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Abstract

A fault-oriented sequential circuit test generator is
described in which various types of distinguishing se-
quences are derived, both statically and dynamically,
to aid the test generation process. A two-phase algo-
rithm is used during test generation. The �rst phase
activates the target fault, and the second phase prop-
agates the fault e�ects (FE's) from the 
ip-
ops with
assistance from the distinguishing sequences. This
strategy improves the propagation of FE's to the pri-
mary outputs, and the overall fault coverage is greatly
increased. In our new test generator, DIGATE, ge-
netic algorithms are used to derive both activating
and distinguishing sequences during test generation.
Our results show very high fault coverages for the
ISCAS89 sequential benchmark circuits and several
synthesized circuits.

I Introduction

The task of test generation is to �nd a sequence which is ca-
pable of distinguishing the fault-free machine from the faulty
machine resulting from the presence of a fault. Determinis-
tic test generators for sequential circuits attempt to do this
but are prone to large numbers of backtracks and complex
scheduling algorithms [1-11]. Simulation-based test genera-
tors, on the other hand, avoid the complexity of backtracking
altogether by processing in the forward direction only. Several
novel approaches to test generation using genetic algorithms
(GA's) have been proposed in the past [12-19]. Fitness func-
tions were used to guide the GA to �nd a test vector or se-
quence that maximizes given objectives for a single fault or
group of faults. In GATEST [15], the objective of the �tness
function was to maximize the number of faults detected and
the number of fault e�ects (FE's) propagated to 
ip-
ops, and
in CRIS [12] and GATTO [16], increasing the circuit activity
was a dominant objective. The objectives of propagating FE's
to 
ip-
ops and increasing circuit activity have been shown
to increase the probability of detecting faults at the primary
outputs (PO's). Although the fault detection probability im-
proves, propagating a FE from a 
ip-
op to a PO remains
a di�cult problem. Without the knowledge of distinguishing
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sequences, propagation of FE's to the 
ip-
ops is usually done
indiscriminately, resulting in much wasted e�ort, since propa-
gation of FE's from certain 
ip-
ops may not be possible. As
a result, many faults are unable to reach the PO's, yielding
a lower fault coverage. This phenomenon suggests that the
�tness functions used in the past do not exploit the knowl-
edge of fault propagation. For example, the �tness function
objectives fail to avoid fault propagation to hard-to-observe

ip-
ops. In addition, once the FE has reached a 
ip-
op,
the �tness function does not have any speci�c knowledge that
helps to propagate the FE to a PO. Even when a sequence is
found for a given 
ip-
op to propagate the FE's, information
about the sequence often becomes unavailable in the future
when a similar situation arises again.

The presence of a fault creates a faulty machine (circuit
structure) which di�ers from the fault-free machine. In or-
der to detect the fault, these two machines have to be dis-
tinguished. The principal approach taken in this paper is
to use distinguishing sequences in as many places as possi-
ble to reduce the work of rediscovering such sequences. How-
ever, several questions still remain. How many distinguishing
sequences should be generated? By what procedure should
such distinguishing sequences be generated? What types of
sequences should be generated (e.g., sequences that distin-
guish two states, two sets of states, the fault-free machine and
faulty machine, etc.)? Since any procedure for deriving dis-
tinguishing sequences is complex, we cannot indiscriminately
generate many sequences. In addition, a distinguishing se-
quence derived for a fault-free machine may not be valid for
distinguishing a faulty machine from the fault-free machine,
or it may be valid for distinguishing some faulty machines but
not for other faulty machines.

In this paper, we pre-generate a class of distinguishing se-
quences statically for the fault-free machine and also dynam-
ically capture distinguishing sequences for the fault-free and
faulty machines during the test generation process. These se-
quences are then used as seeds for the GA during fault prop-
agation. If these seeds are valid for the present situation, no
further processing is required. Otherwise, we genetically en-
gineer valid sequences from the seeds. In addition to this, the
di�culty of deriving a distinguishing sequence is also taken
into account at run time in the computation of 
ip-
op ob-
servability. This measure of observability is much more accu-
rate than the conventional observability metric and helps to
guide the test generator much more e�ectively.

