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Overview
• Reinterpret  standard  classification  convnets as  “Fully  
convolutional”   networks  (FCN)  for  semantic  segmentation

• Use  AlexNet,  VGG,  and  GoogleNet in  experiments
• Novel  architecture:  combine  information  from  different  
layers  for  segmentation

• State-­of-­the-­art  segmentation  for  PASCAL  VOC  
2011/2012,  NYUDv2,  and  SIFT  Flow  at  the  time

• Inference  less  than  one  fifth  of  a  second  for  a  typical  
image
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pixels  in,  pixels  out
monocular  depth  estimation  (Liu  et  al.  2015)

boundary  prediction  (Xie  &  Tu  2015)

semantic
segmentation
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4

“tabby  cat”

1000-­dim  vector

<  1  millisecond

convnets  perform  classification

end-­to-­end  learning
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R-­CNN
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many  seconds

“cat”

“dog”

R-­CNN  does  detection
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R-­CNN

figure:  Girshick  et  al.
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<  1/5  second

end-­to-­end  learning

???
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“tabby  cat”
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a  classification  network
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becoming  fully  convolutional
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becoming  fully  convolutional
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upsampling  output
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conv,  pool,
nonlinearity

upsampling
pixelwise

output  +  loss

end-­to-­end,  pixels-­to-­pixels  
network
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Dense  Predictions
• Shift-­and-­stitch:  trick  that  yields  dense  predictions  

without  interpolation
• Upsampling via  deconvolution
• Shift-­and-­stitch  used  in  preliminary  experiments,  but  not  

included   in  final  model
• Upsampling found  to  be  more  effective  and  efficient
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Classifier  to  Dense  FCN
• Convolutionalize proven  classification  architectures:  
AlexNet,  VGG,  and  GoogLeNet (reimplementation)

• Remove  classification   layer  and  convert  all  fully  
connected   layers  to  convolutions

• Append  1x1  convolution  with  channel  dimensions  and  
predict  scores  at  each  of  the  coarse  output  locations (21  
categories  +  background  for  PASCAL)
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Classifier  to  Dense  FCN
Cast  ILSVRC  classifiers   into  FCNs   and  compare  
performance  on  validation  set  of  PASCAL  2011
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a per-pixel multinomial logistic loss and validate with the
standard metric of mean pixel intersection over union, with
the mean taken over all classes, including background. The
training ignores pixels that are masked out (as ambiguous
or difficult) in the ground truth.

4.1. From classifier to dense FCN

We begin by convolutionalizing proven classification ar-
chitectures as in Section 3. We consider the AlexNet3 ar-
chitecture [19] that won ILSVRC12, as well as the VGG
nets [31] and the GoogLeNet4 [32] which did exception-
ally well in ILSVRC14. We pick the VGG 16-layer net5,
which we found to be equivalent to the 19-layer net on this
task. For GoogLeNet, we use only the final loss layer, and
improve performance by discarding the final average pool-
ing layer. We decapitate each net by discarding the final
classifier layer, and convert all fully connected layers to
convolutions. We append a 1 ⇥ 1 convolution with chan-
nel dimension 21 to predict scores for each of the PAS-
CAL classes (including background) at each of the coarse
output locations, followed by a deconvolution layer to bi-
linearly upsample the coarse outputs to pixel-dense outputs
as described in Section 3.3. Table 1 compares the prelim-
inary validation results along with the basic characteristics
of each net. We report the best results achieved after con-
vergence at a fixed learning rate (at least 175 epochs).

Fine-tuning from classification to segmentation gave rea-
sonable predictions for each net. Even the worst model
achieved ⇠ 75% of state-of-the-art performance. The
segmentation-equippped VGG net (FCN-VGG16) already
appears to be state-of-the-art at 56.0 mean IU on val, com-
pared to 52.6 on test [16]. Training on extra data raises
performance to 59.4 mean IU on a subset of val7. Training
details are given in Section 4.3.

