 17, 2015 1 / 40

Batch Normalization

- Internal Covariate Shift
- Mini-Batch Normalization
- Key Points in Batch Normalization
- Experiments and Results

Importance of Initialization and Momentum

- Overview of first-order method
- Momentum & Nesterov's Accelerated Gradient(NAG)
- Deep Autoencoders & RNN Echo-State Networks

Yufeng Ma, Chris Dusold (Virginia Tech)

< 🗇 🕨

э

Reference paper: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift

Reference paper: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift

When we are faced with training a Deep Network with saturating nonlinearities:

- Lower/smaller learning rates
- Initialize the weights from Gaussian Distributions

Reference paper: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift

When we are faced with training a Deep Network with saturating nonlinearities:

- Lower/smaller learning rates
- Initialize the weights from Gaussian Distributions

figure credit: www.regentsprep.org

Yufeng Ma, Chris Dusold (Virginia Tech)

< 🗇 🕨

э

Reasons behind the problem:

- Parameters change during training
- Input distributions of each layer changes

Reasons behind the problem:

- Parameters change during training
- Input distributions of each layer changes

Sigmoid's output distribution before and after parameter updates

Yufeng Ma, Chris Dusold (Virginia Tech)

Hyper-parameters/Tweaking

November 17, 2015 4 / 40

Batch Normalization

• Internal Covariate Shift

- Mini-Batch Normalization
- Key Points in Batch Normalization
- Experiments and Results

Importance of Initialization and Momentum

- Overview of first-order method
- Momentum & Nesterov's Accelerated Gradient(NAG)
- Deep Autoencoders & RNN Echo-State Networks

Yufeng Ma, Chris Dusold (Virginia Tech)

3

Image: A matrix

Covariate Shift

Change of input distributions to a Learning System

Covariate Shift

Change of input distributions to a Learning System

Extension to part or sub-networks

$$\ell = F_2(F_1(u, \Theta_1), \Theta_2)$$

Covariate Shift

Change of input distributions to a Learning System

Extension to part or sub-networks

$$\ell = F_2(F_1(u, \Theta_1), \Theta_2)$$

$$\ell = F_2(x, \Theta_2), \text{ where } x = F_1(u, \Theta_1)$$

 $\Theta_2 \leftarrow \Theta_2 - \frac{\alpha}{m} \sum_{i=1}^m \frac{\partial F_2(x_i, \Theta_2)}{\partial \Theta_2}$

Covariate Shift

Change of input distributions to a Learning System

Extension to part or sub-networks

$$\ell = F_2(F_1(u, \Theta_1), \Theta_2)$$

$$\ell = F_2(x, \Theta_2), \text{ where } x = F_1(u, \Theta_1)$$
$$\Theta_2 \leftarrow \Theta_2 - \frac{\alpha}{m} \sum_{i=1}^m \frac{\partial F_2(x_i, \Theta_2)}{\partial \Theta_2}$$

In terms of change in the distribution of x, Θ_2 will not need to readjust much.

Internal Covariate Shift

Change in the distributions of internal nodes of a deep network

Yufeng Ma, Chris Dusold (Virginia Tech)

Hyper-parameters/Tweaking

Yufeng Ma, Chris Dusold (Virginia Tech)

Whitening-LeCun et al., 1998b; Wiesler&Ney, 2011

The network training converges faster if its inputs are whitened-i.e., linearly transformed to have zero means and unit variances, and decorrelated.

Whitening-LeCun et al., 1998b; Wiesler&Ney, 2011

The network training converges faster if its inputs are whitened-i.e., linearly transformed to have zero means and unit variances, and decorrelated.

Goal: Whitening the inputs of each layer to have fixed distributions in order to Reduce the ill effects of Internal Covariate Shift.

Yufeng Ma, Chris Dusold (Virginia Tech)

э

• Interspersal lead to reduced gradient descent

$$b \leftarrow b + \Delta b, \text{ where } \Delta b \propto -\frac{\partial \ell}{\partial \hat{x}} \frac{\partial \hat{x}}{\partial b}$$
$$\hat{x} = x - E[x] = u + (b + \Delta b) - E[u + (b + \Delta b)] = u + b - E[u + b]$$

• Interspersal lead to reduced gradient descent

Ignored

$$b \leftarrow b + \Delta b$$
, where $\Delta b \propto -\frac{\partial \ell}{\partial \hat{x}} \frac{\partial \hat{x}}{\partial b}$
 $\hat{x} = x - E[x] = u + (b + \Delta b) - E[u + (b + \Delta b)] = u + b - E[u + b]$

 Normalizations are NOT taken into account in Gradient Descent Optimization.

