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Overview

@ Batch Normalization

Internal Covariate Shift

@ Mini-Batch Normalization

o Key Points in Batch Normalization
@ Experiments and Results

© Importance of Initialization and Momentum
@ Overview of first-order method
@ Momentum & Nesterov's Accelerated Gradient(NAG)
@ Deep Autoencoders & RNN - Echo-State Networks
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Challenges to be solved

Reference paper: Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift
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Challenges to be solved

Reference paper: Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift

When we are faced with training a Deep Network with saturating
nonlinearities:

o Lower/smaller learning rates

@ Initialize the weights from Gaussian Distributions
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Challenges to be solved

Reference paper: Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift

When we are faced with training a Deep Network with saturating
nonlinearities:

o Lower/smaller learning rates

@ Initialize the weights from Gaussian Distributions

Normal Curve

Standard Deviation

figure credit: www.regentsprep.org
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Challenges to be solved

Reasons behind the problem:
@ Parameters change during training

@ Input distributions of each layer changes
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Challenges to be solved

Reasons behind the problem:
@ Parameters change during training

@ Input distributions of each layer changes

Sigmoid’s output distribution before and after parameter updates
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Overview

@ Batch Normalization
@ Internal Covariate Shift

© Importance of Initialization and Momentum
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Internal Covariate Shift
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Internal Covariate Shift

Covariate Shift
Change of input distributions to a Learning System
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Internal Covariate Shift

Covariate Shift
Change of input distributions to a Learning System

Extension to part or sub-networks

f = F2(F1(u, @1), @2)
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Internal Covariate Shift

Covariate Shift
Change of input distributions to a Learning System

—

Extension to part or sub-networks

f = F2(F1(u, @1), @2)

= F2(X,@2), where x = Fl(u, @1)

« m 8F2(x,-,@2)
@2 — @2 m ; 8@2
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Internal Covariate Shift
Covariate Shift
Change of input distributions to a Learning System

Extension to part or sub-networks

f = F2(F1(u, @1), @2)

= Fz(X,@z), where x = Fl(u, @1)

« m 8F2(x,-,@2)
@2 — @2 m ; 8@2

In terms of change in the distribution of x, ©2 will not need to readjust
much.

Internal Covariate Shift
Change in the distributions of internal nodes of a deep network
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Reducing Internal Covariate Shift
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Reducing Internal Covariate Shift

Whitening-LeCun et al., 1998b; Wiesler&Ney, 2011

The network training converges faster if its inputs are whitened-i.e., linearly
transformed to have zero means and unit variances, and decorrelated.
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Reducing Internal Covariate Shift

Whitening-LeCun et al., 1998b; Wiesler&Ney, 2011

The network training converges faster if its inputs are whitened-i.e., linearly
transformed to have zero means and unit variances, and decorrelated.

Goal: Whitening the inputs of each layer to have fixed distributions in
order to Reduce the ill effects of Internal Covariate Shift.
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Reducing Internal Covariate Shift
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Reducing Internal Covariate Shift

@ Interspersal lead to reduced gradient descent

Ignored

b+ b+ Ab, where Ab x —%8
oxX 0Ob

R=x—E[x]=u+ (b+Ab)— E[u+ (b+ Ab)] = u+b— E[u+ b]
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Reducing Internal Covariate Shift

@ Interspersal lead to reduced gradient descent

Ignored
b+ b+ Ab, where Ab x —%8
ox Pb

R=x—E[x]=u+ (b+Ab)— E[u+ (b+ Ab)] = u+b— E[u+ b]

@ Normalizations are NOT taken into account in Gradient Descent
Optimization.
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Reducing Internal Covariate Shift
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Reducing Internal Covariate Shift

Introducing Normalization
% = Norm(x, X)
and Jacobians in backpropagation

ONorm(x, X) ONorm(x, X)
Ox and oX
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Reducing Internal Covariate Shift

Introducing Normalization
% = Norm(x, X)
and Jacobians in backpropagation

ONorm(x, X) ONorm(x, X)
Ox and oX

New challenges: expensive to compute covariance matrix and its inverse
square root.
Covariance matrix

Cov[x] = Exex[xx] — E[X]E[x]"

Whitening
Cov[x]V%(x — E[x])
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Overview