Despite similar classification accuracy, our implementa-
tion of GoogLeNet did not match this segmentation result.

4.2. Combining what and where

We define a new fully convolutional net (FCN) for seg-
mentation that combines layers of the feature hierarchy and
refines the spatial precision of the output. See Figure 3.

While fully convolutionalized classifiers can be fine-
tuned to segmentation as shown in 4.1, and even score
highly on the standard metric, their output is dissatisfyingly
coarse (see Figure 4). The 32 pixel stride at the final predic-
tion layer limits the scale of detail in the upsampled output.

We address this by adding links that combine the final
prediction layer with lower layers with finer strides. This

3Using the publicly available CaffeNet reference model.
4Since there is no publicly available version of GoogLeNet, we use

our own reimplementation. Our version is trained with less extensive data
augmentation, and gets 68.5% top-1 and 88.4% top-5 ILSVRC accuracy.

5Using the publicly available version from the Caffe model zoo.

Table 1. We adapt and extend three classification convnets to seg-
mentation. We compare performance by mean intersection over
union on the validation set of PASCAL VOC 2011 and by infer-
ence time (averaged over 20 trials for a 500 ⇥ 500 input on an
NVIDIA Tesla K40c). We detail the architecture of the adapted
nets as regards dense prediction: number of parameter layers, re-
ceptive field size of output units, and the coarsest stride within the
net. (These numbers give the best performance obtained at a fixed
learning rate, not best performance possible.)

FCN-
AlexNet

FCN-
VGG16

FCN-
GoogLeNet4

mean IU 39.8 56.0 42.5
forward time 50 ms 210 ms 59 ms
conv. layers 8 16 22
parameters 57M 134M 6M

rf size 355 404 907
max stride 32 32 32

turns a line topology into a DAG, with edges that skip ahead
from lower layers to higher ones (Figure 3). As they see
fewer pixels, the finer scale predictions should need fewer
layers, so it makes sense to make them from shallower net
outputs. Combining fine layers and coarse layers lets the
model make local predictions that respect global structure.
By analogy to the multiscale local jet of Florack et al. [10],
we call our nonlinear local feature hierarchy the deep jet.

We first divide the output stride in half by predicting
from a 16 pixel stride layer. We add a 1 ⇥ 1 convolution
layer on top of pool4 to produce additional class predic-
tions. We fuse this output with the predictions computed
on top of conv7 (convolutionalized fc7) at stride 32 by
adding a 2⇥ upsampling layer and summing6 both predic-
tions. (See Figure 3). We initialize the 2⇥ upsampling to
bilinear interpolation, but allow the parameters to be learned
as described in Section 3.3. Finally, the stride 16 predictions
are upsampled back to the image. We call this net FCN-16s.
FCN-16s is learned end-to-end, initialized with the param-
eters of the last, coarser net, which we now call FCN-32s.
The new parameters acting on pool4 are zero-initialized so
that the net starts with unmodified predictions. The learning
rate is decreased by a factor of 100.

Learning this skip net improves performance on the val-
idation set by 3.0 mean IU to 62.4. Figure 4 shows im-
provement in the fine structure of the output. We compared
this fusion with learning only from the pool4 layer (which
resulted in poor performance), and simply decreasing the
learning rate without adding the extra link (which results
in an insignificant performance improvement, without im-
proving the quality of the output).

We continue in this fashion by fusing predictions from
pool3 with a 2⇥ upsampling of predictions fused from
pool4 and conv7, building the net FCN-8s. We obtain

6Max fusion made learning difficult due to gradient switching.



spectrum  of  deep  features
combine  where (local,  shallow)  with  what (global,  deep)

fuse  features  into  deep  jet

(cf.  Hariharan  et  al.  CVPR15  “hypercolumn”) 16Slide  credit:  Jonathan  Long



skip  layers

interp  +  sum

interp  +  sum

dense  output 17

end-­to-­end,  joint learning
of  semantics and  location
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skip  layers
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FCN-32s FCN-16s FCN-8s Ground truth

Figure 4. Refining fully convolutional nets by fusing information
from layers with different strides improves segmentation detail.
The first three images show the output from our 32, 16, and 8
pixel stride nets (see Figure 3).