Previously, homing, synchronizing, and distinguishing



sequences have been used to aid the test generator in �nd-
ing a test sequence [6, 9, 10, 11]. In [6, 9, 11], symbolic
and state-table-based techniques were used to derive these se-
quences in the fault-free machine. In [6], cube intersections of
ON/OFF-set representations were used to derive distinguish-
ing sequences. Binary decision diagrams (BDD's) and implicit
state enumeration were used in [9] to derive synchronizing se-
quences. In the work by Park et al., [11], functional infor-
mation was used to pre-generate sequences which simpli�ed
propagation of FE's from the 
ip-
ops to the PO's, and state
justi�cation was done by using BDD's. Since these sequences
are generated using the fault-free machine only, they become
insu�cient when a faulty machine is encountered. Homing
sequences composed of specifying and distinguishing portions
were used to aid ATPG in [10]. Computations of the spec-
ifying and distinguishing portions of the sequence are done
repeatedly for each fault; thus, no knowledge of distinguish-
ing sequences is stored.

As in the deterministic approach, our new test genera-
tor, DIstinguishing sequences GA-based TEst generator, DI-
GATE, targets one fault at a time and divides the test gen-
eration process into two phases: fault activation and fault
propagation. Fault activation excites the fault and propa-
gates the FE's to a PO or at least one 
ip-
op. Fault prop-
agation propagates the FE's from one or more 
ip-
ops to a
PO, possibly through several time frames. Both phases are
performed using the GA framework, with appropriate distin-
guishing sequences seeded in the GA during the fault propaga-
tion phase. FE's may reach multiple 
ip-
ops at the end of the
activation phase, which will require the use of several distin-
guishing sequences in the propagation phase; therefore, the list
of distinguishing sequences is pruned adaptively over time to
increase the power and accuracy in distinguishing the states.
When a sequence is found that successfully propagates the
FE's to the PO's, a fault simulator is invoked to remove any
additional faults detected by the sequence. Flip-
ops which
do not have distinguishing sequences are identi�ed during the
process, and propagating FE's to these hard-to-observe 
ip-

ops is avoided. DIGATE targets all faults until little or no
more improvement is made. Results of DIGATE on the IS-
CAS89 sequential benchmark circuits and several synthesized
circuits show very high fault coverages.

The remainder of the paper is organized as follows. Sec-
tion II brie
y describes the genetic algorithm and simulation
frameworks used in this work. Section III gives details about
the DIGATE algorithm, including generation and pruning of
distinguishing sequences, as well as selection of target faults
and �tness evaluation. Experimental results are given in Sec-
tion IV, showing the e�ectiveness of DIGATE, and Section V
concludes the paper.

II Genetic Algorithms for DIGATE

DIGATE uses a GA framework similar to the simple GA de-
scribed by Goldberg [20]. The GA contains a population of
strings, or individuals, in which each individual represents a
sequence of test vectors. The population size used is a func-
tion of the string length, which depends on both the number
of primary inputs (PI's) and the test sequence length. Dur-
ing the �rst stage of DIGATE, the population size is set to

4 � square root(sequence length) when the number of PI's is
less than 16 and 16 � square root(squence length) when the
the number of PI's is greater than or equal to 16.

