ECE 6504: Deep Learning
for Perception

Topics:
— Recurrent Neural Networks (RNNs)
— BackProp Through Time (BPTT)
— Vanishing / Exploding Gradients
— [Abhishek:] Lua / Torch Tutorial

Dhruv Batra
Virginia Tech
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Administrativia

« HWS3
— Out today
— Due in 2 weeks
— Please please please please please start early
— https://computing.ece.vt.edu/~f15ece6504/homework3/
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Plan for Today

 Model

— Recurrent Neural Networks (RNNs)

* Learning
— BackProp Through Time (BPTT)
— Vanishing / Exploding Gradients

« [Abhishek:] Lua / Torch Tutorial
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New Topic: RNNs

one to one one to many many to one many to many many to many

INFINITE RECURSION

INFINITE RECURSION

YOu GOTTA KNOW WHEN TO QUIT

INFINITE RECURSION

You GOTTA KNOW WHEN TO QUIT

INFINITE RECURSION
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Synonyms

* Recurrent Neural Networks (RNNs)

* Recursive Neural Networks
— General familty; think graphs instead of chains

« Types:
— Long Short Term Memory (LSTMs)
— Gated Recurrent Units (GRUSs)
— Hopfield network
— Elman networks

» Algorithms
— BackProp Through Time (BPTT)
— BackProp Through Structure (BPTS)
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What's wrong with MLPs?

* Problem 1: Can’t model sequences
— Fixed-sized Inputs & Outputs
— No temporal structure

* Problem 2: Pure feed-forward processing
— No “memory”, no feedback

Output Layer

Hidden Layers

Input Layer
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Sequences are everywhere...

7'07‘6% M/@/ el FOREIGN MINISTER.

W sl THE SOUND OF

x = bringen sie Dbitte das auto zuriick

AN/

= please return
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Even where you might not expect a sequence...

Vision Language A grOU_P of peOpIe
Deep CNN Generating ShOpplng at an
RNN outdoor market.

There are many
vegetables at the
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fruit stand.
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Even where you might not expect a sequence...

* |nput ordering = sequence

...................

viviviw

......
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Why model sequences?

}irl7lC (€

Figure Credit: Carlos Guestrin
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Why model sequences?

e oo
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Name that model

glelelele
glelclclE

Hidden Markov Model (HMM)
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How do we model sequences?

* No input

st = fo(8¢—1)

St_1 S St+1
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How do we model sequences?

« With inputs
= fo(st—1, xt)
St41
1111fk)1(1 I I I
Lt4+1
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How do we model sequences?

« With inputs and outputs

U unfold

£z
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How do we model sequences?

 With Neural Nets

Output Layer

Input Layer
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How do we model sequences?

* It's a spectrum...

one to one one to many many to one many to many many to many

Input: No

sequence Input: No sequence Input: Sequence Input: Sequence
Output: No Output: Sequence Output: No Output: Sequence

sequence Example: sequence Example: machine translation, video captioning, open-
Example: Im2Caption Example: sentence ended question answering, video question answering
“standard” classification,
classification / multiple-choice
regression question answering
problems
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Things can get arbitrarily complex

VAR NARN
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Key Ideas

« Parameter Sharing + Unrolling
— Keeps numbers of parameters in check
— Allows arbitrary sequence lengths!

° “Depth”
— Measured in the usual sense of layers
— Not unrolled timesteps

* Learning
— Is tricky even for “shallow” models due to unrolling
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Plan for Today

 Model

— Recurrent Neural Networks (RNNs)

* Learning
— BackProp Through Time (BPTT)
— Vanishing / Exploding Gradients

« [Abhishek:] Lua / Torch Tutorial
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lllustration [Pascanu et al]

* |ntuition
» Error surface of a single hidden unit RNN; High curvature walls

» Solid lines: standard gradient descent trajectories
» Dashed lines: gradient rescaled to fix problem

'0.35
'0.30
'0.25
e O
0.20 =
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'0.10
'0.05
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Fix #1

 Pseudocode

Algorithm 1 Pseudo-code for norm clipping the gra-
dients whenever they explode

g« 95
if ||g
g <

end if

> threshold then

threshold A
I
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Fix #2

 Smart Initialization and RelLus

— [Socher et al 2013]
— A Simple Way to Initialize Recurrent Networks of Rectified

Linear Units, Le et al. 2015

Pixel-by—pixel permuted MNIST
T T T T T

T T

LSTM
90 H === RNN + Tanh
RNN + RelUs

IRNN

Test Accuracy
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