Table 2. Comparison of skip FCNs on a subset of PASCAL
VOC2011 validation7. Learning is end-to-end, except for FCN-
32s-fixed, where only the last layer is fine-tuned. Note that FCN-
32s is FCN-VGG16, renamed to highlight stride.

pixel
acc.

mean
acc.

mean
IU

f.w.
IU

FCN-32s-fixed 83.0 59.7 45.4 72.0
FCN-32s 89.1 73.3 59.4 81.4
FCN-16s 90.0 75.7 62.4 83.0
FCN-8s 90.3 75.9 62.7 83.2

a minor additional improvement to 62.7 mean IU, and find
a slight improvement in the smoothness and detail of our
output. At this point our fusion improvements have met di-
minishing returns, both with respect to the IU metric which
emphasizes large-scale correctness, and also in terms of the
improvement visible e.g. in Figure 4, so we do not continue
fusing even lower layers.

Refinement by other means Decreasing the stride of
pooling layers is the most straightforward way to obtain
finer predictions. However, doing so is problematic for our
VGG16-based net. Setting the pool5 layer to have stride 1
requires our convolutionalized fc6 to have a kernel size of

14⇥ 14 in order to maintain its receptive field size. In addi-
tion to their computational cost, we had difficulty learning
such large filters. We made an attempt to re-architect the
layers above pool5 with smaller filters, but were not suc-
cessful in achieving comparable performance; one possible
explanation is that the initialization from ImageNet-trained
weights in the upper layers is important.

Another way to obtain finer predictions is to use the shift-
and-stitch trick described in Section 3.2. In limited exper-
iments, we found the cost to improvement ratio from this
method to be worse than layer fusion.

4.3. Experimental framework

Optimization We train by SGD with momentum. We
use a minibatch size of 20 images and fixed learning rates of
10�3, 10�4, and 5�5 for FCN-AlexNet, FCN-VGG16, and
FCN-GoogLeNet, respectively, chosen by line search. We
use momentum 0.9, weight decay of 5�4 or 2�4, and dou-
bled the learning rate for biases, although we found training
to be insensitive to these parameters (but sensitive to the
learning rate). We zero-initialize the class scoring convo-
lution layer, finding random initialization to yield neither
better performance nor faster convergence. Dropout was in-
cluded where used in the original classifier nets.

Fine-tuning We fine-tune all layers by back-
propagation through the whole net. Fine-tuning the
output classifier alone yields only 70% of the full fine-
tuning performance as compared in Table 2. Training from
scratch is not feasible considering the time required to
learn the base classification nets. (Note that the VGG net is
trained in stages, while we initialize from the full 16-layer
version.) Fine-tuning takes three days on a single GPU for
the coarse FCN-32s version, and about one day each to
upgrade to the FCN-16s and FCN-8s versions.

Patch Sampling As explained in Section 3.4, our full
image training effectively batches each image into a regu-

pool4 pool5pool1 pool2 pool3

32x upsampled

prediction (FCN-32s)
2x upsampled

prediction

16x upsampled

prediction (FCN-16s)

8x upsampled

prediction (FCN-8s)

pool4
prediction

2x upsampled
prediction

pool3
prediction

P P

Figure 3. Our DAG nets learn to combine coarse, high layer information with fine, low layer information. Layers are shown as grids that
reveal relative spatial coarseness. Only pooling and prediction layers are shown; intermediate convolution layers (including our converted
fully connected layers) are omitted. Solid line (FCN-32s): Our single-stream net, described in Section 4.1, upsamples stride 32 predictions
back to pixels in a single step. Dashed line (FCN-16s): Combining predictions from both the final layer and the pool4 layer, at stride
16, lets our net predict finer details, while retaining high-level semantic information. Dotted line (FCN-8s): Additional predictions from
pool3, at stride 8, provide further precision.



