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Challenges to be solved

Reference paper: Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift

When we are faced with training a Deep Network with saturating
nonlinearities:

Lower/smaller learning rates

Initialize the weights from Gaussian Distributions

figure credit: www.regentsprep.org
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Challenges to be solved

Reasons behind the problem:

Parameters change during training

Input distributions of each layer changes
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Internal Covariate Shift

Covariate Shift

Change of input distributions to a Learning System

Extension to part or sub-networks

` = F2(F1(u,Θ1),Θ2)

` = F2(x ,Θ2), where x = F1(u,Θ1)

Θ2 ← Θ2 −
α

m

m∑
i=1

∂F2(xi ,Θ2)

∂Θ2

In terms of change in the distribution of x, Θ2 will not need to readjust
much.

Internal Covariate Shift

Change in the distributions of internal nodes of a deep network
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Reducing Internal Covariate Shift

Whitening-LeCun et al., 1998b; Wiesler&Ney, 2011

The network training converges faster if its inputs are whitened-i.e., linearly
transformed to have zero means and unit variances, and decorrelated.

Goal: Whitening the inputs of each layer to have fixed distributions in
order to Reduce the ill effects of Internal Covariate Shift.
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Reducing Internal Covariate Shift

Interspersal lead to reduced gradient descent

b ← b + ∆b, where ∆b ∝ − ∂`
∂x̂ �

�
��
Ignored

∂x̂

∂b

x̂ = x − E [x ] = u + (b + ∆b)− E [u + (b + ∆b)] = u + b − E [u + b]

Normalizations are NOT taken into account in Gradient Descent
Optimization.
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Reducing Internal Covariate Shift

Introducing Normalization

x̂ = Norm(x ,X )

and Jacobians in backpropagation

∂Norm(x ,X )

∂x
and

∂Norm(x ,X )

∂X

New challenges: expensive to compute covariance matrix and its inverse
square root.
Covariance matrix

Cov [x ] = Ex∈X [xxT ]− E [x ]E [x ]T

Whitening
Cov [x ]−1/2(x − E [x ])
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Mini-Batch Normalization

Two simplifications and Identity Transform

Normalize each scalar feature independently

Use mini-batch to estimate the mean and variance instead of whole
population

Ensure Identity Transform can be represented

y (k) = γ(k)x̂ (k) + β(k)

Two new parameters for each activation are introduced for learning.

Batch Normalization Transform, see reference paper for details
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Key Points in Batch Normalization

Original parameters and newly introduced γ and β will be trained.

When in inference, the whole population of training data is used for
mean and variance statistics instead of the estimate.

E (x)← EB[µB]

Var [x ]← m

m − 1
EB[σ2

B]

In Convolutional layers, different locations of a feature map should be
normalized in the same way.

m′ = |B| = m · pq, and γ(k), β(k) per feature map
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Key Points in Batch Normalization

Higher learning rates are allowed

BN(Wu) = BN((aW )u)

∂BN(Wu)

∂u
=
∂BN((aW )u)

∂u
,
∂BN(Wu)

∂aW
=

1

a
· ∂BN((aW )u)

∂W

Batch Normalization will regularize the model with less overfitting.
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Activations over time

Batch Normalization helps train faster and achieve higher accuracy.

figure credit: reference paper
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Activations over time

Batch Normalization makes input distribution more stable.

figure credit: reference paper
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Accelerating Batch Normalization Networks

Tricks to follow

Increasing learning rate

Remove or Reduce Dropout

Reduce `2 weight regularization

Accelerate the learning rate decay

Remove Local Response Normalization

Shuffle training examples more thoroughly

Reduce the photometric distortions
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Network Comparisons

Inception, BN-Baseline, BN-x5, BN-x30, BN-x5-Sigmoid

figure credit: reference paper
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Ensemble Classification

Top-5 validation error of 4.9% and test error of 4.82%, exceeds the
estimated accuracy of human raters.

figure credit: reference paper
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Challenges to be solved

Reference paper: On the importance of initialization and momentum in
deep learning

Difficult to use first-order method to reach performance previously
only achievable by second-order method like Hessian-Free.

Well-designed random initialization

Slowly increasing schedule for momentum parameter

No need for sophisticated second-order methods.
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Overview of first-order method

First-order Methods

Vanilla Stochastic Gradient Descent

SGD + Momentum

Nesterov’s Accelerated Gradient(NAG)

AdaGrad

Adam

Rprop

RMSProp

AdaDelta

slide credit: Ishan Misra
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Several First-order Methods

Notation:

θ - Parameters of network, f - Objective function, ε - Learning rate

Of - Gradient of f , v - Velocity vector, µ - Momentum coefficient

Vanilla SGD

vt+1 = εOf (θt)

θt+1 = θt − vt+1

slide credit: Ishan Misra
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Several First-order Methods

Rprop Update

if OftOft−1 > 0
vt = η+vt−1

else if OftOft−1 < 0
vt = η−vt−1

else
vt = vt−1

θt+1 = θt − vt
where 0 < η− < 1 < η+
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Several First-order Methods

