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Machine Learning

      Supervised       ⇐⇒       Semi-Supervised       ⇐⇒       Unsupervised        
        (Weakly Supervised)

Image source: Prof. Kai Arras 
(Social Robotics Lab)



  

Why is unsupervised learning important?

Answer: For learning general representations



  
Image source: internet-map.net

1. Most data is unlabeled or weakly labeled



  

Image source: internet-map.net



  

2. The amount of supervision in a learning task depends on both 
the information content and noise level in the labels



  

3. Unsupervised learning is used by the brain
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The Problem

● Investigation of webly-supervised learning of CNNs

● Can CNNs be trained for easy categories using images retrieved by 
search engines and from the web at large?

● How well do webly-supervised CNNs generalize to vision tasks?

● Main contributions:

➢ Trained a webly-supervised CNN on PASCAL VOC 2012 which 
outperforms ImageNet

➢ Webly-supervised learning works for object localization and for 
training R-CNN style detectors

➢ State-of-the-art performance on Pascal VOC data without training on 
VOC dataset

➢ Competitive performance on scene classification



  

Motivation

● Supervised learning using CNNs has achieved state-of-the-art 
success in a variety of vision tasks

● How to improve performance?

➢ Deeper networks are better, especially with more data

➢ But human labled data is expensive and innefficient

➢ Web data is biased and noisy but is nearly infinite in scale 
(and continuously growing)

➢ Exploit web data to train CNNs

➢ Okay, but how?



  

Google vs Flickr

Image source: google.com Image source: flickr.com
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Image source: google.com Image source: flickr.com



  

Image source: reference paper



  

Bootstrapping

● The goal is to learn a model on Flickr-like images, but these 
images often have very noisy tags

● Bootstrap CNN training with easy, noise-free examples first 
and then follow with a more comprehsensive learning 
proceedure

Image source: Sinno Jialin Pan, Qiang Yang, "A Survey on Transfer Learning”



  

Approach

● Could naively train a CNN on random image/tag pairs from 
the web

● Instead, first train the CNN model from scratch using easy 
images downloaded from Google search queries

● Then finetune this representation using harder Flickr images 
under specific constraints determined by a relationship graph

● Use the confusion matrix from the initial training done on 
easy images as the relationships between labels



  

Image source: reference paper



  

Confusion Matrix

● Suppose a classifier was trained to distinguish between cats, 
dogs, and rabbits

● Dataset contains 27 images of 8 cats, 6 dogs, and 13 rabbits

● Diagonals of confusion matrix are all of the correct guesses

Example source: wikipedia

Example source: Andrea Vedaldi



  

Approach

● Three lists of categories are constructed from the ImageNet 
Challenge, SUN database, and NEIL knowledge base

● These category names are used as Google search queries to 
construct a dataset of ~600 images/query

● BVLC reference network is trained on this dataset in a 
supervised manner using Caffe

● After convergence, the network has learned good low-level 
filters but is biased towards simple images

● Now construct a dataset of more realistic Flickr images found 
using the same search queries



  

Relationship Graph

● Object categories have various complex relationships such as 
hierarchies, dependencies, similarities, restrictions, etc., all of which 
together form an ontology representable as a graph

● Approach taken in the paper is to simply use the confusion matrix as 
the relationships

● For any pair of concepts i and j, the relationship Rij is defined as

where Ci is the index set for images that belong to concept i, and given 
pixel values Ik, CNN(j | Ik) is the network's belief on how likely image k 
belongs to concept j

● Choose only the top K = 5 



  

Relationship Graph

● Relationship graph is a way to characterize the label-flip 
noise

● For a class label lk, softmax loss is

● Relationship matrix R is kept fixed after being learned using 
the initial network



  

Object Localization

● Need to clean web data and localize objects to train a R-CNN detector

● But CNN only distinguishes small set of classes and is spatially invariant

● Google images have centered-biased images so they are used as bounding 
box seeds

● Nearest Neighbor propogation to find neighbors and EdgeBox to find 
candidate windows

● Agglomerative clustering merges NN sets bottom up to form subcategories 
and R-CNN detector is trained on each category using all clustered bounding 
boxes

● Random patches from YFCC are used as negatives

● Positive bounding boxes are increased using EdgeBox and by using the 
relationship graph to expand the category

● Final SVM is trained



  Image source: reference paper



  

Image source: reference paper



  

Implementation Details

● Networks are trained in Caffe
➢ Batch size is 256
➢ Learning rate starts at 0.01 and reduced by a factor of 10 every 150k iterations

➢ Training stops after 450k iterations

● 2,240 objects, 89 attributes, 874 scenes
● GoogleO (object-attribute network):

➢ ~1.5 million images from Google image search

➢ Later fine-tuned with ~1.2 million Flickr images with relationship graph regularization 
(FlickrG) and without (FlickrF) for 100k iterations and step size of 30k

➢ Baselines: CNN learned using Flickr images alone (FlickrS) and combined Google and 
Flickr images (GFAll)

● GoogleA (all-included network):
➢ ~2.1 million images from Google image search (add scene images)



  

Visualizing Confusion Matrix

● Diagonal of confusion matrix is ranked in descending order 
and 3 random categories are sampled from top, bottom, and 
middle of list

Image source: reference paper



  

Object Detection (PASCAL VOC 2007)



  

Object Detection (PASCAL VOC 2012)



  

Object Localization (PASCAL VOC 2007)



  

Failure Modes

Image source: reference paper



  

Failure Modes

Image source: reference paper



  

Scene Classification (MIT-67)



  

Conclusion

● Two-stage bootstrapping approach to training CNNs using 
web data

● First train on easy images downloaded from Google which is 
used to initialize the network and the relationship graph

● Then finetune the network on Flickr images and use the 
relationship graph for regularization

● Network has similar results to ImageNet pre-trained CNN on 
VOC 2007 and outperforms on VOC 2012 for object detection

● Object localization and scene classification can be done 
webly-supervised
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Models Data



  

Motivation

● Data hungry algorithms everywhere

● ImageNet is out-of-date

● 59 papers with “Deep” in the title in CVPR 2015

Slide credit: Fisher Yu



  

Problem Statement

● Goal is to build a dataset containing hundreds of millions of 
images

● Why?

– Deep learning models usually have millions of parameters

– Searching for the optimal settings requires a massive 
amount of training data with accurate labels

– Human labeled data is expensive, inneficient, and 
contains mistakes

– Partially automate data collection using deep learning 
methods and statistical guarantees to catch up with the 
progress of algorithms and computers

Image credit: Andrej Karpathy

x 100



  

Gathering Images

● LSUN dataset has the same scene categories as SUN

● Images are acquired using Google search queries 
combined with 696 manually chosen common 
adjectives

● Around 600 million images downloaded

● Duplicate images are ignored (not removed)



  

Approach

Image source: reference paper



  

Precision and Recall

Image source: Wikipedia

Example: Train an object 
detector to detect cats in a 
scene containing 9 dogs and 
some cats. 4 dogs are correctly 
detected while 3 of the 
detected dogs are actually 
cats. P = 4/7 while R = 4/9.



  

AMT Labeling Interface

Image source: reference paper



  

Lifetime of AMT Hit

Image source: reference paper



  



  



  

Experiments



  

Conclusion

● Datasets are a major roadblock to advancing progress 
visual recognition

● A large dataset called LSUN was created with millions of 
accurately labled images

● Simple experiments were demonstrated to show the 
datasets potential

● Construction of the dataset is still underway
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