Comparison  of  skip  FCNs  
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FCN-32s FCN-16s FCN-8s Ground truth

Figure 4. Refining fully convolutional nets by fusing information
from layers with different strides improves segmentation detail.
The first three images show the output from our 32, 16, and 8
pixel stride nets (see Figure 3).

Table 2. Comparison of skip FCNs on a subset of PASCAL
VOC2011 validation7. Learning is end-to-end, except for FCN-
32s-fixed, where only the last layer is fine-tuned. Note that FCN-
32s is FCN-VGG16, renamed to highlight stride.

pixel
acc.

mean
acc.

mean
IU

f.w.
IU

FCN-32s-fixed 83.0 59.7 45.4 72.0
FCN-32s 89.1 73.3 59.4 81.4
FCN-16s 90.0 75.7 62.4 83.0
FCN-8s 90.3 75.9 62.7 83.2

a minor additional improvement to 62.7 mean IU, and find
a slight improvement in the smoothness and detail of our
output. At this point our fusion improvements have met di-
minishing returns, both with respect to the IU metric which
emphasizes large-scale correctness, and also in terms of the
improvement visible e.g. in Figure 4, so we do not continue
fusing even lower layers.

Refinement by other means Decreasing the stride of
pooling layers is the most straightforward way to obtain
finer predictions. However, doing so is problematic for our
VGG16-based net. Setting the pool5 layer to have stride 1
requires our convolutionalized fc6 to have a kernel size of

14⇥ 14 in order to maintain its receptive field size. In addi-
tion to their computational cost, we had difficulty learning
such large filters. We made an attempt to re-architect the
layers above pool5 with smaller filters, but were not suc-
cessful in achieving comparable performance; one possible
explanation is that the initialization from ImageNet-trained
weights in the upper layers is important.

Another way to obtain finer predictions is to use the shift-
and-stitch trick described in Section 3.2. In limited exper-
iments, we found the cost to improvement ratio from this
method to be worse than layer fusion.

4.3. Experimental framework

Optimization We train by SGD with momentum. We
use a minibatch size of 20 images and fixed learning rates of
10�3, 10�4, and 5�5 for FCN-AlexNet, FCN-VGG16, and
FCN-GoogLeNet, respectively, chosen by line search. We
use momentum 0.9, weight decay of 5�4 or 2�4, and dou-
bled the learning rate for biases, although we found training
to be insensitive to these parameters (but sensitive to the
learning rate). We zero-initialize the class scoring convo-
lution layer, finding random initialization to yield neither
better performance nor faster convergence. Dropout was in-
cluded where used in the original classifier nets.

Fine-tuning We fine-tune all layers by back-
propagation through the whole net. Fine-tuning the
output classifier alone yields only 70% of the full fine-
tuning performance as compared in Table 2. Training from
scratch is not feasible considering the time required to
learn the base classification nets. (Note that the VGG net is
trained in stages, while we initialize from the full 16-layer
version.) Fine-tuning takes three days on a single GPU for
the coarse FCN-32s version, and about one day each to
upgrade to the FCN-16s and FCN-8s versions.

Patch Sampling As explained in Section 3.4, our full
image training effectively batches each image into a regu-

Figure 3. Our DAG nets learn to combine coarse, high layer information with fine, low layer information. Layers are shown as grids that
reveal relative spatial coarseness. Only pooling and prediction layers are shown; intermediate convolution layers (including our converted
fully connected layers) are omitted. Solid line (FCN-32s): Our single-stream net, described in Section 4.1, upsamples stride 32 predictions
back to pixels in a single step. Dashed line (FCN-16s): Combining predictions from both the final layer and the pool4 layer, at stride
16, lets our net predict finer details, while retaining high-level semantic information. Dotted line (FCN-8s): Additional predictions from
pool3, at stride 8, provide further precision.

