Fully Convolutional Networks for Semantic Segmentation

Jonathan Long* Evan Shelhamer* Trevor Darrell

UC Berkeley

Presented by: Gordon Christie

Overview

- Reinterpret standard classification convnets as "Fully convolutional" networks (FCN) for semantic segmentation
- Use AlexNet, VGG, and GoogleNet in experiments
- Novel architecture: combine information from different layers for segmentation
- State-of-the-art segmentation for PASCAL VOC 2011/2012, NYUDv2, and SIFT Flow at the time
- Inference less than one fifth of a second for a typical image

pixels in, pixels out

monocular depth estimation (Liu et al. 2015)

boundary prediction (Xie & Tu 2015)

convnets perform classification

R-CNN does detection

R-CNN

figure: Girshick et al.

Slide credit: Jonathan Long

a classification network

becoming fully convolutional

becoming fully convolutional

Convolution H × W H/4 × W/4 H/8 × W/8 H/16 × W/16 H/32 × W/32

upsampling output

convolution

network

convolution

Dense Predictions

- Shift-and-stitch: trick that yields dense predictions without interpolation
- Upsampling via deconvolution
- Shift-and-stitch used in preliminary experiments, but not included in final model
- Upsampling found to be more effective and efficient

Classifier to Dense FCN

- Convolutionalize proven classification architectures:
 AlexNet, VGG, and GoogLeNet (reimplementation)
- Remove classification layer and convert all fully connected layers to convolutions
- Append 1x1 convolution with channel dimensions and predict scores at each of the coarse output locations (21 categories + background for PASCAL)

Classifier to Dense FCN

Cast ILSVRC classifiers into FCNs and compare performance on validation set of PASCAL 2011

	FCN-	FCN-	FCN-
	AlexNet	VGG16	GoogLeNet ⁴
mean IU	39.8	56.0	42.5
forward time	50 ms	210 ms	59 ms
conv. layers	8	16	22
parameters	57M	134M	6M
rf size	355	404	907
max stride	32	32	32

spectrum of deep features

combine where (local, shallow) with what (global, deep)

skip layers

skip layers

Comparison of skip FCNs

Results on subset of validation set of PASCAL VOC 2011

	pixel	mean		f.w.
	acc.	acc.	IU	IU
FCN-32s-fixed	83.0	59.7	45.4	72.0
FCN-32s	89.1 90.0	73.3	59.4	81.4
FCN-16s	90.0	75.7	62.4	83.0
FCN-8s	90.3	75.9	62.7	83.2

skip layer refinement

Slide credit: Jonathan Long

training + testing

- train full image at a time without patch sampling
- reshape network to take input of any size
- forward time is ~150ms for 500 x 500 x 21 output

Results – PASCAL VOC 2011/12

VOC 2011: 8498 training images (from additional labeled data

	mean IU	mean IU	inference
	VOC2011 test	VOC2012 test	time
R-CNN [12]	47.9	-	_
SDS [16]	52.6	51.6	$\sim 50~\mathrm{s}$
FCN-8s	62.7	62.2	\sim 175 ms

Results – NYUDv2

1449 RGB-D images with pixelwise labels → 40 categories

	pixel	mean	mean	f.w.
	acc.	acc.	IU	IU
Gupta <i>et al</i> . [14]	60.3	_	28.6	47.0
FCN-32s RGB	60.0	42.2	29.2	43.9
FCN-32s RGBD	61.5	42.4	30.5	45.5
FCN-32s HHA	57.1	35.2	24.2	40.4
FCN-32s RGB-HHA	64.3	44.9	32.8	48.0
FCN-16s RGB-HHA	65.4	46.1	34.0	49.5

Results – SIFT Flow

2688 images with pixel labels

- →33 semantic categories, 3 geometric categories Learn both label spaces jointly
 - → learning and inference have similar performance and computation as independent models

	pixel	mean	mean	f.w.	geom.
	acc.	acc.	IU	IU	acc.
Liu et al. [23]	76.7	-	-	-	-
Tighe <i>et al</i> . [33]	-	-	-	-	90.8
Tighe <i>et al</i> . [34] 1	75.6	41.1	-	-	-
Tighe <i>et al</i> . [34] 2	78.6	39.2	-	-	-
Farabet <i>et al</i> . [8] 1	72.3	50.8	-	-	-
Farabet <i>et al</i> . [8] 2	78.5	29.6	-	-	-
Pinheiro et al. [28]	77.7	29.8	-	-	-
FCN-16s	85.2	51.7	39.5	76.1	94.3

Relative to prior state-of-theart SDS:

