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Abstract

In recent years, the application of sparse coding
techniques has led to frameworks that match or set
the state-of-the-art in object recognition tasks. De-
spite such success, applying sparse coding to vi-
sion tasks presents unique challenges and many pa-
pers addressing these concerns appear in top con-
ferences annually. This paper acts as an introduc-
tion to the subject of sparse coding, identifies the key
research areas improving its applicability to recogni-
tion tasks, and surveys recent approaches to treating
these challenges.

1 Introduction

The study of sparse coding techniques has a complex
history with roots in statistics [41, 37, 8, 12], neuro-
science [39, 40] , and signal processing [7, 6] (where
it is often known as compressed sensing). The gen-
eral goal of sparse coding is to find a “good” recon-
struction of an input signal using a linear combina-
tion of only a “few” elements taken from some dic-
tionary. In early work with signal compression, the
dictionary was often manually designed as a set of
wavelets or Gabor filters.

In their 1997 seminal work, Olshausen and Field
[40] extend their earlier work [39] by applying sparse
coding to learn an overcomplete dictionary from nat-
ural image patches. The resulting dictionary shared
properties thought to be at work in the human vi-
sual cortex (i.e. the basis are localized, oriented, and
band-pass). Building on this formulation, works by
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Figure 1: Example learned dictionary taken from [14]. Note
how many of the bases appear to be Gabor filters.

Elad et al. [14] and Raina et al. [42] in 2006 helped to
introduce sparse coding techniques to common prob-
lem frameworks in vision like hand-written charac-
ter recognition, image denoising, and object recog-
nition.

Since then, sparse coding techniques have been
applied with great success to both low and high level
vision tasks, including face recognition [53], im-
age classification [45, 47, 50, 25], image denoising
and inpainting [14, 2, 36], and anomaly detection in
video [58]. Much of this success has been attributed
to learning the dictionary from unlabeled task spe-
cific training data instead of using predesigned basis
sets [2, 24, 42, 38]. This theme of transfer learning
has been seen before in computer vision as the pop-
ular bag-of-words (BoW) models [10] and in fact,



sparse coding can fit quite well as a substitute to
BoW models in modern classification architectures
[50, 4, 25, 42].

Despite their success, applying sparse coding
techniques to recognition problems in vision gives
rise to unique challenges, which are separate from
the concerns over reconstruction fidelity which dom-
inated their early development. This paper covers re-
cent work on three of the most prominent challenges
being treated by researches:

Invariance and Robustness

Sparse coding is unstable with respect to trans-
lation and rotation when applied to images.
Even small changes can result in completely
different sets of optimal reconstruction basis,
such that similar image patches may end up dis-
tant in the encoding. This can have negative ef-
fects when sparse coding is used as a feature
extraction step in classification or recognition
tasks [52, 47, 26, 21]. Additionally, the most
common form of the sparse coding problem im-
plicitly assumes Gaussian noise in the recon-
struction error and is prone to overfit to poorly
reconstructed patches [53].

Supervised Discriminative Dictionary Learning
Although it performs quite well in classifica-
tion frameworks, sparse coding is designed to
minimize the reconstruction error under spar-
sity constraints and not to be used as a discrimi-
native feature encoding. Further improvements
can be made by incorporating class labels and
differentiable classifiers into the sparse coding
formulations to explicitly encourage discrimi-
native dictionaries [35, 25, 52, 5].

Efficient Sparse Coding for Large Datasets
Many classification problems in vision are bur-
dened by tremendous quantities of data. This
is due to both the fact that images are implicitly
high dimensional and also that the best perform-
ing techniques require dense sampling of im-
age regions. Specialized algorithms for learning

and encoding can help improve applicability of
sparse coding techniques to large scale or real
time vision problems [34, 45, 58, 51, 22, 51].

The structure of the paper from this point will
be as follows. Section 2 covers the general theory
of sparse coding. Sections 3, 4, and 5 each dis-
cuss recent work in one of the identified research
areas. Section 6 concludes by discussing future re-
search opportunities to improve the applicability of
sparse coding to vision problems and specifically ob-
ject recognition.