Results  on  subset  of  validation  set  of  PASCAL  VOC  2011



stride  32

no  skips

stride  16

1  skip

stride  8

2  skips

ground  truthinput  image

skip  layer  refinement
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training  +  testing
-­ train  full  image  at  a  time  without  patch  sampling
-­ reshape  network  to  take  input  of  any  size
-­ forward  time  is  ~150ms  for  500  x  500  x  21  output
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Results  – PASCAL  VOC  2011/12
VOC  2011:  8498  training  images  (from  additional  labeled  data
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Figure 5. Training on whole images is just as effective as sampling
patches, but results in faster (wall time) convergence by making
more efficient use of data. Left shows the effect of sampling on
convergence rate for a fixed expected batch size, while right plots
the same by relative wall time.

lar grid of large, overlapping patches. By contrast, prior
work randomly samples patches over a full dataset [27, 2,
8, 28, 11], potentially resulting in higher variance batches
that may accelerate convergence [22]. We study this trade-
off by spatially sampling the loss in the manner described
earlier, making an independent choice to ignore each final
layer cell with some probability 1�p. To avoid changing the
effective batch size, we simultaneously increase the number
of images per batch by a factor 1/p. Note that due to the ef-
ficiency of convolution, this form of rejection sampling is
still faster than patchwise training for large enough values
of p (e.g., at least for p > 0.2 according to the numbers
in Section 3.1). Figure 5 shows the effect of this form of
sampling on convergence. We find that sampling does not
have a significant effect on convergence rate compared to
whole image training, but takes significantly more time due
to the larger number of images that need to be considered
per batch. We therefore choose unsampled, whole image
training in our other experiments.

Class Balancing Fully convolutional training can bal-
ance classes by weighting or sampling the loss. Although
our labels are mildly unbalanced (about 3/4 are back-
ground), we find class balancing unnecessary.

Dense Prediction The scores are upsampled to the in-
put dimensions by deconvolution layers within the net. Fi-
nal layer deconvolutional filters are fixed to bilinear inter-
polation, while intermediate upsampling layers are initial-
ized to bilinear upsampling, and then learned. Shift-and-
stitch (Section 3.2), or the filter rarefaction equivalent, are
not used.

Augmentation We tried augmenting the training data
by randomly mirroring and “jittering” the images by trans-
lating them up to 32 pixels (the coarsest scale of prediction)
in each direction. This yielded no noticeable improvement.

More Training Data The PASCAL VOC 2011 segmen-
tation challenge training set, which we used for Table 1,
labels 1112 images. Hariharan et al. [15] have collected

labels for a much larger set of 8498 PASCAL training im-
ages, which was used to train the previous state-of-the-art
system, SDS [16]. This training data improves the FCN-
VGG16 validation score7 by 3.4 points to 59.4 mean IU.

Implementation All models are trained and tested with
Caffe [18] on a single NVIDIA Tesla K40c. The models
and code will be released open-source on publication.

5. Results
We test our FCN on semantic segmentation and scene

parsing, exploring PASCAL VOC, NYUDv2, and SIFT
Flow. Although these tasks have historically distinguished
between objects and regions, we treat both uniformly as
pixel prediction. We evaluate our FCN skip architecture8

on each of these datasets, and then extend it to multi-modal
input for NYUDv2 and multi-task prediction for the seman-
tic and geometric labels of SIFT Flow.

