Improving VQA Performance with Mixture of Detectors features

Team HDU-UCAS-USYD with members
Zhou Yu¹, Jun Yu¹, Chenchao Xiang¹, Liang Wang¹, Dalu Guo³,
Qingming Huang², Jianping Fan¹ and Dacheng Tao³

1. Hangzhou Dianzi University, China
2. University of Chinese Academy of Science, China
3. The University of Sydney, Australia
Outline

• Background
• Mixture of Detectors (MoD) features
• Implementation Details & Experimental Results
• Conclusions & Future works
Background

• Key components for VQA
 1. Feature representation (feature)
 2. Multi-modal feature fusion (model)
 3. Answer Prediction (loss)
Previous SOTA approaches

• Feature representation
 • LSTM (concat with 300D GloVe feature) for questions
 • bottom-up attention visual features extracted from Faster R-CNN

• Multi-modal feature fusion
 • Attention modeling: visual attention, question-attention, co-attention
 • Fusion: Concat, MCB, MLB, MUTAN, MFB, MFH

• Answering modeling
 • Answer sampling+softmax, Cross-entropy, multi-label KLD
Previous SOTA approaches

- Feature representation **0.8% improvement** over LSTM w/o GloVe
 - LSTM (**concat with 300D GloVe feature**) for questions
 - **bottom-up attention** visual features extracted from Faster R-CNN
 2.5% improvement over ResNet-152 res5c features

- Multi-modal feature fusion **0.5% improvement** over only visual attention
 - Attention modeling: visual attention, question-attention, **co-attention**
 - Fusion: Concat, MCB, MLB, MUTAN, MFB, **MFH**
 1.6% improvement over MCB w/o attention

- Answering modeling
 - Answer sampling+softmax, Cross-entropy, **multi-label KLD**
 0.3% improvement over AS+softmax
Our reference model

• 1 layer LSTM(w/ GloVE) + Bottom-up attention feature (K=[10,100]) + MFH-CoAtt (# Q. glimpses=2, # I. glimpses=2) + KLD
• VQA-2.0, train on <train+val>, test on <test-dev>
• **Overall: 68.76, Y/N: 84.27, Num: 49.56, Other: 59.89**
Our reference model

- 1 layer LSTM(w/ GloVE) + Bottom-up attention feature (K=[10,100]) + MFH-CoAtt (# Q. glimpses=2, # I. glimpses=2) + KLD
- VQA-2.0, train on <train+val> , test on <test-dev>

Overall: 68.76, Y/N: 84.27, Num: 49.56

Improvement

• Inspiration:
 • The **representation capacity** of visual features is the bottleneck for VQA
 • Current Bottom-up attention features (Faster R-CNN with ResNet-101) is good, but can be better
Improvement

• Inspiration:
 • The **representation capacity** of visual features is the bottleneck for VQA
 • Current Bottom-up attention features (Faster R-CNN with ResNet-101) is good, but can be better

• Our initial solution
 • Replace Faster R-CNN (w/ ResNet-101) with a better model, e.g., FPN (w/ ResNet-152)
 • Migrate the project from *Caffe* to *Detectron*, and train the FPN model (ResNet-152 model) on Visual Genome.
 • We obtain the new 1024-D bottom-up features. However, the performance is not as competitive as the original 2048-D features 😞
Mixture of Detectors (MoD) features

• Combine the bottom-up attention features from multiple object detectors
 • Can not directly combine the two features \textit{w/o alignment}, as the predicted bboxes of detectors are different.
Mixture of Detectors (MoD) features

- We use the predicted bboxes of one model and extract bottom-up features from each detector using a Fast-R-CNN like strategy.
- The extracted features are **aligned** and we simply concat them to obtain the MoD features.
Implementation Details

• Two object detectors trained on Visual Genome with different backbone models
 • Detector #1: the original bottom-up model, i.e., Faster-RCNN (ResNet-101), 2048-D output feature for each bbox
 • Detector #2: FPN (ResNet-152 pre-trained on ImageNet-5k), 1024-D output feature for each bbox
 • MOD feature: 2048+1024=3072-D

• Two strategies in bboxes generation
 • Dynamic K range from 10~100, K is the number of predicted bboxes*
 • Fix K=100

* https://github.com/peteanderson80/bottom-up-attention
Experimental Results (single model)