Yufeng Ma, Chris Dusold (Virginia Tech)

3

Introducing Normalization

 $\hat{x} = Norm(x, \mathcal{X})$

and Jacobians in backpropagation

$$rac{\partial Norm(x,\mathcal{X})}{\partial x}$$
 and $rac{\partial Norm(x,\mathcal{X})}{\partial \mathcal{X}}$

Introducing Normalization

 $\hat{x} = Norm(x, \mathcal{X})$

and Jacobians in backpropagation

$$rac{\partial Norm(x,\mathcal{X})}{\partial x}$$
 and $rac{\partial Norm(x,\mathcal{X})}{\partial \mathcal{X}}$

New challenges: expensive to compute covariance matrix and its inverse square root.

Covariance matrix

$$Cov[x] = E_{x \in \mathcal{X}}[xx^T] - E[x]E[x]^T$$

Whitening

$$Cov[x]^{-1/2}(x - E[x])$$

Batch Normalization

- Internal Covariate Shift
- Mini-Batch Normalization
- Key Points in Batch Normalization
- Experiments and Results

Importance of Initialization and Momentum

- Overview of first-order method
- Momentum & Nesterov's Accelerated Gradient(NAG)
- Deep Autoencoders & RNN Echo-State Networks

Mini-Batch Normalization

Yufeng Ma, Chris Dusold (Virginia Tech)

3

Two simplifications and Identity Transform

- Normalize each scalar feature independently
- Use mini-batch to estimate the mean and variance instead of whole population
- Ensure Identity Transform can be represented

Two simplifications and Identity Transform

- Normalize each scalar feature independently
- Use mini-batch to estimate the mean and variance instead of whole population
- Ensure Identity Transform can be represented

$$y^{(k)} = \gamma^{(k)} \hat{x}^{(k)} + \beta^{(k)}$$

Two new parameters for each activation are introduced for learning.

Two simplifications and Identity Transform

- Normalize each scalar feature independently
- Use mini-batch to estimate the mean and variance instead of whole population
- Ensure Identity Transform can be represented

$$y^{(k)} = \gamma^{(k)} \hat{x}^{(k)} + \beta^{(k)}$$

Two new parameters for each activation are introduced for learning.

Batch Normalization Transform, see reference paper for details

Batch Normalization

- Internal Covariate Shift
- Mini-Batch Normalization
- Key Points in Batch Normalization
- Experiments and Results

Importance of Initialization and Momentum

- Overview of first-order method
- Momentum & Nesterov's Accelerated Gradient(NAG)
- Deep Autoencoders & RNN Echo-State Networks

Yufeng Ma, Chris Dusold (Virginia Tech)

 \bullet Original parameters and newly introduced γ and β will be trained.

- $\bullet\,$ Original parameters and newly introduced γ and β will be trained.
- When in inference, the whole population of training data is used for mean and variance statistics instead of the estimate.

$$E(x) \leftarrow E_{\mathcal{B}}[\mu_{\mathcal{B}}]$$

$$Var[x] \leftarrow rac{m}{m-1} E_{\mathcal{B}}[\sigma_{\mathcal{B}}^2]$$

- $\bullet\,$ Original parameters and newly introduced γ and β will be trained.
- When in inference, the whole population of training data is used for mean and variance statistics instead of the estimate.

$$E(x) \leftarrow E_{\mathcal{B}}[\mu_{\mathcal{B}}]$$

$$Var[x] \leftarrow rac{m}{m-1} E_{\mathcal{B}}[\sigma_{\mathcal{B}}^2]$$

• In Convolutional layers, different locations of a feature map should be normalized in the same way.

$$m' = |\mathcal{B}| = m \cdot pq$$
, and $\gamma^{(k)}, \ \beta^{(k)}$ per feature map

Yufeng Ma, Chris Dusold (Virginia Tech)

э

• Higher learning rates are allowed
• Higher learning rates are allowed

BN(Wu) = BN((aW)u)

• Higher learning rates are allowed

$$BN(Wu) = BN((aW)u)$$

$$\frac{\partial BN(Wu)}{\partial u} = \frac{\partial BN((aW)u)}{\partial u}, \frac{\partial BN(Wu)}{\partial aW} = \frac{1}{a} \cdot \frac{\partial BN((aW)u)}{\partial W}$$

• Higher learning rates are allowed

$$BN(Wu) = BN((aW)u)$$

$$\frac{\partial BN(Wu)}{\partial u} = \frac{\partial BN((aW)u)}{\partial u}, \frac{\partial BN(Wu)}{\partial aW} = \frac{1}{a} \cdot \frac{\partial BN((aW)u)}{\partial W}$$

Batch Normalization will regularize the model with less overfitting.