Metrics We report four metrics from common semantic
segmentation and scene parsing evaluations that are varia-
tions on pixel accuracy and region intersection over union
(IU). Let nij be the number of pixels of class i predicted to
belong to class j, where there are ncl different classes, and
let ti =

P
j nij be the total number of pixels of class i. We

compute:
• pixel accuracy: P

i nii/
P

i ti

• mean accuraccy: (1/ncl)
P

i nii/ti

• mean IU: (1/ncl)
P

i nii/

⇣
ti +

P
j nji � nii

⌘

• frequency weighted IU:
(
P

k tk)
�1 P

i tinii/

⇣
ti +

P
j nji � nii

⌘

PASCAL VOC Table 3 gives the performance of our
FCN-8s on the test sets of PASCAL VOC 2011 and 2012,
and compares it to the previous state-of-the-art, SDS [16],
and the well-known R-CNN [12]. We achieve the best re-
sults on mean IU9 by a relative margin of 20%. Inference
time is reduced 114⇥ (convnet only, ignoring proposals and
refinement) or 286⇥ (overall).

Table 3. Our fully convolutional net gives a 20% relative improve-
ment over the state-of-the-art on the PASCAL VOC 2011 and 2012
test sets, and reduces inference time.

mean IU mean IU inference
VOC2011 test VOC2012 test time

R-CNN [12] 47.9 - -
SDS [16] 52.6 51.6 ⇠ 50 s

FCN-8s 62.7 62.2 ⇠ 175 ms

NYUDv2 [30] is an RGB-D dataset collected using the

7There are training images from [15] included in the PASCAL VOC
2011 val set, so we validate on the non-intersecting set of 736 images. An
earlier version of this paper mistakenly evaluated on the entire val set.

8Our models and code are publicly available at
https://github.com/BVLC/caffe/wiki/Model-Zoo#fcn.

9This is the only metric provided by the test server.



Results  – NYUDv2
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Table 4. Results on NYUDv2. RGBD is early-fusion of the
RGB and depth channels at the input. HHA is the depth embed-
ding of [14] as horizontal disparity, height above ground, and
the angle of the local surface normal with the inferred gravity
direction. RGB-HHA is the jointly trained late fusion model
that sums RGB and HHA predictions.

pixel
acc.

mean
acc.

mean
IU

f.w.
IU

Gupta et al. [14] 60.3 - 28.6 47.0
FCN-32s RGB 60.0 42.2 29.2 43.9

FCN-32s RGBD 61.5 42.4 30.5 45.5
FCN-32s HHA 57.1 35.2 24.2 40.4

FCN-32s RGB-HHA 64.3 44.9 32.8 48.0
FCN-16s RGB-HHA 65.4 46.1 34.0 49.5

Microsoft Kinect. It has 1449 RGB-D images, with pixel-
wise labels that have been coalesced into a 40 class seman-
tic segmentation task by Gupta et al. [13]. We report results
on the standard split of 795 training images and 654 testing
images. (Note: all model selection is performed on PAS-
CAL 2011 val.) Table 4 gives the performance of our model
in several variations. First we train our unmodified coarse
model (FCN-32s) on RGB images. To add depth informa-
tion, we train on a model upgraded to take four-channel
RGB-D input (early fusion). This provides little benefit,
perhaps due to the difficultly of propagating meaningful
gradients all the way through the model. Following the suc-
cess of Gupta et al. [14], we try the three-dimensional HHA
encoding of depth, training nets on just this information, as
well as a “late fusion” of RGB and HHA where the predic-
tions from both nets are summed at the final layer, and the
resulting two-stream net is learned end-to-end. Finally we
upgrade this late fusion net to a 16-stride version.

SIFT Flow is a dataset of 2,688 images with pixel labels
for 33 semantic categories (“bridge”, “mountain”, “sun”),
as well as three geometric categories (“horizontal”, “verti-
cal”, and “sky”). An FCN can naturally learn a joint repre-
sentation that simultaneously predicts both types of labels.
We learn a two-headed version of FCN-16s with seman-
tic and geometric prediction layers and losses. The learned
model performs as well on both tasks as two independently
trained models, while learning and inference are essentially
as fast as each independent model by itself. The results in
Table 5, computed on the standard split into 2,488 training
and 200 test images,10 show state-of-the-art performance on
both tasks.

