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What is this class about? 
 

Some of the most exciting 
developments in  

 
Machine Learning,  

Vision, NLP, Speech, Robotics  
& AI in general 

 
in the last decade! 
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Acquisitions 
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First Caveat 
•  This is an ADVANCED Machine Learning class 

–  This should NOT be your first introduction to ML 
–  You will need a formal class; not just self-reading/coursera 

–  If you took ECE 4984/5984 @VT, you’re in the right place 
–  If you took an equivalent class elsewhere, see list of topics 

taught in ECE 4984/5984 to be sure. 
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Topics Covered in Intro to ML 
•  Basics of Statistical Learning 

•  Loss function, MLE, MAP, Bayesian estimation, bias-variance tradeoff, 
overfitting, regularization, cross-validation 

•  Supervised Learning 
•  Nearest Neighbour, Naïve Bayes, Logistic Regression, Support Vector 

Machines, Kernels, Neural Networks, Decision Trees 
•  Ensemble Methods: Bagging, Boosting  

•  Unsupervised Learning 
•  Clustering: k-means, Gaussian mixture models, EM 
•  Dimensionality reduction: PCA, SVD, LDA 

•  Perception 
•  Applications to Vision, Natural Language Processing 
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What is Machine Learning? 
•  “the acquisition of knowledge or skills through 

experience, study, or by being taught.” 
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What is Machine Learning? 
•  [Arthur Samuel, 1959]  

–  Field of study that gives computers  
–  the ability to learn without being explicitly programmed 

•  [Kevin Murphy] algorithms that 
–  automatically detect patterns in data 
–  use the uncovered patterns to predict future data or other 

outcomes of interest 

•  [Tom Mitchell] algorithms that 
–  improve their performance (P) 
–  at some task (T) 
–  with experience (E) 
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What is Machine Learning? 
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Data Understanding Machine  
Learning 



ML in a Nutshell 
•  Tens of thousands of machine learning algorithms 

–  Hundreds new every year 

•  Decades of ML research oversimplified: 
–  All of Machine Learning: 
–  Learn a mapping from input to output f: X à Y 

•  e.g. X: emails, Y: {spam, notspam} 
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Types of Learning 
•  Supervised learning 

–  Training data includes desired outputs 

•  Unsupervised learning 
–  Training data does not include desired outputs 

•  Weakly or Semi-supervised learning 
–  Training data includes a few desired outputs 

•  Reinforcement learning 
–  Rewards from sequence of actions 
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Tasks 
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Classification x y 

Regression x y 

Discrete 

Continuous 

Clustering x y Discrete ID 

Dimensionality 
Reduction 

x y Continuous 

Supervised Learning 

Unsupervised Learning 



Supervised Learning 

 
 

Classification 
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Classification x y Discrete 



Vision: Image Classification 
•  http://cloudcv.org/classify/ 
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NLP: Machine Translation 
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Speech: Speech2Text 

(C) Dhruv Batra  15 Slide Credit: Carlos Guestrin 



AI: Turing Test 
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“Can machines think” 

Q: Please write me a sonnet on the subject of the Forth Bridge.  
A: Count me out on this one. I never could write poetry. 

Q: Add 34957 to 70764. 
A: (Pause about 30 seconds and then give as answer) 105621.  



AI: Visual Turing Test 
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Q: How many slices  
of pizza are there? 

 

 

A: 6 

http://cloudcv.org/vqa/ 

x 

y 



Supervised Learning 
•  Input: x      (images, text, emails…) 

•  Output: y    (spam or non-spam…) 

•  (Unknown) Target Function 
–  f: X à Y    (the “true” mapping / reality) 

•  Data   
–  (x1,y1), (x2,y2), …, (xN,yN) 

•  Model / Hypothesis Class 
–  g: X à Y 
–  y = g(x) = sign(wTx) 

•  Learning = Search in hypothesis space 
–  Find best g in model class.  
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Synonyms 
•  Representation Learning 

•  Deep (Machine) Learning 
•  Deep Neural Networks 

•  Deep Unsupervised Learning 

•  Simply: Deep Learning 
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So what is Deep (Machine) Learning? 
•  A few different ideas: 

•  (Hierarchical) Compositionality 
–  Cascade of non-linear transformations 
–  Multiple layers of representations 

•  End-to-End Learning 
–  Learning (goal-driven) representations 
–  Learning to feature extraction 

•  Distributed Representations 
–  No single neuron “encodes” everything 
–  Groups of neurons work together 
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"   The first learning machine:  
the Perceptron  
"   Built at Cornell in 1960 

"   The Perceptron was a linear classifier on 
top of a simple feature extractor 

"   The vast majority of practical applications 
of ML today use glorified linear classifiers 
or glorified template matching. 