Batch Normalization

- Internal Covariate Shift
- Mini-Batch Normalization
- Key Points in Batch Normalization
- Experiments and Results

Importance of Initialization and Momentum

- Overview of first-order method
- Momentum & Nesterov's Accelerated Gradient(NAG)
- Deep Autoencoders & RNN Echo-State Networks

Yufeng Ma, Chris Dusold (Virginia Tech)

- ∢ ศ⊒ ▶

Batch Normalization helps train faster and achieve higher accuracy.

Batch Normalization helps train faster and achieve higher accuracy.

figure credit: reference paper

Yufeng Ma, Chris Dusold (Virginia Tech)

Hyper-parameters/Tweaking

Yufeng Ma, Chris Dusold (Virginia Tech)

- ∢ ศ⊒ ▶

Batch Normalization makes input distribution more stable.

Batch Normalization makes input distribution more stable.

figure credit: reference paper

Accelerating Batch Normalization Networks

Accelerating Batch Normalization Networks

Tricks to follow

Yufeng Ma, Chris Dusold (Virginia Tech)

Tricks to follow

- Increasing learning rate
- Remove or Reduce Dropout
- Reduce ℓ_2 weight regularization
- Accelerate the learning rate decay
- Remove Local Response Normalization
- Shuffle training examples more thoroughly
- Reduce the photometric distortions

Network Comparisons

Yufeng Ma, Chris Dusold (Virginia Tech)

- 一司

Inception, BN-Baseline, BN-x5, BN-x30, BN-x5-Sigmoid

э

Network Comparisons

Inception, BN-Baseline, BN-x5, BN-x30, BN-x5-Sigmoid

Inception, BN-Baseline, BN-x5, BN-x30, BN-x5-Sigmoid

figure credit: reference paper

Ensemble Classification

Yufeng Ma, Chris Dusold (Virginia Tech)

- 一司

Top-5 validation error of 4.9% and test error of 4.82%, exceeds the estimated accuracy of human raters.

Top-5 validation error of 4.9% and test error of 4.82%, exceeds the estimated accuracy of human raters.

Model	Resolution	Crops	Models	Top-1 error	Top-5 error
GoogLeNet ensemble	224	144	7	-	6.67%
Deep Image low-res	256	-	1	-	7.96%
Deep Image high-res	512	-	1	24.88	7.42%
Deep Image ensemble	variable	-	-	-	5.98%
BN-Inception single crop	224	1	1	25.2%	7.82%
BN-Inception multicrop	224	144	1	21.99%	5.82%
BN-Inception ensemble	224	144	6	20.1%	4.9 %*

figure credit: reference paper

Batch Normalization

- Internal Covariate Shift
- Mini-Batch Normalization
- Key Points in Batch Normalization
- Experiments and Results

Importance of Initialization and Momentum

- Overview of first-order method
- Momentum & Nesterov's Accelerated Gradient(NAG)
- Deep Autoencoders & RNN Echo-State Networks

Yufeng Ma, Chris Dusold (Virginia Tech)

< 一型

• Difficult to use first-order method to reach performance previously only achievable by second-order method like Hessian-Free.

- Difficult to use first-order method to reach performance previously only achievable by second-order method like Hessian-Free.
- Well-designed random initialization
- Slowly increasing schedule for momentum parameter

- Difficult to use first-order method to reach performance previously only achievable by second-order method like Hessian-Free.
- Well-designed random initialization
- Slowly increasing schedule for momentum parameter
- No need for sophisticated second-order methods.