2 Terminology and Common
Formulations

As would be expected of a subject with such diverse
source and application domains, the terminology and
formulation varies between authors and fields. One
goal of this paper, in addition to familiarizing the
reader with the history and current research ques-
tions in sparse coding, is to help disambiguate the
differing terminology. The most common terminol-
ogy in the vision community will be used, but foot-
notes will provide alternative syntax seen during the
literature review.

In modern vision frameworks, sparse coding is di-
vided into two sub-problems; learning a dictionary
that well represents the training data and encoding
input signals sparsely. In the following two subsec-
tions these problems are defined and discussed in
their most common formulations.

2.1 Sparse Reconstruction

Concretely, the goal of sparse coding, given a signal
vector ; € R* and a highly overcomplete' dictio-
nary D € R¥*™ where each column d; is called a
basis 2, is to produce the sparsest linear coefficients
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*The term basis is an abuse of notation here in that the dictio-
nary is overcomplete. Other terms used include receptive fields,
prototypes, atoms, basis vectors, basis elements, visual words,
and codewords.



over the columns of D that best reconstruct ;. This
optimal encoding is given as the solution to the con-
strained optimization in equation (1).

Sparsity

—~ =

argmin ¥(a)
acR™

s.t. f(x,Da) =0
——

af = (1
Coding Error

This optimization is usually presented as its La-
grangian dual as in equation (2). 3

o = argmin f(z, Da) + A\¥(a)
a€R™

2

For most applications, the coding error f(x, Do)
takes the form of the sum of squared error, ||z —
Dal|2, which makes implicit assumptions about the
Gaussian distribution of reconstruction error.* The
choice for the sparsity function ¥(«) divides the do-
main into hard and soft sparseness.

When a non-differentiable function is used, the en-
coding is considered a hard sparseness problem. The
most commonly used hard sparsity constraint is the
£p-quasi-norm, denoted | |||y, which counts the non-
zero elements of a vector. When this is used, the
optimization becomes a combinatorial problem and
producing exact solutions is NP-hard [45, 44]. Many
greedy and approximate algorithms have been devel-
oped to provide good solutions in practice, such as
pursuit algorithms [41, 37, 8] and active set methods
[29].

When ¥(a) is selected as a differentiable func-
tion, this formulation is considered a soft sparseness
problem and traditional continuous optimization al-
gorithms like gradient descent can be applied. In par-
ticular, when the ¢; norm is used in conjunction with
the sum of squares reconstruction error, the prob-
lem reduces to ¢;-regularized linear regression for

3Note that the X here is the reciprocal of the Lagrange multi-
plier that would be present if the Lagrange method were applied
directly to (1).

4See Lewicki and Sejnowski [30] for in-depth discussion of
the underlying probabilistic framework.

which many specialized algorithms have been devel-
oped. Some of the more popular in the literature are
the LASSO method [46], least angle regression [13],
pathwise coordinate optimization [20], the iterative
shrinkage and thresholding algorithm [11, 3], and co-
ordinate descent [32].

For most sparse coding applications in vision, soft
sparseness is the preferred formulation as it provides
more freedom in selecting optimization approaches
and because it has been shown that for most large
underdetermined systems, the ¢;-norm constrained
solution is also the sparsest [12].

2.2 Dictionary Learning

The solution to the overcomplete dictionary learning
problem given a dataset X = {z;}", for sparse
coding can be expressed as the dictionary with
the minimum reconstruction error and sparsity
summed over the whole of X. The two most
common formulations are show in equations (3)
and (4) corresponding to soft and hard sparseness
respectively.
Soft Sparseness
D* = argmin Z min ||z; — Dal|3 + |||y
6

zr,€X

2 .
st ||dilla =1,Vi=1,....m 3)
The regularization of the columns of D is to guard
against trivial solutions where the basis become

large to reduce the magnitude of the corresponding
a’s.
Hard Sparseness
D* = argmin Z Hgn||;1cZ — Dalf3
T, €X
st lallo < T “)
These are difficult non-convex optimization prob-
lems; however, each can be decomposed into two
sub-problems. When the encodings are fixed, the



optimization reduces to a convex least squares prob-
lem, and when D is fixed the problem of encoding is
solved as in the above section. Many algorithms take
advantage of this and alternate between the two sub-
problems until convergence [2, 29, 38, 26, 55, 51].
Other approaches build on the probabilistic frame-
work of Olshausen and Field [40] and explicitly
model distribution assumptions to arrive at analytic
solutions [5, 30].