Each individual has an associated �tness, which measures
the test sequence quality in terms of fault detection, distin-
guishing power, and other factors. The �tness function used
in this work depends on the phase of test generation and will
be explained in the next section. The population is initialized
with random strings, and if any distinguishing sequences exist
during the fault propagation phase, these sequences are used
as seeds as well. A fault simulator is used to compute the
�tness of each individual. Then the evolutionary processes of
selection, crossover, and mutation are used to generate an en-
tirely new population from the existing population. Evolution
from one generation to the next is continued until a sequence
is found to detect the target fault or a maximum number of
generations is reached. To generate a new population from
the existing one, two individuals are selected, with selection
biased toward more highly �t individuals. The two individuals
are crossed to create two entirely new individuals, and each
character in a new string is mutated with some small muta-
tion probability. A mutation probability of 0.01 is used in
this work, and since a binary coding is used, mutation is done
by simply 
ipping the bit. The two new individuals are then
placed in the new population, and this process continues until
the new generation is entirely �lled. At this point, the previ-
ous generation can be discarded. In our work, we use tour-
nament selection without replacement and uniform crossover.
In tournament selection without replacement, two individuals
are randomly chosen and removed from the population, and
the best is selected; the two individuals are not replaced into
the original population until all other individuals have also
been removed. Thus, it takes two passes through the parent
population to completely �ll the new population. In uniform
crossover, characters from the two parents are swapped with
probability 1/2 at each string position in generating the two
o�spring. A crossover probability of 1 is used; i.e., the two
parents are always crossed in generating the two o�spring.
Because selection is biased toward more highly �t individuals,
the average �tness is expected to increase from one generation
to the next. However, the best individual may appear in any
generation.

Because one fault is targeted at a time and the majority
of time spent by the GA is in the �tness evaluation, par-
allelism among the individuals can be exploited. Therefore,
parallel-pattern simulation [21] is used to speed up the pro-
cess. In DIGATE, 32 sequences are simulated simultaneously,
with values bit-packed into 32-bit words during simulation. A
fault-free simulation is run, followed by insertion of the fault,
and faulty circuit evaluation, in which events start exclusively
from the faulty gate.

III The DIGATE Algorithm

DIGATE is comprised of three stages; each stage involves sev-
eral passes through the fault list, and a stage is �nished when
little or no improvement in fault coverage is achieved. Faults
are targeted individually within each stage, and GA's are used
to activate a fault and propagate the FE's to the PO's. Each
stage has a di�erent test sequence length for individuals in the
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GA population. A multiple of the structural sequential depth
of the circuit is used as the test sequence length, where the
sequential depth is de�ned as the minimum number of 
ip-

ops in a path between the PI's and the furthest gate. The
sequence length of an individual is set equal to the sequen-
tial depth in the �rst stage, two times the sequential depth in
the second stage, and four times the sequential depth in the
third and �nal stage. The longer sequences may be required
for hard-to-detect faults, but the time required for the �tness
evaluation is directly proportional to the test sequence length.
Therefore, the shorter sequences are tried �rst, and faults are
removed from the fault list once they are detected.

Using GA's to target untestable faults is a waste of time,
since untestable faults cannot be identi�ed using our ap-
proach. Thus, the HITEC deterministic test generator [7] is
used after the �rst GA stage in order to identify and remove
many of the untestable faults. A small time limit of 0.4 sec-
onds per fault is used in an initial HITEC pass through the
fault list to minimize the execution time. If a large number
of untestable faults are identi�ed or if only a small number of
faults remain in the fault list, a second HITEC pass with a
time limit of 4 seconds per fault is used. Any test sequences
generated by HITEC are discarded.

Within each GA stage of DIGATE, a two-phase strategy,
similar to that used in deterministic test generators, is taken,
and a single fault is targeted at a time. The two-phase struc-
ture is illustrated in Figure 1. Both phases use the GA to
�nd test sequences. The �rst phase focuses on activating the
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Figure 1: Two-phase strategy.

target fault, while the second phase tries to propagate the
FE's to the PO's. A target fault is selected from the fault list
in the fault activation phase, and the GA is used to try to
excite the fault and propagate the FE's to a PO or to the 
ip-

ops. If the FE's have successfully propagated to one or more

ip-
ops, any distinguishing sequences corresponding to those

ip-
ops are seeded into the GA, and an attempt is made to
engineer a valid distinguishing sequence for propagating the

FE's to a PO in the fault propagation phase.