@ Batch Normalization

@ Mini-Batch Normalization

© Importance of Initialization and Momentum
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Mini-Batch Normalization
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Mini-Batch Normalization

Two simplifications and Identity Transform

@ Normalize each scalar feature independently

@ Use mini-batch to estimate the mean and variance instead of whole
population

@ Ensure ldentity Transform can be represented
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Mini-Batch Normalization

Two simplifications and Identity Transform

@ Normalize each scalar feature independently

@ Use mini-batch to estimate the mean and variance instead of whole
population

@ Ensure ldentity Transform can be represented

y(k) = 4 (K g(k) 4 g(k)

Two new parameters for each activation are introduced for learning.
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Mini-Batch Normalization

Two simplifications and Identity Transform

@ Normalize each scalar feature independently

@ Use mini-batch to estimate the mean and variance instead of whole
population

@ Ensure Identity Transform can be represented

y(k) = 4 (K g(k) 4 g(k)

Two new parameters for each activation are introduced for learning.

Batch Normalization Transform, see reference paper for details
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Overview

@ Batch Normalization

o Key Points in Batch Normalization

© Importance of Initialization and Momentum
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Key Points in Batch Normalization

@ Original parameters and newly introduced « and /3 will be trained.
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Key Points in Batch Normalization

@ Original parameters and newly introduced « and /3 will be trained.

@ When in inference, the whole population of training data is used for
mean and variance statistics instead of the estimate.

E(x) < Eplus]

m
m-—1

Var([x] + Eslo3]
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Key Points in Batch Normalization

@ Original parameters and newly introduced « and /3 will be trained.

@ When in inference, the whole population of training data is used for
mean and variance statistics instead of the estimate.

E(x)  Ep[us]
m
m—1
@ In Convolutional layers, different locations of a feature map should be

normalized in the same way.

Var([x] +

Eslo3]

m' = |B| = m- pq, and k) B per feature map
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Key Points in Batch Normalization
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Key Points in Batch Normalization

@ Higher learning rates are allowed
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Key Points in Batch Normalization

@ Higher learning rates are allowed

BN(Wu) = BN((aW)u)
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Key Points in Batch Normalization

@ Higher learning rates are allowed

BN(Wu) = BN((aW)u)

OBN(Wu) _ 9BN((aW)u) 9BN(Wu) 1 OBN((aW)u)
ou ou T oaW a oW
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Key Points in Batch Normalization

@ Higher learning rates are allowed

BN(Wu) = BN((aW)u)

OBN(Wu) _ 9BN((aW)u) 9BN(Wu) 1 OBN((aW)u)
ou ou T oaW a oW

@ Batch Normalization will regularize the model with less overfitting.
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Overview

@ Batch Normalization

@ Experiments and Results

© Importance of Initialization and Momentum
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Activations over time
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Activations over time

Batch Normalization helps train faster and achieve higher accuracy.
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Activations over time

Batch Normalization helps train faster and achieve higher accuracy.

1.
/—,’ — T m -
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09t ¢
I
I
0.8 "' — = = Without BN
| With BN

10K 20K 30K 40K 50K

figure credit: reference paper
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Activations over time
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Activations over time

Batch Normalization makes input distribution more stable.
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Activations over time

Batch Normalization makes input distribution more stable.

2 2f e

M
2 2
(b) Without BN (c) With BN

figure credit: reference paper
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Accelerating Batch Normalization Networks
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Accelerating Batch Normalization Networks

Tricks to follow
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Accelerating Batch Normalization Networks

Tricks to follow

@ Increasing learning rate

Remove or Reduce Dropout

Reduce ¢, weight regularization
Accelerate the learning rate decay
Remove Local Response Normalization

Shuffle training examples more thoroughly

Reduce the photometric distortions
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Network Comparisons
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Network Comparisons

Inception, BN-Baseline, BN-x5, BN-x30, BN-x5-Sigmoid
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Network Comparisons

Inception, BN-Baseline, BN-x5, BN-x30, BN-x5-Sigmoid

0.8

Inception
BN-Baseline
BN-x5

—— BN-x30

++ 4+ BN-x5-Sigmoid
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Network Comparisons