10Three of the SIFT Flow categories are not present in the test set. We
made predictions across all 33 categories, but only included categories ac-
tually present in the test set in our evaluation. (An earlier version of this pa-
per reported a lower mean IU, which included all categories either present
or predicted in the evaluation.)

Table 5. Results on SIFT Flow10 with class segmentation
(center) and geometric segmentation (right). Tighe [33] is
a non-parametric transfer method. Tighe 1 is an exemplar
SVM while 2 is SVM + MRF. Farabet is a multi-scale con-
vnet trained on class-balanced samples (1) or natural frequency
samples (2). Pinheiro is a multi-scale, recurrent convnet, de-
noted RCNN3 (�3). The metric for geometry is pixel accuracy.

pixel
acc.

mean
acc.

mean
IU

f.w.
IU

geom.
acc.

Liu et al. [23] 76.7 - - - -
Tighe et al. [33] - - - - 90.8

Tighe et al. [34] 1 75.6 41.1 - - -
Tighe et al. [34] 2 78.6 39.2 - - -
Farabet et al. [8] 1 72.3 50.8 - - -
Farabet et al. [8] 2 78.5 29.6 - - -
Pinheiro et al. [28] 77.7 29.8 - - -

FCN-16s 85.2 51.7 39.5 76.1 94.3

FCN-8s SDS [16] Ground Truth Image

Figure 6. Fully convolutional segmentation nets produce state-
of-the-art performance on PASCAL. The left column shows the
output of our highest performing net, FCN-8s. The second shows
the segmentations produced by the previous state-of-the-art system
by Hariharan et al. [16]. Notice the fine structures recovered (first
row), ability to separate closely interacting objects (second row),
and robustness to occluders (third row). The fourth row shows a
failure case: the net sees lifejackets in a boat as people.

6. Conclusion

Fully convolutional networks are a rich class of mod-
els, of which modern classification convnets are a spe-
cial case. Recognizing this, extending these classification
nets to segmentation, and improving the architecture with
multi-resolution layer combinations dramatically improves
the state-of-the-art, while simultaneously simplifying and
speeding up learning and inference.

Acknowledgements This work was supported in part

1449  RGB-­D  images  with  pixelwise labels  à 40  categories



Results  – SIFT  Flow
2688  images  with  pixel  labels

à33  semantic  categories,  3  geometric  categories
Learn  both  label  spaces  jointly

à learning  and  inference  have  similar  performance  and  
computation  as  independent  models
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Table 4. Results on NYUDv2. RGBD is early-fusion of the
RGB and depth channels at the input. HHA is the depth embed-
ding of [14] as horizontal disparity, height above ground, and
the angle of the local surface normal with the inferred gravity
direction. RGB-HHA is the jointly trained late fusion model
that sums RGB and HHA predictions.

pixel
acc.

mean
acc.

mean
IU

f.w.
IU

Gupta et al. [14] 60.3 - 28.6 47.0
FCN-32s RGB 60.0 42.2 29.2 43.9

FCN-32s RGBD 61.5 42.4 30.5 45.5
FCN-32s HHA 57.1 35.2 24.2 40.4

FCN-32s RGB-HHA 64.3 44.9 32.8 48.0
FCN-16s RGB-HHA 65.4 46.1 34.0 49.5

Microsoft Kinect. It has 1449 RGB-D images, with pixel-
wise labels that have been coalesced into a 40 class seman-
tic segmentation task by Gupta et al. [13]. We report results
on the standard split of 795 training images and 654 testing
images. (Note: all model selection is performed on PAS-
CAL 2011 val.) Table 4 gives the performance of our model
in several variations. First we train our unmodified coarse
model (FCN-32s) on RGB images. To add depth informa-
tion, we train on a model upgraded to take four-channel
RGB-D input (early fusion). This provides little benefit,
perhaps due to the difficultly of propagating meaningful
gradients all the way through the model. Following the suc-
cess of Gupta et al. [14], we try the three-dimensional HHA
encoding of depth, training nets on just this information, as
well as a “late fusion” of RGB and HHA where the predic-
tions from both nets are summed at the final layer, and the
resulting two-stream net is learned end-to-end. Finally we
upgrade this late fusion net to a 16-stride version.