"  Designing a feature extractor requires 
considerable efforts by experts. 

y=sign(∑i=1
N

W i F i (X )+b)

A 
Feature E

xtractor 

Wi 

It’s an old paradigm 

Slide Credit: Marc'Aurelio Ranzato, Yann LeCun 
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Building A Complicated Function 

Given a library of simple functions 

Compose into a 

 

complicate function 

Slide Credit: Marc'Aurelio Ranzato, Yann LeCun 
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Building A Complicated Function 

Given a library of simple functions 

Compose into a 

 

complicate function 

Idea 1: Linear Combinations 
•  Boosting 

•  Kernels 

•  … 

f(x) =
X

i

↵igi(x)

Slide Credit: Marc'Aurelio Ranzato, Yann LeCun 
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Building A Complicated Function 

Given a library of simple functions 

Compose into a 

 

complicate function 

Idea 2: Compositions 
•  Deep Learning 

•  Grammar models 

•  Scattering transforms… 

f(x) = g1(g2(. . . (gn(x) . . .))

Slide Credit: Marc'Aurelio Ranzato, Yann LeCun 



(C) Dhruv Batra  27 

Building A Complicated Function 

Given a library of simple functions 

Compose into a 

 

complicate function 

Idea 2: Compositions 
•  Deep Learning 

•  Grammar models 

•  Scattering transforms… 

f(x) = log(cos(exp(sin

3
(x))))

Slide Credit: Marc'Aurelio Ranzato, Yann LeCun 



Deep Learning = Hierarchical Compositionality 

“car” 
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Trainable  
Classifier 

Low-Level 
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Mid-Level 
Feature 

High-Level 
Feature 

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013] 

“car” 

Deep Learning = Hierarchical Compositionality 

Slide Credit: Marc'Aurelio Ranzato, Yann LeCun 
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Sparse DBNs 

[Lee et al. ICML ‘09] 

Figure courtesy: Quoc Le 



"   The ventral (recognition) pathway in the visual cortex 

[picture from Simon Thorpe] 

The Mammalian Visual Cortex is Hierarchical 

Slide Credit: Marc'Aurelio Ranzato, Yann LeCun 



So what is Deep (Machine) Learning? 
•  A few different ideas: 

•  (Hierarchical) Compositionality 
–  Cascade of non-linear transformations 
–  Multiple layers of representations 

•  End-to-End Learning 
–  Learning (goal-driven) representations 
–  Learning to feature extraction 

•  Distributed Representations 
–  No single neuron “encodes” everything 
–  Groups of neurons work together 
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Feature Engineering 
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SIFT Spin Images 

HoG Textons 

and many many more…. 



What are the current bottlenecks? 
•  Ablation studies on DPM [Parikh & Zitnick, CVPR10] 

–  Replace every “part” in the model with a human 

•  Key takeaway: “parts” or features are the most 
important! 
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Seeing is worse than believing 
•  [Barbu et al. ECCV14] 
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•  A hierarchy of trainable feature transforms 
–  Each module transforms its input representation into a 

higher-level one. 
–  High-level features are more global and more invariant 
–  Low-level features are shared among categories 

Trainable 
Feature-

Transform /  
Classifier 

Trainable 
Feature-

Transform /  
Classifier 

Trainable 
Feature-

Transform /  
Classifier 

Learned Internal Representations 

Deep Learning = End-to-End Learning 

Slide Credit: Marc'Aurelio Ranzato, Yann LeCun 



•  “Shallow” models 

•  Deep models 

Trainable 
Feature-

Transform /  
Classifier 

Trainable 
Feature-

Transform /  
Classifier 

Trainable 
Feature-

Transform /  
Classifier 

Learned Internal Representations 

“Shallow” vs Deep Learning 

“Simple” Trainable  

Classifier 

hand-crafted 

Feature Extractor 
fixed learned 

Slide Credit: Marc'Aurelio Ranzato, Yann LeCun 



Do we really need deep models? 
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So what is Deep (Machine) Learning? 
•  A few different ideas: 