- Trained on <train+val>, tested on <test-dev>

<table>
<thead>
<tr>
<th>Models</th>
<th>Overall (%)</th>
<th>Y/N (%)</th>
<th>Num (%)</th>
<th>Others (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference model (K=[10,100])</td>
<td>68.76</td>
<td>84.27</td>
<td>49.56</td>
<td>59.89</td>
</tr>
<tr>
<td>MoD (K=[10,100])</td>
<td>69.47 (+0.71)</td>
<td>85.35 (+1.08)</td>
<td>49.85 (+0.29)</td>
<td>60.39 (+0.50)</td>
</tr>
<tr>
<td>MoD (K=100)</td>
<td>69.82 (+1.06)</td>
<td>85.86 (+1.59)</td>
<td>49.37 (-0.19)</td>
<td>60.79 (+0.90)</td>
</tr>
</tbody>
</table>
Experimental Results (single model)

- Trained on <train+val>, tested on <test-dev>

<table>
<thead>
<tr>
<th>Models</th>
<th>Overall (%)</th>
<th>Y/N (%)</th>
<th>Num (%)</th>
<th>Others (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference model</td>
<td>68.76</td>
<td>84.27</td>
<td>49.56</td>
<td>59.89</td>
</tr>
<tr>
<td>(K=[10,100])</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MoD (K=[10,100])</td>
<td>69.47 (+0.71)</td>
<td>85.35 (+1.08)</td>
<td>49.85 (+0.29)</td>
<td>60.39 (+0.50)</td>
</tr>
<tr>
<td>MoD (K=100)</td>
<td>69.82 (+1.06)</td>
<td>85.86 (+1.59)</td>
<td>49.37 (-0.19)</td>
<td>60.79 (+0.90)</td>
</tr>
</tbody>
</table>

- MoD brings **0.71%** improvement over the reference model with the same bboxes
- Using fix K=100 bring about **0.35%** improvement over K=[10,100] for MoD features, but performance for <Num> type is even lower than the reference model
Experimental Results (ensemble)

Accuracy (%) vs. # models
Experimental Results (ensemble)

Submitted Final Results (12 models)

Test-dev
All: 71.75;
Y/N: 87.32; Num: 52.15; Other: 62.93

Test-std
All: 72.09
Y/N: 87.61; Num: 51.92; Other: 63.19

Test-challenge
All: 71.91
Experimental Results (ensemble)

Submitted Final Results (12 models)

Test-dev
- **All:** 71.75;
- **Y/N:** 87.32; **Num:** 52.15; **Other:** 62.93

Test-std
- **All:** 72.09
- **Y/N:** 87.61; **Num:** 51.92; **Other:** 63.19

Test-challenge
- **All:** 71.91

Introducing 4 diverse models with MoD (K=[10,100]) obtain additional 0.7% improvement
Visualizations

• MoD (K=100) vs. MoD (K=[10, 100]) on <Others>
 • Larger K tends to discover more details of the image, which makes its performances on <Y/N> and <Others> better

Q: What side of the street are cars parked on?

A: both √
A: right ×

attention map for MoD (K=100)
attention map for MoD (K=[10, 100])
Visualizations

- MoD (K=100) vs. MoD (K=[10, 100]) on \(<Y/N>\)

Q: Are the zebras in the wild?

A: Yes ✓

There are fence and wood pile here

attention map for MoD (K=100)

A: No ×

attention map for MoD (K=[10, 100])

Q: Are the zebras in the wild?
Visualizations

• MoD (K=100) vs. MoD (K=[10, 100]) on `<Num>`
 • Larger K leads to more redundant bboxes for one object, which makes it harder to learn correct visual attention

Q: How many sandwiches can you see?

A: 6 ✗

A: 4 ✓
Take-away

• The **capability of visual features** are still the core for VQA (and other related tasks, e.g., visual grounding).

• Using **Mixture of Detectors (MoD)** features can still improve the VQA performance even with a strong reference model.

• Fix K=100 is better than dynamic K=[10,100] on overall accuracy, but they both have advantages on some aspects over each other.

• Ensemble of **diverse models** are important to further boost the performance.
Q&A

• Special thanks to:
 • VQA Challenge organizers
 • Peter(@peteranderson80) to release the bottom-up-attention codes and models
 • FAIR for releasing the Detectron project

• Our papers and codes
 • Yu et al., Multi-modal Factorized Bilinear Pooling with Co-attention Learning for Visual Question Answering, ICCV 2017
 • Yu et al., Beyond Bilinear: Generalized Multi-modal Factorized High-order Pooling for Visual Question Answering, IEEE TNNLS 10.1109/TNNLS.2018.2817340
 • https://github.com/yuzcccc/vqa-mfb
Team HDU-UCAS-USYD with members
Zhou Yu¹, Jun Yu¹, Chenchao Xiang¹, Liang Wang¹, Dalu Guo³, Qingming Huang², Jianping Fan¹ and Dacheng Tao³

1. Hangzhou Dianzi University, China
2. University of Chinese Academy of Science, China
3. The University of Sydney, Australia