SIFT Flow is a dataset of 2,688 images with pixel labels
for 33 semantic categories (“bridge”, “mountain”, “sun”),
as well as three geometric categories (“horizontal”, “verti-
cal”, and “sky”). An FCN can naturally learn a joint repre-
sentation that simultaneously predicts both types of labels.
We learn a two-headed version of FCN-16s with seman-
tic and geometric prediction layers and losses. The learned
model performs as well on both tasks as two independently
trained models, while learning and inference are essentially
as fast as each independent model by itself. The results in
Table 5, computed on the standard split into 2,488 training
and 200 test images,10 show state-of-the-art performance on
both tasks.

10Three of the SIFT Flow categories are not present in the test set. We
made predictions across all 33 categories, but only included categories ac-
tually present in the test set in our evaluation. (An earlier version of this pa-
per reported a lower mean IU, which included all categories either present
or predicted in the evaluation.)

Table 5. Results on SIFT Flow10 with class segmentation
(center) and geometric segmentation (right). Tighe [33] is
a non-parametric transfer method. Tighe 1 is an exemplar
SVM while 2 is SVM + MRF. Farabet is a multi-scale con-
vnet trained on class-balanced samples (1) or natural frequency
samples (2). Pinheiro is a multi-scale, recurrent convnet, de-
noted RCNN3 (�3). The metric for geometry is pixel accuracy.

pixel
acc.

mean
acc.

mean
IU

f.w.
IU

geom.
acc.

Liu et al. [23] 76.7 - - - -
Tighe et al. [33] - - - - 90.8

Tighe et al. [34] 1 75.6 41.1 - - -
Tighe et al. [34] 2 78.6 39.2 - - -
Farabet et al. [8] 1 72.3 50.8 - - -
Farabet et al. [8] 2 78.5 29.6 - - -
Pinheiro et al. [28] 77.7 29.8 - - -

FCN-16s 85.2 51.7 39.5 76.1 94.3

FCN-8s SDS [16] Ground Truth Image

Figure 6. Fully convolutional segmentation nets produce state-
of-the-art performance on PASCAL. The left column shows the
output of our highest performing net, FCN-8s. The second shows
the segmentations produced by the previous state-of-the-art system
by Hariharan et al. [16]. Notice the fine structures recovered (first
row), ability to separate closely interacting objects (second row),
and robustness to occluders (third row). The fourth row shows a
failure case: the net sees lifejackets in a boat as people.

6. Conclusion

Fully convolutional networks are a rich class of mod-
els, of which modern classification convnets are a spe-
cial case. Recognizing this, extending these classification
nets to segmentation, and improving the architecture with
multi-resolution layer combinations dramatically improves
the state-of-the-art, while simultaneously simplifying and
speeding up learning and inference.
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Relative  to  prior  state-­of-­the-­
art  SDS:

-­ 20%  relative  
improvement
for  mean  IoU

-­ 286× faster

*Simultaneous  Detection  and  Segmentation  
Hariharan  et  al.  ECCV14Slide  credit:  Jonathan  Long



leaderboard

==  segmentation  with  Caffe
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Slide  credit:  Jonathan  Long



conclusion
fully  convolutional   networks  are  fast,  end-­
to-­end  models  for  pixelwise  problems

-­ code in  Caffe  branch  (merged  soon)
-­ models for  PASCAL  VOC,  NYUDv2,  

SIFT  Flow,  PASCAL-­Context
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caffe.berkeleyvision.org

github.com/BVLC/caffefcn.berkeleyvision.org

Slide  credit:  Jonathan  Long