First-order Methods

- Vanilla Stochastic Gradient Descent
- SGD + Momentum
- Nesterov's Accelerated Gradient(NAG)
- AdaGrad
- Adam
- Rprop
- RMSProp
- AdaDelta

slide credit: Ishan Misra

э

Batch Normalization

- Internal Covariate Shift
- Mini-Batch Normalization
- Key Points in Batch Normalization
- Experiments and Results

Importance of Initialization and Momentum

- Overview of first-order method
- Momentum & Nesterov's Accelerated Gradient(NAG)
- Deep Autoencoders & RNN Echo-State Networks

Yufeng Ma, Chris Dusold (Virginia Tech)

- 一司

Notation:

- θ Parameters of network, f Objective function, ϵ Learning rate
- ∇f Gradient of f, v Velocity vector, μ Momentum coefficient

Notation:

- θ Parameters of network, f Objective function, ϵ Learning rate
- ∇f Gradient of f, v Velocity vector, μ Momentum coefficient

Vanilla SGD

$$v_{t+1} = \epsilon \nabla f(\theta_t)$$

$$\theta_{t+1} = \theta_t - \mathsf{v}_{t+1}$$

slide credit: Ishan Misra

Yufeng Ma, Chris Dusold (Virginia Tech)

- 一司

Rprop Update

$$\begin{split} & \text{if } \nabla f_t \nabla f_{t-1} > 0 \\ & v_t = \eta^+ v_{t-1} \\ & \text{else if } \nabla f_t \nabla f_{t-1} < 0 \\ & v_t = \eta^- v_{t-1} \\ & \text{else} \\ & v_t = v_{t-1} \\ & \theta_{t+1} = \theta_t - v_t \\ & \text{where } 0 < \eta^- < 1 < \eta^+ \end{split}$$

slide credit: Ishan Misra

Yufeng Ma, Chris Dusold (Virginia Tech)

3

- 4 ⊒ →

< 67 ▶

Yufeng Ma, Chris Dusold (Virginia Tech)

- 一司

AdaGrad

$$r_{t} = \theta_{t}^{2} + r_{t-1}$$
$$v_{t+1} = \frac{\alpha}{\sqrt{r_{t}}} \nabla f(\theta_{t})$$
$$\theta_{t+1} = \theta_{t} - v_{t+1}$$

э

$\mathsf{AdaGrad}$

$$r_{t} = \theta_{t}^{2} + r_{t-1}$$
$$v_{t+1} = \frac{\alpha}{\sqrt{r_{t}}} \nabla f(\theta_{t})$$
$$\theta_{t+1} = \theta_{t} - v_{t+1}$$

$\mathsf{RMSProp}=\mathsf{Rprop}+\mathsf{SGD}$

$$r_t = (1 - \gamma)\theta_t^2 + \gamma r_{t-1}$$
$$v_{t+1} = \frac{\alpha}{\sqrt{r_t}} \nabla f(\theta_t)$$
$$\theta_{t+1} = \theta_t - v_{t+1}$$

slide credit: Ishan Misra

Yufeng Ma, Chris Dusold (Virginia Tech)

3
Yufeng Ma, Chris Dusold (Virginia Tech)

- 一司

æ

Several First-order Methods

AdaDelta

$$\begin{array}{l} \mathsf{v}_{t+1} = H^{-1} \nabla f, \\ \propto \frac{f'}{f''} \\ \propto \frac{1/\textit{units of } \theta}{(1/\textit{units of } \theta)^2} \\ \propto \textit{units of } \theta \end{array}$$

- 一司

Several First-order Methods

AdaDelta

$$\begin{array}{l} \mathsf{v}_{t+1} = H^{-1} \nabla f, \\ \propto \frac{f'}{f''} \\ \propto \frac{1/\textit{units of } \theta}{(1/\textit{units of } \theta)^2} \\ \propto \textit{units of } \theta \end{array}$$

Adam

$$\begin{aligned} r_t &= (1 - \gamma_1) \nabla f(\theta_t) + \gamma_1 r_{t-1} \\ p_t &= (1 - \gamma_2) \nabla f(\theta_t)^2 + \gamma_2 p_{t-1} \\ \hat{r}_t &= \frac{r_t}{(1 - (1 - \gamma_1)^t)} \\ \hat{p}_t &= \frac{p_t}{(1 - (1 - r_2)^t)} \\ v_t &= \alpha \frac{\hat{r}_t}{\sqrt{\hat{\rho}_t}} \\ \theta_{t+1} &= \theta_t - v_t \end{aligned}$$

slide credit: Ishan Misra

Yufeng Ma, Chris Dusold (Virginia Tech)