Figure 2 illustrates the di�erent types of distinguishing se-
quences. A distinguishing sequence of type A for 
ip-
op i

is de�ned as a sequence which produces two distinct output
responses when applied to the fault-free machine for two ini-
tial states, and the initial states di�er in the ith position and
are independent of all other 
ip-
op values. A type-B dis-
tinguishing sequence for 
ip-
op i is a sequence which, when
applied to the fault-free machine with ith 
ip-
op = 0 (or 1)
and applied to the faulty machine with the same 
ip-
op =
1 (or 0), produces two distinct output responses independent
of the values of all other 
ip-
ops. A type-C distinguishing
sequence is similar to type B except that a subset of 
ip-
ops
are assigned to speci�c logic values.

The value x in the state denotes an unknown or more pre-
cisely a don't care value, and the character S in a state rep-
resents a string of known values (e.g., 1 or 0). The distin-
guishing sequences of type A are pre-generated statically for
the fault-free machine only, while sequences of types B and
C are derived dynamically for both the fault-free and faulty
machines during test generation. Note that the distinguish-
ing sequences of type C may depend on a partial state of the
machine, so they cannot necessarily be applied directly. With
these distinguishing sequences of various types seeded, the GA
is used to evolve a valid distinguishing sequence to propagate
the FE's from the 
ip-
ops to the PO's. The sequences gener-
ated in [11] are similar to the type-A distinguishing sequences,
except that they were generated using BDD's; no pruning of
sequences was done, and sequences of types B and C were
absent. When the sequences fail to distinguish the states for
speci�c faulty machines, no procedure was given to modify the
sequences. In contrast, we use a variety of distinguishing se-
quences and modify them to get valid sequences for each fault.
The following subsections explain our genetically-engineered
distinguishing sequences in greater detail.

A Generation of distinguishing sequences

A distinguishing sequence associated with a 
ip-
op is guar-
anteed to propagate a FE from the given 
ip-
op to the PO's
in fault-free machines. The most general case of generating
such a sequence is as follows. A D = (1/0) is placed at the
output of a 
ip-
op while all other 
ip-
ops in the circuit are
set to unknown values. If a sequence is generated that makes
the D observable at the PO's, the sequence is a distinguish-
ing sequence of type A for the given 
ip-
op in the fault-free
machine. This type of sequence is able to distinguish 22(N�1)

pairs of states in the fault-free machine, where N is the total
number of 
ip-
ops in the circuit. In most circuits, however,
the number of type-A distinguishing sequences is very small;
sometimes none exist at all. In addition, this type of sequence
may not successfully distinguish the states in the fault-free
machine from those in the faulty machine, which is required
when generating a test sequence for a target fault. Fortu-
nately, FE's are often propagated to many 
ip-
ops before
detection at a PO during the course of test generation. This
gives rise to the distinguishing sequences of types B and C.

A distinguishing sequence of type B or C for a 
ip-
op
is speci�c to a target faulty machine (machine resulting from
presence of the target fault). Given a fault-free machineG and
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a corresponding faulty machine F, a type-B sequence would be
able to distinguish 22(N�1) pairs of states between machines
G and F. On the other hand, a type-C sequence would dis-
tinguish only 22(N�M�1) pairs of states, where M denotes the
number of 
ip-
ops with speci�ed values. It should be noted
that distinguishing sequences of types A and B are more pow-
erful than those of type C, since more pairs of states can be
distinguished by the sequences of types A and B.

While distinguishing sequences of type A are capable of dis-
tinguishing two di�erent fault-free states, they may not nec-
essarily be able to distinguish the same two states in fault-
free machine G and faulty machine F. Nevertheless, a type-A
sequence may be very similar to a sequence that is able to
distinguish the two states in machines G and F. Therefore,
it is helpful to seed the GA with distinguishing sequences of
type A in searching for a successful distinguishing sequence.
Carrying this idea further, when a distinguishing sequence of
type B or C is found for a certain fault f1, that sequence may
not be directly applicable under a di�erent fault f2. A similar
argument applies in this case: the previously derived distin-
guishing sequence may be used as a seed for the GA to help
�nd a valid sequence.