•  (Hierarchical) Compositionality 
–  Cascade of non-linear transformations 
–  Multiple layers of representations 

•  End-to-End Learning 
–  Learning (goal-driven) representations 
–  Learning to feature extraction 

•  Distributed Representations 
–  No single neuron “encodes” everything 
–  Groups of neurons work together 

(C) Dhruv Batra  42 



Distributed Representations Toy Example 
•  Local vs Distributed 
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Distributed Representations Toy Example 
•  Can we interpret each dimension? 
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Power of distributed representations! 
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Local 

Distributed 

Slide Credit: Moontae Lee  



Power of distributed representations! 
•  United States:Dollar :: Mexico:? 
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Power of distributed representations! 
•  Example: all face images of a person 

–  1000x1000 pixels = 1,000,000 dimensions 
–  But the face has 3 cartesian coordinates and 3 Euler angles 
–  And humans have less than about 50 muscles in the face 
–  Hence the manifold of face images for a person has <56 

dimensions 

•  The perfect representations of a face image: 
–  Its coordinates on the face manifold 
–  Its coordinates away from the manifold 
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The Ideal Disentangling Feature Extractor 
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View 
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Power of distributed representations! 
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Distributed Representations 
•  Q: What objects are in the image? Where? 

49 Slide Credit: Marc'Aurelio Ranzato, Yann LeCun 



Power of distributed representations! 
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So what is Deep (Machine) Learning? 
•  A few different ideas: 

•  (Hierarchical) Compositionality 
–  Cascade of non-linear transformations 
–  Multiple layers of representations 

•  End-to-End Learning 
–  Learning (goal-driven) representations 
–  Learning to feature extraction 

•  Distributed Representations 
–  No single neuron “encodes” everything 
–  Groups of neurons work together 
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Benefits of Deep/Representation Learning 
•  (Usually) Better Performance 

–  “Because gradient descent is better than you” 
Yann LeCun 

•  New domains without “experts” 
–  RGBD 
–  Multi-spectral data 
–  Gene-expression data 
–  Unclear how to hand-engineer 
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“Expert” intuitions can be misleading 
•  “Every time I fire a linguist, the performance of our 

speech recognition system goes up” 
–  Fred Jelinik, IBM ’98 

•  “Maybe the molecule didn’t go to graduate school” 
–  Will Welch defending the success of his approximate 

molecular screening algorithm, given that he’s a computer 
scientist, not a chemist 
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Database Screening for HIV Protease Ligands: The Influence of Binding-Site 
Conformation and Representation on Ligand Selectivity", Volker Schnecke, 

Leslie A. Kuhn, Proceedings of the Seventh International Conference on 
Intelligent Systems for Molecular Biology, Pages 242-251, AAAI Press, 1999. 



Problems with Deep Learning 
•  Problem#1: Non-Convex! Non-Convex! Non-Convex! 

–  Depth>=3: most losses non-convex in parameters 
–  Theoretically, all bets are off 
–  Leads to stochasticity 

•  different initializations à different local minima  

•  Standard response #1 
–  “Yes, but all interesting learning problems are non-convex” 
–  For example, human learning 

•  Order matters à wave hands à  non-convexity 

•  Standard response #2 
–  “Yes, but it often works!” 
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Problems with Deep Learning 
•  Problem#2: Hard to track down what’s failing 

–  Pipeline systems have “oracle” performances at each step 
–  In end-to-end systems, it’s hard to know why things are not 

working  
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Problems with Deep Learning 
•  Problem#2: Hard to track down what’s failing 

(C) Dhruv Batra  56 End-to-End Pipeline 

[Fang et al. CVPR15] [Vinyals et al. CVPR15] 



Problems with Deep Learning 
•  Problem#2: Hard to track down what’s failing 

–  Pipeline systems have “oracle” performances at each step 
–  In end-to-end systems, it’s hard to know why things are not 

working  

•  Standard response #1 
–  Tricks of the trade: visualize features, add losses at different 

layers, pre-train to avoid degenerate initializations…  
–  “We’re working on it”  

•  Standard response #2 
–  “Yes, but it often works!” 
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Problems with Deep Learning 
•  Problem#3: Lack of easy reproducibility 

–  Direct consequence of stochasticity & non-convexity  

•  Standard response #1 
–  It’s getting much better 
–  Standard toolkits/libraries/frameworks now available 
–  Caffe, Theano, Torch 

•  Standard response #2 
–  “Yes, but it often works!” 