Inception, BN-Baseline, BN-x5, BN-x30, BN-x5-Sigmoid

08
- ,‘;—-_— =TTt TTTTET I Model Steps to 72.2%  Max accuracy
o & -7 Inception 31.0-10° 722%
: BN-Baseline 13.3-106 727%
BN-x5 2.1-10° 73.0%
nception BN-x30 2.7-10° 74.8%
BN-Baseline BN-x5-Sigmoid 69.8%
BN-x5
—— BN-x30
++ 4+ BN-x5-Sigmoid
4 Steps to match Inception
10M 15M 20M 25M 30M

figure credit: reference paper
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Ensemble Classification
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Ensemble Classification

Top-5 validation error of 4.9% and test error of 4.82%, exceeds the
estimated accuracy of human raters.
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Ensemble Classification

Top-5 validation error of 4.9% and test error of 4.82%, exceeds the
estimated accuracy of human raters.

Model Resolution Crops Models Top-1error Top-5 error
GoogLeNet ensemble 224 144 7 - 6.67%
Deep Image low-res 256 - 1 - 7.96%
Deep Image high-res 512 - 1 24 88 7.42%
Deep Image ensemble variable - - - 5.98%
BN-Inception single crop 224 1 1 252% 7.82%
BN-Inception multicrop 224 144 1 21.99% 5.82%
BN-Inception ensemble 224 144 6 20.1% 4.9%*

figure credit: reference paper
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Overview

© Importance of Initialization and Momentum
@ Overview of first-order method
@ Momentum & Nesterov's Accelerated Gradient(NAG)
@ Deep Autoencoders & RNN - Echo-State Networks
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Challenges to be solved

Yufeng Ma, Chris Dusold (Virginia Tech) Hyper-parameters/ Tweaking November 17, 2015 22 / 40



Challenges to be solved

Reference paper: On the importance of initialization and momentum in
deep learning
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Challenges to be solved

Reference paper: On the importance of initialization and momentum in
deep learning

o Difficult to use first-order method to reach performance previously
only achievable by second-order method like Hessian-Free.
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Challenges to be solved

Reference paper: On the importance of initialization and momentum in
deep learning

o Difficult to use first-order method to reach performance previously
only achievable by second-order method like Hessian-Free.

@ Well-designed random initialization

@ Slowly increasing schedule for momentum parameter
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Challenges to be solved

Reference paper: On the importance of initialization and momentum in
deep learning

o Difficult to use first-order method to reach performance previously
only achievable by second-order method like Hessian-Free.

@ Well-designed random initialization

@ Slowly increasing schedule for momentum parameter

@ No need for sophisticated second-order methods.
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Overview of first-order method

First-order Methods

@ Vanilla Stochastic Gradient Descent

e SGD + Momentum

@ Nesterov's Accelerated Gradient(NAG)
AdaGrad

°
o Adam
@ Rprop
e RMSProp
o AdaDelta

slide credit: Ishan Misra
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Overview

@ Batch Normalization

© Importance of Initialization and Momentum
@ Overview of first-order method
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Several First-order Methods
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Several First-order Methods

Notation:
@ O - Parameters of network, f - Objective function, € - Learning rate

e Vf - Gradient of f, v - Velocity vector, i1 - Momentum coefficient
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Several First-order Methods

Notation:
@ O - Parameters of network, f - Objective function, € - Learning rate

e Vf - Gradient of f, v - Velocity vector, i1 - Momentum coefficient

Vi4l = €Vf(0t)

Ory1 =0t — vep1

slide credit: Ishan Misra
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Several First-order Methods
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Several First-order Methods

Rprop Update

if V;Vfi_1 >0
Vi = 77+Vt—1

else if VfVfi_1 <0
Ve =1 Vi-1

else

Vi = V-1

Ory1 =0t — vz
where 0 <~ <1<n*

slide credit: Ishan Misra

November 17, 2015

26 / 40
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Several First-order Methods
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Several First-order Methods

AdaGrad

re=02+r_1
Vipl = ﬁvf(@t)
Or11 =0t — vey1
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Several First-order Methods

AdaGrad

re = 9? + i1
Vipl = ﬁvf(@t)
Orr1 =0 — Veq1

| A\

RMSProp = Rprop + SGD
re=(1—7)07 +vre-1

Vipl = %tVf(et)