One of the most influential approaches to solving
both the hard and soft sparseness problems is the
K-SVD algorithm presented by Aharon, Elad, and
Bruckstein [2]. K-SVD acts as a generalization of
the well-known k-mean’s algorithm and, as the name
implies, makes use of k singular value decomposi-
tions to update the dictionary. The algorithm alter-
nates between encoding and dictionary update steps;
moreover, the dictionary updates are done sequen-
tially for each column d; of D by fixing all other
columns. This update is done by finding the singular
value decomposition of the matrix of reconstruction
errors when d; would have been used, but is with-
held. When a column is updated, corresponding al-
terations to codes using that column are made. This
has been shown to greatly improving the conver-
gence rate as further columns updates within one dic-
tionary update step benefit from the new information.
Aside from its quick convergence, another advantage
of K-SVD is that it is flexible enough to utilize any
encoding technique during the update phase. Many
newer approaches have made use of the K-SVD al-
gorithm and multiple enhancements have been pro-
posed [24, 38, 25] .

3 Inducing Invariance
and Robustness

Advancements in feature pooling techniques, such as
spatial pyramid approaches [27], applied to sparse
coding based classification and recognition frame-
works have helped to alleviate translation variance in
feature extraction [55, 50, 4]; however, sparse coding
techniques suffer from another source of instability.

The general reconstructive sparse coding framework
only weakly encourages similar input signals to be
encoded by similar sparse codes and in practice it
has been shown that only a minor correlation exists
between the two similarities. This can have negative
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Figure 2: Correlation between similarity of SIFT features and
corresponding sparse codes in [21].

consequences in a classification framework, where
minor warpings or rotations could result in very dif-
ferent encodings [21]. Two of the recent approaches
addressing this problem are presented here.

Wang et al. [47] presented a sparse coding frame-
work for recognition based on locality-constrained
linear coding (LLC) [56]. This scheme encourages
similar encodings for similar input signal by weight-
ing the sparsity constraint based on signal and basis
similarity. The usual sparsity constraint is replace by
||2; ® c;||* where ® is the element wise multiplica-
tion operator and z; is a vector of weights based on
the distance between the input signal and each ba-
sis. This term penalizes large coefficients for basis
vectors that are distant from the input in the origi-
nal signal space. The authors show this modified ob-
jective function has a closed form analytic solution;
however, computing it can be expensive for large
datasets.

The authors also suggest an even more efficient
framework that provides a further approximation to
the LLC theory. In this setting, a vector is encoded
by finding its k-nearest neighbor basis vectors and
then solving the much smaller encoding problem of
taking just these bases as the dictionary. An itera-
tive algorithm is also presented to optimize the code-
book utilizing this encoding scheme. This approx-



imate method was applied to the Caltech 101 [18]
and Pascal VOC 2007 [16] datasets. In both they
compared favorably to the other contemporary ap-
proaches and occasionally yielded higher average ac-
curacy. A comparison with the current leading algo-
rithms can be seen in Figure 3.

A similar framework was proposed by Gao et
al. [21]. The approach augments the usual soft spar-
sity objective function with a term that penalizes the
distance between all pairs of encodings in the train-
ing set. The individual terms of this summation are
weighted by the similarity of the corresponding input
signals. As it is impractical to compute pairwise dif-
ferences between every signal for large training sets,
the authors make use of a smaller subset consisting
of “template” features.