(C) Dhruv Batra  58 



Yes it works, but how? 
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1000 object classes         1.4M/50k/100k images 

Dalmatian 

http://image-net.org/challenges/LSVRC/{2010,…,2014} 
Slide Credit: Li Fei-Fei (C) Dhruv Batra  69 

ImageNet Large Scale Visual 
Recognition Challenge (ILSVRC) 

Classification: 

Detection: 
200 object classes       400k/20k/40k images 



Data Enabling Richer Models 
•  [Krizhevsky et al. NIPS12] 

–  54 million parameters; 8 layers (5 conv, 3 fully-connected) 
–  Trained on 1.4M images in ImageNet 
–  Better Regularization (Dropout) 
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ImageNet Classification 2012 
•  [Krizhevsky et al. NIPS12]:  16.4% error 
•  Next best team:    26.2% error 
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Other Domains & Applications 
•  Vision 
•  Natural Language Processing 
•  Speech 
•  Robotics 
•  Game playing 
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Why are things working today? 
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•  More compute power  
–  GPUs are ~50x faster 

•  More data 
–  108 samples (compared to 103 in 1990s) 

•  Better algorithms/models/regularizers 
–  Dropout 
–  ReLu 
–  Batch-Normalization 
–  … 
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Main types of learning protocols 
•  Purely supervised 

•  Backprop + SGD 

–  Good when there is lots of labeled data. 

•  Layer-wise unsupervised + superv. linear classifier 
•  Train each layer in sequence using regularized auto-encoders or RBMs 
•  Hold fix the feature extractor, train linear classifier on features 

–  Good when labeled data is scarce but there is lots of 
unlabeled data. 

•  Layer-wise unsupervised + supervised backprop 
•  Train each layer in sequence 
•  Backprop through the whole system 

–  Good when learning problem is very difficult. 
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Focus of this class 
•  Purely supervised 

•  Backprop + SGD 

–  Good when there is lots of labeled data. 

•  Layer-wise unsupervised + superv. linear classifier 
•  Train each layer in sequence using regularized auto-encoders or RBMs 
•  Hold fix the feature extractor, train linear classifier on features 

–  Good when labeled data is scarce but there is lots of 
unlabeled data. 

•  Layer-wise unsupervised + supervised backprop 
•  Train each layer in sequence 
•  Backprop through the whole system 

–  Good when learning problem is very difficult. 
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Logistic Regression as a Cascade 
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Slide Credit: Marc'Aurelio Ranzato, Yann LeCun 



Logistic Regression as a Cascade 
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Chain Rule 
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Chain Rule 
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Chain Rule: All local 
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Logistic Regression as a Cascade 
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Logistic Regression as a Cascade 
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Logistic Regression as a Cascade 
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Key Computation: Forward-Prop 
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Key Computation: Back-Prop 
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Neural Network Training 
•  Step 1: Compute Loss on mini-batch   [F-Pass] 
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Neural Network Training 
•  Step 1: Compute Loss on mini-batch   [F-Pass] 
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Neural Network Training 
•  Step 1: Compute Loss on mini-batch   [F-Pass] 
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Neural Network Training 
•  Step 1: Compute Loss on mini-batch   [F-Pass] 
•  Step 2: Compute gradients wrt parameters  [B-Pass] 
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Neural Network Training 
•  Step 1: Compute Loss on mini-batch   [F-Pass] 
•  Step 2: Compute gradients wrt parameters  [B-Pass] 
•  Step 3: Use gradient to update parameters 
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Neural Network Training 
•  Step 1: Compute Loss on mini-batch   [F-Pass] 
•  Step 2: Compute gradients wrt parameters  [B-Pass] 
•  Step 3: Use gradient to update parameters 

–  With momemtum 
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Course Information 
•  Instructor: Dhruv Batra  