Orr1 = 0: — Veq1

A\

slide credit: Ishan Misra
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Several First-order Methods
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Several First-order Methods

AdaDelta
Ver1 = HTLVF,
o fi

1/units of 6
(1/units of 0)2
o< units of 0

X
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Several First-order Methods

AdaDelta
Vi+l = H_IVfa
o fi

1/units of 6
X (1/units of 0)2
o< units of 0

Adam

= (1 =m)Vf(0:) + nre—1
Pt =(1- ’72)Vf( £)% + 2pe-1
fr = m
pr = (1i(1—_’2))

9t+1 =0;— v

slide credit: Ishan Misra

Yufeng Ma, Chris Dusold (Virginia Tech) Hyper-parameters/ Tweaking November 17, 2015 28 / 40



Overview

@ Batch Normalization

© Importance of Initialization and Momentum

@ Momentum & Nesterov's Accelerated Gradient(NAG)
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Momentum and NAG
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Momentum and NAG

Notation:
@ 6 - Parameters of network, f - Objective function, € - Learning rate

e Vf - Gradient of f, v - Velocity vector, i1 - Momentum coefficient
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Momentum and NAG

Notation:
@ 6 - Parameters of network, f - Objective function, € - Learning rate

e Vf - Gradient of f, v - Velocity vector, i1 - Momentum coefficient

Classical Momentum

Vi+l = UV — EVf(Ht)

Ort1 =0t + ve1
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Momentum and NAG

Notation:
@ 6 - Parameters of network, f - Objective function, € - Learning rate

e Vf - Gradient of f, v - Velocity vector, i1 - Momentum coefficient

Classical Momentum

Vi+l = UV — EVf(gt)

Ort1 =0t + ve1

Nesterov's Accelerated Gradient

Vig1 = pve — V(0 + pve)

Orr1 =0t + vipa
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Relationship between CM and NAG
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Relationship between CM and NAG

NAG uses 0; + vy but MISSING the yet unknown correction. Thus when

the addition of pv; results in an immediate undesirable increase in the
objective f,
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Relationship between CM and NAG

NAG uses 0; + vy but MISSING the yet unknown correction. Thus when

the addition of pv; results in an immediate undesirable increase in the
objective f,

Figure 1. (Top) Classical Momentum (Bottom) Nes-
terov Accelerated Gradient
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Yufeng Ma, Chris Dusold (Virginia Tech)

Relationship between CM and NAG

NAG uses 0; + vy but MISSING the yet unknown correction. Thus when

the addition of pv; results in an immediate undesirable increase in the
objective f,

Figure 1. (Top) Classical Momentum (Bottom) Nes- —
terov Accelerated Gradient == =

figure credit: reference paper
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Relationship between CM and NAG
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Relationship between CM and NAG

Apply CM and NAG to a positive definite quadratic objective
q(x) = xTAx/2 + b x.

Difference in effective momentum coefficient

o Classical Momentum: p
o NAG: u(1 — Xe), where X is the eigenvalue of A.
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Relationship between CM and NAG

Apply CM and NAG to a positive definite quadratic objective
q(x) = xTAx/2 + b x.

Difference in effective momentum coefficient

o Classical Momentum: p
o NAG: u(1 — Xe), where X is the eigenvalue of A.

@ e small, CM and NAG are equivalent

o ¢ large, NAG gives smaller (1 — \je) to stop oscillations.
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@ Batch Normalization

© Importance of Initialization and Momentum

@ Deep Autoencoders & RNN - Echo-State Networks
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Deep Autoencoders
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Deep Autoencoders

Structure of Deep Autoencoder
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Deep Autoencoders

Structure of Deep Autoencoder

Encoding DBN Decoding DBN

Input Output

O0000
O00O0
o000
©00O
CO00O0
Q0000

O
I

Compressed
Feature Vector

figure credit: http://deeplearning4j.org/deepautoencoder.html
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Deep Autoencoders
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Deep Autoencoders

@ Sparse Initialization-each random unit connected to 15 randomly
chosen units in the previous layer, drawn from a unit Gaussian

@ Schedule for Momentum Coefficient

[y = mln(l . 2_1_Iog2(tt/250J+1)7Hmax)
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Deep Autoencoders