< 67 ▶

э

Batch Normalization

- Internal Covariate Shift
- Mini-Batch Normalization
- Key Points in Batch Normalization
- Experiments and Results

Importance of Initialization and Momentum

- Overview of first-order method
- Momentum & Nesterov's Accelerated Gradient(NAG)
- Deep Autoencoders & RNN Echo-State Networks

Momentum and NAG

Yufeng Ma, Chris Dusold (Virginia Tech)

Image: A matrix

Notation:

- θ Parameters of network, f Objective function, ϵ Learning rate
- ∇f Gradient of f, v Velocity vector, μ Momentum coefficient

Notation:

- θ Parameters of network, f Objective function, ϵ Learning rate
- ∇f Gradient of f, v Velocity vector, μ Momentum coefficient

Classical Momentum

$$\mathbf{v}_{t+1} = \mu \mathbf{v}_t - \epsilon \nabla f(\theta_t)$$

 $heta_{t+1} = \theta_t + \mathbf{v}_{t+1}$

Notation:

- θ Parameters of network, f Objective function, ϵ Learning rate
- ∇f Gradient of f, v Velocity vector, μ Momentum coefficient

Classical Momentum

$$v_{t+1} = \mu v_t - \epsilon \nabla f(\theta_t)$$
$$\theta_{t+1} = \theta_t + v_{t+1}$$

Nesterov's Accelerated Gradient

$$\mathbf{v}_{t+1} = \mu \mathbf{v}_t - \epsilon \nabla f(\theta_t + \mu \mathbf{v}_t)$$

$$\theta_{t+1} = \theta_t + v_{t+1}$$

Yufeng Ma, Chris Dusold (Virginia Tech)

NAG uses $\theta_t + \mu v_t$ but MISSING the yet unknown correction. Thus when the addition of μv_t results in an immediate undesirable increase in the objective f,

NAG uses $\theta_t + \mu v_t$ but MISSING the yet unknown correction. Thus when the addition of μv_t results in an immediate undesirable increase in the objective f,

Figure 1. (Top) Classical Momentum (Bottom) Nesterov Accelerated Gradient

NAG uses $\theta_t + \mu v_t$ but MISSING the yet unknown correction. Thus when the addition of μv_t results in an immediate undesirable increase in the objective f,

Figure 1. (Top) Classical Momentum (Bottom) Nesterov Accelerated Gradient

Apply CM and NAG to a positive definite quadratic objective $q(x) = x^T A x / 2 + b^T x$.

Difference in effective momentum coefficient

- Classical Momentum: μ
- NAG: $\mu(1 \lambda \epsilon)$, where λ is the eigenvalue of A.

Apply CM and NAG to a positive definite quadratic objective $q(x) = x^T A x / 2 + b^T x$.

Difference in effective momentum coefficient

- Classical Momentum: μ
- NAG: $\mu(1 \lambda \epsilon)$, where λ is the eigenvalue of A.

- ϵ small, CM and NAG are equivalent
- ϵ large, NAG gives smaller $\mu(1 \lambda_i \epsilon)$ to stop oscillations.

Batch Normalization

- Internal Covariate Shift
- Mini-Batch Normalization
- Key Points in Batch Normalization
- Experiments and Results

Importance of Initialization and Momentum

- Overview of first-order method
- Momentum & Nesterov's Accelerated Gradient(NAG)
- Deep Autoencoders & RNN Echo-State Networks

Yufeng Ma, Chris Dusold (Virginia Tech)

< 🗗 🕨

Structure of Deep Autoencoder

- 一司

Structure of Deep Autoencoder

figure credit: http://deeplearning4j.org/deepautoencoder.html

э

< 🗇 🕨

Yufeng Ma, Chris Dusold (Virginia Tech)

< 🗗 🕨

- **Sparse Initialization**-each random unit connected to 15 randomly chosen units in the previous layer, drawn from a unit Gaussian
- Schedule for Momentum Coefficient

$$\mu_t = \min(1 - 2^{-1 - \log_2(\lfloor t/250 \rfloor + 1)}, \mu_{max})$$

- **Sparse Initialization**-each random unit connected to 15 randomly chosen units in the previous layer, drawn from a unit Gaussian
- Schedule for Momentum Coefficient

$$\mu_t = \min(1 - 2^{-1 - \log_2(\lfloor t/250 \rfloor + 1)}, \mu_{max})$$

- $\mu_t = 1 3/(t+5)$, not strongly convex Nesterov(1983)
- constant μ_t , strongly convex Nesterov(2003)