- 20% relative improvement for mean IoU
- 286× faster

*Simultaneous Detection and Segmentation Hariharan et al. ECCV14

		mean	aero plane	bicycle	bird	boat	bottle	bus	car	cat	chair	cow	dining table	dog	horse	motor bike	person	potted	sheep	sofa	train	tv/ monitor	submission date
		~	∇	∇	∇	∇	∇	∇	∇	∇	∇	∇	∇	∇	∇	∇	∇	∇	∇	∇	∇	∇	∇
D	MSRA_BoxSup [7]	CN 75.2	89.8	38.0	89.2	68.9	68.0	89.6	83.0	87.7	34.4	83.6	67.1	81.5	83.7	85.2	83.5	58.6	84.9	55.8	81.2	70.7	18-May-2015
D	-	CN 74.7	90.4	55.3	88.7	68.4	69.8	88.3	82.4	85.1	32.6	78.5	64.4	79.6	81.9	86.4	81.8	58.6	82.4	53.5	77.4	70.1	22-Apr-2015
D		CN 73.9	89.2	46.7	88.5	63.5	68.4	87.0	81.2	86.3	32.6	80.7	62.4	81.0	81.3	84.3	82.1	56.2	84.6	58.3	76.2	67.2	26-Apr-2015
\triangleright		CN 72.9	89.7	37.6	77.4	62.1	72.9	88.1	84.8	81.9	34.4	80.0	55.9	79.3	82.3	84.0	82.9	59.7	82.8	54.1	77.5	70.3	25-May-2015
\triangleright	DeepLab-CRF-COCO-LargeFOV [?]	CN 72.7	89.1	38.3	88.1	63.3	69.7	87.1	83.1	85.0	29.3	76.5	56.5	79.8	77.9	85.8	82.4	57.4	84.3	54.9	80.5	64.1	18-Mar-2015
\triangleright	POSTECH_EDecomvNet_CRF_VOC [7]	CN 72.5	89.9	39.3	79.7	63.9	68.2	87.4	81.2	86.1	28.5	77.0	62.0	79.0	80.3	83.6	80.2	58.8	83.4	54.3	80.7	65.0	22-Apr-2015
\triangleright	Oxford_TVG_CRF_RNN_VOC [7]	CN 72.0	87.5	39.0	79.7	64.2	68.3	87.6	80.8	84.4	30.4	78.2	60.4	80.5	77.8	83.1	80.6	59.5	82.8	47.8	78.3	67.1	22-Apr-2015
D		CN 71.6	84.4	54.5	81.5	63.6	65.9	85.1	79.1	83.4	30.7	74.1	59.8	79.0	76.1	83.2	80.8	59.7	82.2	50.4	73.1	63.7	02-Apr-2015
D	MSRA_BoxSup [7]	CN 71.0	86.4	35.5	79.7	65.2	65.2	84.3	78.5	83.7	30.5	76.2	62.6	79.3	76.1	82.1	81.3	57.0	78.2	55.0	72.5	68.1	
D	DeepLab-CRF-COCO-Strong [7]	CN 70.4	85.3	36.2	84.8	61.2	67.5	84.6	81.4	81.0	30.8	73.8	53.8	77.5	76.5	82.3	81.6	56.3	78.9	52.3	76.6	ffe	11-Feb-2015
D	DeepLab-CRF-LargeFOV [7]	CN 70.3	83.5	36.0	82.5	S	e (60	m	16	Ž	12.9	21)r	82.	MΙ		83.0	48.8		Te	28-Mar-2015
\triangleright	TTI_zoomout_v2 [7]	69.6	85.6	37.3	83.2	0	93.0	7	80.7	34.5	27.2	73.2	34.5	73.1	79.2	81.1	77.4	53.6	74.6	+9.2	7 3		30-Mar-2015
D		CN 67.1	80.4	36.8	77.4	55.2	66.4	81.5	77.5	78.9	27.1	68.2	52.7	74.3	69.6	79.4	79.0	56.9	78.8	45.2	72.7	59.3	
D		CN 66.4	78.4	33.1	78.2	55.6	65.3	81.3	75.5	78.6	25.3	69.2	52.7	75.2	69.0	79.1	77.6	54.7	78.3	45.1	73.3		23-Dec-2014
		CN 65.2	80.9	34.0	72.9	52.6	62.5	79.8	76.3	79.9	23.6	67.7	51.8	74.8	69.9	76.9	76.9	49.0	74.7	42.7	72.1	59.6	10-Feb-2015
D	TTI_zoomout_16 [7]	64.4	81.9	35.1	78.2	57.4	56.5	80.5	74.0	79.8	22.4	69.6	53.7	74.0	76.0	76.6	68.8	44.3	70.2	40.2	68.9		24-Nov-2014
D	Hypercolumn [7]	62.6	68.7	33.5	69.8	51.3	70.2	81.1	71.9	74.9	23.9	60.6	46.9	72.1	68.3	74.5	72.9	52.6	64.4	45.4	64.9		09-Apr-2015
٠	FCN-8s [7]	CN 62.2	76.8	34.2	68.9	49.4	60.3	75.3	74.7	77.6	21.4	62.5	46.8	71.8	63.9	76.5	73.9	45.2	72.4	37.4	70.9		12-Nov-2014
	MSRA_CFM ^[7]	61.8	75.7	26.7		48.8	65.6	81.0	69.2	73.3		68.7	51.5		68.1	71.7	67.5	50.4	66.5	44.4	58.9		17-Dec-2014
	TTI_zoomout [7]	58.4	70.3		68.3	46.4	52.1	75.3	68.4	75.3	19.2	58.4	49.9	69.6	63.0	70.1	67.6	41.5	64.0	34.9			17-Nov-2014
	SDS ^[7]	51.6	63.3	25.7	63.0	39.8	59.2	70.9	61.4	54.9	16.8	45.0	48.2	50.5	51.0	57.7	63.3	31.8	58.7	31.2	55.7	48.5	-
D	NUS_UDS [7]	50.0																					
\triangleright	TTIC-divmbest-rerank [7]	48.1																					
D	BONN_O2PCPMC_FGT_SEGM [7]	47.8																					
	BONN_O2PCPMC_FGT_SEGM [7]	47.5																					
	BONNGC_O2P_CPMC_CSI [7]	46.8																					
S	ide credit: Jonathan Long	46.7	63.9	23.8	44.6	40.3	45.5	59.6	58.7	57.1	11.7	45.9	34.9	43.0	54.9	58.0	51.5	34.6	44.1	29.9	50.5		26

conclusion

fully convolutional networks are fast, endto-end models for pixelwise problems

- code in Caffe branch (merged soon)
- models for PASCAL VOC, NYUDv2, SIFT Flow, PASCAL-Context

fcn.berkeleyvision.org

caffe.berkeleyvision.org