The learning algorithm is initialized by subsam-
pling the training set into a much smaller set of ex-
emplars. A dictionary is learned over this set with
the proposed objective function, utilizing all pair-
wise distances. When a new feature is to be encoded,
a weight vector is computed over the set of template
features. Specifically the weights for the new sig-
nal’s k-nearest neighbors are computed by some dis-
tance function (in this case histogram intersection)
and the other entries are set to zero. In this way fea-
tures are encouraged to have the same set of encod-
ing basis as similar features in the template space.
This encoding method can be used as a subroutine
for K-SVD based approaches.

The authors apply this approach, coupled with
a spatial pyramid pooling method, to a number of
object recognition and scene recognition tasks with
competitive results. Again a comparison with other
leading results can be seen in Figure 3.

The added accuracy of these methods over similar
sparse coding approaches that do not encourage in-
variance shows that there is room to tune the general
reconstructive formulation to better suit its role as a
feature extractor in a classification setting.

4 Supervised Discriminative
Dictionary Learning

Mairal et al. [35] extended the K-SVD algorithm to
learn dictionaries optimized for classification prob-
lems. Given some labeled data points {x;,y; }j\f: 1
from Y classes the approach simultaneously trains a
set of dictionaries D = {D;}Y_; using a modified
objective function defined as

CF ({R* (24, Dy) }yn)

N Y
D* = argmin E E
D=

+ R, Dj), ®)

where C;* is the softmax cost function and
R*(z, Dj) is the coding error when the optimal «
is used. The softmax cost function C;* nears its min-
imum when the 7th input element is the smallest val-
ues of the set. This formulation produces dictionaries
that are good at reconstructing members of their cor-
responding class, but poor at reconstructing signals
from other classes. The authors modify the K-SVD
algorithm to optimize this new objective function.

At classification time, the reconstruction error
from the dictionaries is directly used to select the
labeling (i.e. the assigned label is the label of the
dictionary that best reconstructs the input). The in-
clusion of the Ci)‘ term can be thought of as a differ-
entiable approximation of the loss function for the
min-classifier being used, although the authors do
not frame it in this manner. This method can then
be understood as directly optimizing the dictionar-
ies for greater performance with a specific classifier
- an approach that is popular in more recent work on
discriminative dictionaries.

Yang et al. [52] made this idea explicit by devel-
oping a framework which optimizes the dictionary
along with a set of regularized classifier parameters,
w, to minimize a classification loss function. The er-
ror function is given in equation (6) where X; is a



training image.

N
E(w,D) =Y Uy, f($(Xi, D), w)) + Aljw|[3

i=1

(6)
In the above equation £(-) is the loss function, f(-)
is the classifier, and ¥ (X;, D) is the image level fea-
ture. 1 (X;, D) is constructed by combining all of
the encoded features extracted from the image. The
image level feature could be formed by spatial pyra-
mid pooling for example. The authors present a sim-
ple stochastic gradient descent based approach to op-
timize w and D - utilizing work on back propaga-
tion for sparse coding via implicit differentiation by
Bradely and Bagnell [5].

The authors present results of this method on mul-
tiple face recognition and OCR datasets using a lin-
ear SVM and global max pooling of encoded raw
image patches. In these tests, the supervised model
always outperformed the unsupervised version and
often made improvements upwards of 40%. The
framework was also compared favorable to other
techniques including local coordinate coding, convo-
lutional neural networks, and deep belief networks.

A similar framework using a simple linear predic-
tor with a squared error loss function was developed
by Zhang et al. [57]. The K-SVD algorithm is di-
rectly used to perform the optimization. This is ac-
complished by transforming the input and dictionary
variables such that

~ xX; ~ D

=]l
where y; is the class label of the ¢th datapoint and the
matrix W is the parameter for the linear predictor,
y; = Wx;. Using the K-SVD framework, both the
dictionary and W are optimized to produce encod-
ings that recover the input well and lend themselves
more easily to class prediction.