- **Sparse Initialization**-each random unit connected to 15 randomly chosen units in the previous layer, drawn from a unit Gaussian
- Schedule for Momentum Coefficient

$$\mu_t = \min(1 - 2^{-1 - \log_2(\lfloor t/250 \rfloor + 1)}, \mu_{max})$$

- $\mu_t = 1 3/(t+5)$, not strongly convex Nesterov(1983)
- constant μ_t , strongly convex Nesterov(2003)

task	$0_{(SGD)}$	0.9N	0.99N	0.995N	0.999N	0.9M	0.99M	0.995M	0.999M	SGD_C	HF^{\dagger}	HF*
Curves	0.48	0.16	0.096	0.091	0.074	0.15	0.10	0.10	0.10	0.16	0.058	0.11
Mnist	2.1	1.0	0.73	0.75	0.80	1.0	0.77	0.84	0.90	0.9	0.69	1.40
Faces	36.4	14.2	8.5	7.8	7.7	15.3	8.7	8.3	9.3	NA	7.5	12.0

table credit: reference paper

Yufeng Ma, Chris Dusold (Virginia Tech)

Hyper-parameters/Tweaking

November 17, 2015 35 / 40

Yufeng Ma, Chris Dusold (Virginia Tech)

- 一司

æ

RNN - Echo-State Networks

Echo-State Networks(a family RNNs)

э

RNN - Echo-State Networks

Echo-State Networks(a family RNNs)

figure credit: Mantas Lukoevicius

- Hidden-to-output connections learned from data
- Recurrent connections fixed to a random draw from a specific distribution

Yufeng Ma, Chris Dusold (Virginia Tech)

Yufeng Ma, Chris Dusold (Virginia Tech)

- 一司

æ

ESN-based Initialization

- Spectral Radius of Hidden-to-hidden matrix around 1.1
- Initial scale of Input-to-hidden connections plays an important role (Gaussian draw with a standard deviation of 0.001 achieves good balance, but is Task Dependent)

ESN-based Initialization

- Spectral Radius of Hidden-to-hidden matrix around 1.1
- Initial scale of Input-to-hidden connections plays an important role (Gaussian draw with a standard deviation of 0.001 achieves good balance, but is Task Dependent)

Schedule of Momentum coefficient $\boldsymbol{\mu}$

- $\mu = 0.9$ for the first 1000 parameters;
- $\mu = \mu_0 \in \{0, 0.9, 0.98, 0.995\}$ afterwards;

ESN-based Initialization

- Spectral Radius of Hidden-to-hidden matrix around 1.1
- Initial scale of Input-to-hidden connections plays an important role (Gaussian draw with a standard deviation of 0.001 achieves good balance, but is Task Dependent)

Schedule of Momentum coefficient $\boldsymbol{\mu}$

• $\mu = 0.9$ for the first 1000 parameters;

•
$$\mu = \mu_0 \in \{0, 0.9, 0.98, 0.995\}$$
 afterwards;

problem	biases	0	0.9N	0.98N	0.995N	0.9M	0.98M	0.995M
add $T = 80$	0.82	0.39	0.02	0.21	0.00025	0.43	0.62	0.036
mul $T = 80$	0.84	0.48	0.36	0.22	0.0013	0.029	0.025	0.37
mem-5 $T = 200$	2.5	1.27	1.02	0.96	0.63	1.12	1.09	0.92
mem-20 $T = 80$	8.0	5.37	2.77	0.0144	0.00005	1.75	0.0017	0.053

Table credit: reference paper

Batch Normalization

- Internal Covariate Shift
- Mini-Batch Normalization
- Key Points in Batch Normalization
- Experiments and Results

Importance of Initialization and Momentum

- Overview of first-order method
- Momentum & Nesterov's Accelerated Gradient(NAG)
- Deep Autoencoders & RNN Echo-State Networks

Questions?

< 67 ▶

- Variance-SGD(No More Pesky Learning Rates)
- Adam(Adam: A Method for Stochastic Optimization)
- AdaGrad(Adaptive Subgradient Methods for Online Learning and Stochastic Optimization)