–  dbatra@vt 
–  Office Hours: Fri 3-4pm  
–  Location: 468 Whittemore 
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TAs 
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Ashwin Kalyan 

B. Tech., NIT Surathkal 
https://sites.google.com/site/ashwinkalyanv/ 

 

Abhishek Das 

B. Tech., IIT Roorkee 
http://abhishekdas.com/ 

 



Syllabus 
•  Background & Basics 

•  Neural Networks, Backprop, Optimization (SGD) 

•  Module 1: Convolutional Neural Networks (CNNs) 
•  Architectures, Pre-training, Fine-tuning 
•  Visualizations, Fooling ConvNets, Adversarial examples, Inverting 

Representations 
•  Different tasks: segmentation ConvNets  

•  Module 2: Recurrent Neural Networks (RNNs) 
•  Difficulty of learning; “Vanilla” RNNs, LSTMs, GRU 
•  RNNs for Sequence-to-Sequence (machine translation & image captioning) 

•  Module 3: Beyond RNNs 
•  CNNs + RNNs for Visual Question Answering (VQA) 
•  Learning to execute, Memory Networks 

•  Module 4: Advanced Topics 
•  Bayesian Neural Networks, Hyper-parameter optimization 
•  Different regularizers 
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Syllabus 
•  You will learn about the methods you heard about 

•  But we are not teaching “how to use a toolbox” 

•  You will understand algorithms, theory, applications, 
and implementations 

•  It’s going to be FUN and HARD WORK J 
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Prerequisites 
•  Intro Machine Learning 

–  Classifiers, regressors, loss functions, MLE, MAP 

•  Linear Algebra 
–  Matrix multiplication, eigenvalues, positive semi-definiteness… 

•  Calculus 
–  Multi-variate gradients, hessians, jacobians…  
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Prerequisites 
•  Intro Machine Learning 

–  Classifiers, regressors, loss functions, MLE, MAP 

•  Linear Algebra 
–  Matrix multiplication, eigenvalues, positive semi-definiteness… 

•  Calculus 
–  Multi-variate gradients, hessians, jacobians…  

•  Programming! 
–  Homeworks will require Python, C++, and Lua! 
–  Libraries/Frameworks: Caffe and Torch 
–  HW0 (pure python), HW1 (python + Caffe),  

HW2 (Caffe), HW3+4 (Torch) 
–  Your language of choice for project 
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Organization & Deliverables 
•  4 homeworks (40%) 

–  First one goes out next week 
•  Start early, Start early, Start early, Start early, Start early, Start early, Start 

early, Start early, Start early, Start early 

•  Paper Reviews (15%) 
–  Read 1 paper per class 
–  Submit reviews before class 

•  Paper Presentations (15%) 
–  [Tentative] 1 presentation in the semester 
–  Practice run with a TA 3-4 days before scheduled date 

•  Final project (25%) 
–  Projects done individually, or groups of two students   

•  Class Participation (5%) 
–  Contribute to class discussions on Scholar 
–  Ask questions, answer questions 
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Homeworks 
•  Homeworks are hard, start early! 

–  Due in 2 weeks via Scholar (Assignments tool) 
–  Pure Implementation  
–  Kaggle Competitions: 

•  https://inclass.kaggle.com/c/VT-ECE-Machine-Learning-HW1 

•  “Free” Late Days 
–  5 late days for the semester  

•  Use for HW, project proposal/report 
•  Cannot use for HW0, reviews, or presentations 

–  After free late days are used up: 
•  25% penalty for each late day 
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HW0 
•  Out today; due Monday (08/31) 

–  Available on class webpage + Scholar 

•  Grading 
–  Does not count towards grade. 
–  BUT Pass/Fail.  
–  <=75% means that you might not be prepared for the class 

•  Topics 
–  Implement a multi-class SVM and soft-max classifier 
–  SGD on two different losses 
–  Hyperparameter optimization with a standard package 
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Paper Reviews 
•  Length 

–  <=1 page, 11 pt Times New Roman, 1 inch margins 
•  Due: Midnight before class 

•  Organization 
–  Summary: 

•  What is this paper about? What is the main contribution? Describe the main approach & results. Just 
facts, no opinions yet. 