This approach was further refined in 2011 by
Jiang, Lin, and Davis [25], producing the Label Con-
sistent K-SVD (LC-KSVD) algorithm. In addition to
the squared classification error term, Jiang et al. add

a label consistency term that encourages individual
dictionary basis to contribute to the reconstruction
of training vectors from as few classes as possible -
ideally just one. Again the K-SVD algorithm is used
to perform the optimization and the authors apply the
same concatenation idea presented above to include
the label consistency terms. The authors compare the
LC-KSVD algorithm to twelve other methods on the
Caltech101 object recognition dataset [18] including
the approaches by Yang et al. and Zhang et al. pre-
sented here. The results show marked improvement
over all compared methods.

The success of these approaches in object recog-
nition underpins the benefits of taking holistic ap-
proaches, where the encoding framework and clas-
sifier provide feedback rather than being trained se-
quentially.

S Improving Efficiency for
Large Scale Tasks

5.1 Online Learning

Mairal et al. [34] present an online dictionary learn-
ing algorithm for sparse coding, which shows im-
pressive gains in efficiency compared to the contem-
porary batch approaches. The authors also compared
computation time with the stochastic gradient de-
scent based solution presented by Aharon and Elad
[1]. Both algorithms reconstructed the input signals
well; however, this was only after significant tuning
of the learning parameter for the stochastic gradi-
ent descent method. The online algorithm presented
does not have these sensitive tuning parameters. The
algorithm allows efficient computation of dictionar-
ies from large corpuses of training data and can in
some cases converge to better solutions than batch
algorithms.

The proposed algorithm alternates between encod-
ing and dictionary updates to minimize the expecta-
tion of the cost function defined in equation (3). In
the encoding phase, a random input vector is sam-
pled from the training set and the encoding prob-



lem is solved via least angle regression [13] based
on the previous iteration’s dictionary. The algorithm
then optimizes the dictionary using coordinate de-
scent [32] taking the previous dictionary as a warm
restart. The algorithm is proven to converge to a sta-
tionary point given some reasonable and enforceable
assumptions.

Zhao et al. [58] made use of this technique and an
augmented reconstruction error function to dynami-
cally learn and detect unusual events in video, with-
out the need for large training example sets or direct
supervision. Their approach out-performed another
leading approach in multiple test video sequences.
Perhaps more importantly, it performed better than a
static dictionary learned on the first five minutes of
each video, demonstrating the advantage of adapting
the dictionary in on-going tasks.

5.2 Approximate Encoding

Gregor and LeCun [22] modify two existing itera-
tive encoding techniques to provide better approxi-
mate optimal codes after a fixed number of iterations
by learning dictionary and input distribution specific
parameters. The experiments demonstrate that the
learning process reduces the approximation error of
the base models when the number of iterations are
fixed, showing that sparse encoding in fixed time can
be accomplished with low additional error. This is
a matter of great importance to time sensitive vision
applications.

The authors modify two popular iterative encod-
ing algorithms; the iterative shrinkage and thresh-
olding algorithm (ISTA) and coordinate descent pre-
sented by Daubechies et al. [11] and Li and Osher
[32] respectively. ISTA operates on a given input
vector X by recursive application of equation (7) un-
til convergence.

it = ho(Wex + Soz(i)) 7

In the above equation, .S is a mutual inhibition ma-
trix, W, is a scaling of the dictionary, and hg is a
component-wise non-linear shrinkage function with

thresholds 6. In this work the default values for these
parameters are replaced by a set learned through pre-
dicting the codes of the training set and then back-
propagating the error. The coordinate descent algo-
rithm works similarly but only updates one entry of
« at a time; selected as the component that would
have the greatest effect.

For a fixed number of iterations (i.e. a con-
stant run-time) the trained approaches, referred to as
LISTA and LCoD, outperform their corresponding
base algorithms. This demonstrates that these meth-
ods are very useful for time sensitive tasks; however,
there are no guarantees of convergence. Performance
may in fact decrease if they are run for more itera-
tions than used to train the encoders.

5.3 Exploiting Structure

Inducing a structure within sparse coding formula-
tions is a common approach to encourage similar
input vectors are reconstructed with similar coeffi-
cients; however, structure can also be exploited to
improve the efficiency of sparse coding approaches.
Two recent papers exemplifying this approach will
be presented. In both papers the input space is par-
titioned and differing dictionaries are used to encode
each partition.