@ Sparse Initialization-each random unit connected to 15 randomly
chosen units in the previous layer, drawn from a unit Gaussian

@ Schedule for Momentum Coefficient

[y = mln(l . 2—1—log2(Lt/25OJ+1)7umax)

o pr =1—3/(t+5), not strongly convex - Nesterov(1983)
e constant ., strongly convex - Nesterov(2003)
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Deep Autoencoders

@ Sparse Initialization-each random unit connected to 15 randomly
chosen units in the previous layer, drawn from a unit Gaussian
@ Schedule for Momentum Coefficient

task

pe = mln(]. o 2—1—/Og2(tt/250J+1)’HmaX

o pr =1—3/(t+5), not strongly convex - Nesterov(1983)
e constant ., strongly convex - Nesterov(2003)

Ogsgp) || 0.9N | 0.99N | 0.995N | 0.999N || 0.9M | 0.99M | 0.995M | 0.999M || SGD¢ HET HF”
Curves 0.48 0.16 | 0.096 0.091 0.074 0.15 0.10 0.10 0.10 0.16 0.058 || 0.I1
Mnist 2.1 1.0 0.73 0.75 0.80 1.0 0.77 0.84 0.90 0.9 0.69 1.40
Faces 36.4 14.2 8.5 7.8 7.7 15.3 8.7 83 9.3 NA 7.5 12.0

Yufeng Ma, Chris Dusold (Virginia Tech)

table credit: reference paper
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RNN - Echo-State Networks
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RNN - Echo-State Networks

Echo-State Networks(a family RNNs)
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RNN - Echo-State Networks

Echo-State Networks(a family RNNs)

figure credit: Mantas Lukoevicius

@ Hidden-to-output connections learned from data

@ Recurrent connections fixed to a random draw from a specific
distribution
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RNN - Echo-State Networks

ESN-based Initialization
@ Spectral Radius of Hidden-to-hidden matrix around 1.1

@ Initial scale of Input-to-hidden connections plays an important role
(Gaussian draw with a standard deviation of 0.001 achieves good
balance, but is Task Dependent)
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ESN-based Initialization
@ Spectral Radius of Hidden-to-hidden matrix around 1.1

@ Initial scale of Input-to-hidden connections plays an important role
(Gaussian draw with a standard deviation of 0.001 achieves good
balance, but is Task Dependent)

Schedule of Momentum coefficient 1
@ 1 = 0.9 for the first 1000 parameters;
@ i = pp € {0,0.9,0.98,0.995} afterwards;
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RNN - Echo-State Networks

ESN-based Initialization
@ Spectral Radius of Hidden-to-hidden matrix around 1.1

@ Initial scale of Input-to-hidden connections plays an important role
(Gaussian draw with a standard deviation of 0.001 achieves good
balance, but is Task Dependent)

Schedule of Momentum coefficient 1
@ 1 = 0.9 for the first 1000 parameters;
@ i = pp € {0,0.9,0.98,0.995} afterwards;

problem biases 0 0.9N | 0.98N 0.995N 0.9M | 0.98M | 0.995M
add T'=180 0.82 0.39 || 0.02 0.21 0.00025 || 0.43 0.62 0.036
mul T = 80 0.84 0.48 0.36 0.22 0.0013 0.029 | 0.025 0.37
mem-5 T = 200 2.5 1.27 1.02 0.96 0.63 112 1.09 0.92
mem-20 T' = 80 8.0 5.37 || 2.77 | 0.0144 | 0.00005 || 1.75 | 0.0017 | 0.053

Table credit: reference paper
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Overview

@ Batch Normalization

Internal Covariate Shift

@ Mini-Batch Normalization

o Key Points in Batch Normalization
@ Experiments and Results

© Importance of Initialization and Momentum
@ Overview of first-order method
@ Momentum & Nesterov's Accelerated Gradient(NAG)
@ Deep Autoencoders & RNN - Echo-State Networks
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Questions?
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Chris Dusold’s Part

o Variance-SGD(No More Pesky Learning Rates)
e Adam(Adam: A Method for Stochastic Optimization)

o AdaGrad(Adaptive Subgradient Methods for Online Learning and
Stochastic Optimization)
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