–  List of positive points / Strengths: 
•  Is there a new theoretical insight? Or a significant empirical advance? Did they solve a standing open 

problem? Or is a good formulation for a new problem? Or a faster/better solution for an existing 
problem? Any good practical outcome (code, algorithm, etc)? Are the experiments well executed? 
Useful for the community in general? 

–  List of negative points / Weaknesses:  
•  What would you do differently? Any missing baselines? missing datasets? any odd design choices in the 

algorithm not explained well? quality of writing? Is there sufficient novelty in what they propose? Has it 
already been done? Minor variation of previous work? Why should anyone care? Is the problem 
interesting and significant? 

–  Reflections 
•  How does this relate to other papers we have read? What are the next research directions in this line of 

work? 

(C) Dhruv Batra  114 



Presentations 
•  Frequency 

–  [Tentative] Once in the semester 

•  Expectations 
–  Read all papers for that day  
–  Overview of that day’s theme (e.g. Visualizing ConvNets) 
–  Present details of at least 2 papers in detail 

•  Describe formulation, experiment, approaches, datasets 
•  Encouraged to present a broad picture 
•  Show results; demo code if possible 

–  How do different papers related to each other? 
–  Please clearly cite the source of each slide that is not your 

own.  
–  No review needed 
–  Meet with TA 3-4 days before class to dry run presentation  

•  Worth 40% of presentation grade 
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Project 
•  Goal 

–  Chance to try Deep Learning 
–  Encouraged to apply to your research (computer vision, NLP, 

UAVs, computational biology…) 
–  Must be done this semester. No double counting. 
–  Can combine with other classes  

•  get permission from both instructors; delineate different parts 
–  Extra credit for shooting for a publication 

•  Main categories 
–  Application/Survey 

•  Compare a bunch of existing algorithms on a new application domain of 
your interest 

–  Formulation/Development 
•  Formulate a new model or algorithm for a new or old problem 

–  Theory 
•  Theoretically analyze an existing algorithm 
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Spring 2013 Projects 
•  Poster/Demo Session 
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Spring 2013 Projects 
•  Gesture Activated Interactive Assistant 

–  Gordon Christie & Ujwal Krothpalli, Grad Students 
–  http://youtu.be/VFPAHY7th9A?t=42s 
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Spring 2013 Projects 
•  American Sign Language Detection 

–  Vireshwar Kumar & Dhiraj Amuru, Grad Students 
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Re-grading Policy 
•  Homework assignments 

–  Within 1 week of receiving grades: see the TAs 

•  This is an advanced grad class.  
–  The goal is understanding the material and making progress 

towards our research.  
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Collaboration Policy 
•  Collaboration 

–  Only on HWs and project (not allowed in HW0). 
–  You may discuss the questions 
–  Each student writes their own answers 
–  Write on your homework anyone with whom you collaborate 
–  Each student must write their own code for the programming 

part 

•  Zero tolerance on plagiarism 
–  Neither ethical nor in your best interest 
–  Always credit your sources 
–  Don’t cheat. We will find out.  
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Waitlist / Audit / Sit in 
•  Waitlist 

–  Do HW0. Come to first few classes. 
–  Let’s see how many people drop. 

•  Audit 
–  Make presentation 

•  Sitting in 
–  Talk to instructor. 
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Communication Channels 
•  Primary means of communication -- Scholar Forum 

–  No direct emails to Instructor unless private information 
–  Instructor/TAs can provide answers to everyone on forum 
–  Class participation credit for answering questions! 
–  No posting answers. We will monitor. 

•  Staff Mailing List 
–  f15ece6504-staff-g@vt.edu 

•  Class websites: 
–  https://scholar.vt.edu/portal/site/f15ece6504 
–  https://computing.ece.vt.edu/~f15ece6504/ 

•  Office Hours 
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How to do well in class? 
•  Come to class! 

–  Sit in front; ask question 
–  This is the most important thing you can do 

•  One point 
–  No laptops or screens in class 

(C) Dhruv Batra  124 



Other Relevant Classes 
•  https://filebox.ece.vt.edu/~dbatra/faq.html 
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Todo 
•  HW0 

–  Due Monday 11:55pm 

•  Paper Presentations 
–  Start looking at schedule 
–  Find papers you are interested in 
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Welcome 
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