The first by Yang, Yu, and Haung [51] intro-
duces an efficient methodology to produce and en-
code from massive dictionaries (> 250,000 basis).
The authors use a maximum likelihood approach to
simultaneously learn a M component mixture model
and a set of M dictionaries D,, € R¥*d each as-
signed to one mixture component. Reconstruction
error is modeled as a zero mean, isotropic Gaussian
and sparsity is induced by a Laplacian prior similar
to work in [30]. An expectation maximization algo-
rithm is used to optimize the model by alternating be-
tween optimizing the mixture parameters, modifying
the mixture dictionaries to better reconstruct training
vectors assigned to the corresponding mixture com-
ponent, and updating the mixture weights. At encod-
ing time a feature is assigned to multiple mixtures
based on the mixture posteriors and the sparse codes



are extracted from each dictionary and concatenated.
As the number of mixtures is usually much larger
than the associated dictionary sizes, the individual
computation of the encodings is swift while the ef-
fective dictionary size M d is quite large.

The authors claim this method is a good approx-
imation of local coordinate coding theory [56] in
which a non-linear function is approximated by lo-
cally linear subspaces. The theory provides an upper
limit to the approximation error based on the number
of subspaces (called anchor points) and their local
approximation accuracy. Additionally, by employ-
ing spatial pyramid matching and a dictionary of ef-
fective size 262,144, the approach resulted in state-
of-the-art accuracy on the VOC 2007 [16] and VOC
2009 [17] datasets.

The second work, presented by Szlam et al. [45],
also partitions the space and modifies the dictionar-
ies used by each subspace; however, it does so in an
even less computationally intensive framework, en-
abling real time object recognition. When applied to
the Caltech 101 dataset [18], the approach performed
only slightly worse than a full orthogonal matching
pursuit framework at a fraction of the time cost.

The approach is concerned with learning a set of L
groups, where each group is linked to a set of m dic-
tionary basis, and some hash function h(x), which
maps an input vector to the group which can best re-
construct it. The authors accomplish this efficiently
by letting the hash function h(z) be a 2-means tree
in the input space, with each leaf assigned to a group.
The optimization iterates over three stages: each leaf
is assigned to the group that best reconstructs the set
of training vectors in that leaf, each group selects the
set of indices to best represent the training vectors
assigned to it via a modified version of orthogonal
matching pursuit, and then the dictionary is updated
holding the encodings fixed.

At encoding time the new vector is passed through
the tree until it reaches a leaf node where the encod-
ing problem is solved on the group bases. This is
a much smaller problem than over the whole dictio-
nary and can be solved quickly. Using this method

with a efficient pseudo-SIFT implementation and
the spatial pyramid matching technique, the authors
achieved comparable accuracy on the Caltech 101
dataset[18] at a stunning speed of 22 frames per sec-
ond on a quad-core computer.

These results show the capabilities of sparse cod-
ing approaches to achieve reasonable efficiency even
as the size of the dictionary grows.

6 Future Work

It is clear that adaptions to the classic sparse coding
framework can be applied to better suit the approach
to object recognition and other classification tasks in
vision. Further methods should be explored in all
three presented topics to improve the applicability of
sparse coding techniques to classification problems.

One suggestion for future work is combining su-
pervised dictionaries (such as that in [25]) with fast
approximate encoding approaches (like [22]) under
the same optimization framework. This approach
seems capable of producing better results than the
individual algorithms applied sequentially (i.e. a dis-
criminative dictionary and associated classifier are
trained, and then new input signals are encoded ap-
proximately). It should stand to reason that combin-
ing the learning of the dictionary, the approximate
encoding parameters, and the classifier in the same
framework has certain advantages. The exchange of
information between the three elements should al-
low for approximations that better fit the dictionary
and are more likely to properly encode important dis-
criminative bases to reduce the classifier loss. Addi-
tionally, the dictionary would adjust to improve the
reconstruction error of the approximate encodings.
The result should be a framework that can accurately
make predictions in constant time.
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