AdaGrad

rt = θ2
t + rt−1

vt+1 = α√
r t
Of (θt)

θt+1 = θt − vt+1

RMSProp = Rprop + SGD

rt = (1− γ)θ2
t + γrt−1

vt+1 = α√
r t
Of (θt)

θt+1 = θt − vt+1
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Several First-order Methods

AdaDelta

vt+1 = H−1Of ,
∝ f ′

f ′′

∝ 1/units of θ
(1/units of θ)2

∝ units of θ

Adam

rt = (1− γ1)Of (θt) + γ1rt−1

pt = (1− γ2)Of (θt)
2 + γ2pt−1

r̂t = rt
(1−(1−γ1)t)

p̂t = pt
(1−(1−r2)t)

vt = α r̂t√
p̂t

θt+1 = θt − vt
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Momentum and NAG

Notation:

θ - Parameters of network, f - Objective function, ε - Learning rate

Of - Gradient of f , v - Velocity vector, µ - Momentum coefficient

Classical Momentum

vt+1 = µvt − εOf (θt)

θt+1 = θt + vt+1

Nesterov’s Accelerated Gradient

vt+1 = µvt − εOf (θt + µvt)

θt+1 = θt + vt+1
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Relationship between CM and NAG

NAG uses θt + µvt but MISSING the yet unknown correction. Thus when
the addition of µvt results in an immediate undesirable increase in the
objective f ,

figure credit: reference paper
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Relationship between CM and NAG

Apply CM and NAG to a positive definite quadratic objective
q(x) = xTAx/2 + bT x .

Difference in effective momentum coefficient

Classical Momentum: µ

NAG: µ(1− λε), where λ is the eigenvalue of A.

ε small, CM and NAG are equivalent

ε large, NAG gives smaller µ(1− λiε) to stop oscillations.

Yufeng Ma, Chris Dusold (Virginia Tech) Hyper-parameters/Tweaking November 17, 2015 32 / 40



Relationship between CM and NAG

Apply CM and NAG to a positive definite quadratic objective
q(x) = xTAx/2 + bT x .

Difference in effective momentum coefficient

Classical Momentum: µ

NAG: µ(1− λε), where λ is the eigenvalue of A.

ε small, CM and NAG are equivalent

ε large, NAG gives smaller µ(1− λiε) to stop oscillations.

Yufeng Ma, Chris Dusold (Virginia Tech) Hyper-parameters/Tweaking November 17, 2015 32 / 40



Relationship between CM and NAG

Apply CM and NAG to a positive definite quadratic objective
q(x) = xTAx/2 + bT x .

Difference in effective momentum coefficient

Classical Momentum: µ

NAG: µ(1− λε), where λ is the eigenvalue of A.

ε small, CM and NAG are equivalent

ε large, NAG gives smaller µ(1− λiε) to stop oscillations.

Yufeng Ma, Chris Dusold (Virginia Tech) Hyper-parameters/Tweaking November 17, 2015 32 / 40



Overview

1 Batch Normalization
Internal Covariate Shift
Mini-Batch Normalization
Key Points in Batch Normalization
Experiments and Results

2 Importance of Initialization and Momentum
Overview of first-order method
Momentum & Nesterov’s Accelerated Gradient(NAG)
Deep Autoencoders & RNN - Echo-State Networks

Yufeng Ma, Chris Dusold (Virginia Tech) Hyper-parameters/Tweaking November 17, 2015 33 / 40



Deep Autoencoders

Structure of Deep Autoencoder

figure credit: http://deeplearning4j.org/deepautoencoder.html
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Deep Autoencoders

Sparse Initialization-each random unit connected to 15 randomly
chosen units in the previous layer, drawn from a unit Gaussian

Schedule for Momentum Coefficient

µt = min(1− 2−1−log2(bt/250c+1), µmax)

µt = 1− 3/(t + 5), not strongly convex - Nesterov(1983)
constant µt , strongly convex - Nesterov(2003)

table credit: reference paper
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RNN - Echo-State Networks

Echo-State Networks(a family RNNs)

figure credit: Mantas Lukoevicius

Hidden-to-output connections learned from data

Recurrent connections fixed to a random draw from a specific
distribution
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RNN - Echo-State Networks

ESN-based Initialization

Spectral Radius of Hidden-to-hidden matrix around 1.1

Initial scale of Input-to-hidden connections plays an important role
(Gaussian draw with a standard deviation of 0.001 achieves good
balance, but is Task Dependent)

Schedule of Momentum coefficient µ

µ = 0.9 for the first 1000 parameters;

µ = µ0 ∈ {0, 0.9, 0.98, 0.995} afterwards;

Table credit: reference paper
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Questions?
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Chris Dusold’s Part

Variance-SGD(No More Pesky Learning Rates)

Adam(Adam: A Method for Stochastic Optimization)

AdaGrad(Adaptive Subgradient Methods for Online Learning and
Stochastic Optimization)
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