A distinguishing sequence of type C requires a subset of
the 
ip-
ops to have speci�c values in order to successfully
propagate a D from the given 
ip-
op to a PO. Under this
restriction, many 
ip-
ops often have distinguishing sequences
of type C when those of types A and B do not exist. In
many cases, a type-C distinguishing sequence works as well as
one of type A or B, namely, those cases in which the current
state is contained within the required sets of states for the
distinguishing sequence.

Storing the type-C distinguishing sequences, however, poses
a problem. Including the speci�c values of the required 
ip-

ops for the sequences may adversely a�ect both the execution
time and memory storage. Furthermore, when a distinguish-
ing sequence of type C is derived dynamically during test gen-
eration, it is di�cult to identify the 
ip-
ops which require
pre-assigned values. Thus, instead of storing the values for
various subsets of 
ip-
ops, a distinguishing power is associ-
ated with each distinguishing sequence to indicate how well
the sequence distinguishes two states. As a consequence, the
distinguishing power also indirectly indicates how well a FE
will propagate from the corresponding 
ip-
op to a PO. Al-
though the state-containment information is missing for these
distinguishing sequences, they are still useful as seeds for the

GA to evolve an e�ective distinguishing sequence. The dis-
tinguishing power of every corresponding sequence is updated
for each successful and unsuccessful GA application.

All three types of distinguishing sequence are generated by
the GA. Before test generation begins, the GA is set in a
preprocessing stage to compute any distinguishing sequences
of type A. During the test generation process, derivation and
pruning of distinguishing sequences of types B and C are done
concurrently and adaptively. The GA is initialized with ran-
dom sequences, and any distinguishing sequences of the 
ip-

ops to which FE's have propagated are used as seeds in place
of some of the random sequences in the fault propagation
phase. Since small population sizes are used for the GA in
order to reduce execution time, the number of distinguishing
sequences stored per 
ip-
op is limited to �ve.

For 
ip-
ops that do not have an associated distinguish-
ing sequence of any type, an observability value is used to
indicate how observable the 
ip-
op is in the GA framework.
Initially, all 
ip-
ops in the circuit are set to a certain ob-
servability value. As time progresses, these observabilities for
the 
ip-
ops will only decrease if no distinguishing sequence
can be obtained for them. The lower the observability value,
the harder it is to generate a distinguishing sequence for that

ip-
op. This measure of observability is much more accurate
than conventional observability values, and it enables prop-
agation of FE's to hard-to-observe 
ip-
ops to be avoided
during test generation. Pseudo-code for the two-phase test
generation algorithm is shown in Figure 3.

B Pruning the distinguishing sequences

The distinguishing power associated with a distinguishing se-
quence should indicate how well the sequence can propagate
a FE from the corresponding 
ip-
op to the PO's. By de�-
nition, a smaller subset of speci�ed 
ip-
ops necessary for a
distinguishing sequence to propagate the FE indicates a higher
distinguishing power. Furthermore, a distinguishing sequence
capable of propagating a FE under a di�erent faulty machine
would be given a higher power than a sequence which is not.

This concept is incorporated into DIGATE. When a dis-
tinguishing sequence S0 is obtained, a minimal distinguishing
power is given to the sequence. When another FE reaches the
same 
ip-
op at a later time, S0 is applied again to guide the
GA. If a sequence is found and is the same as S0, the distin-
guishing power for S0 is incremented. If the sequence found
di�ers from S0, an additional sequence S1 is added to the set
of distinguishing sequences for the 
ip-
op, and distinguishing
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Generate for each 
ip-
op a dist. sequence of type A
For all undetected faults do

Pick a target fault
/* fault activation phase */
Call GA to generate a sequence that activates the

target fault
Drop all other faults detected by the sequence
/* fault propagation phase */
If target fault not detected then

Initialize GA with random sequences
Seed GA with the dist. sequences corresponding

to 
ip-
ops with the FE's
Call GA to propagate the FE's to a PO
If sequence S1 derived by GA is successful then

If dist. sequence S0 already exists for the FF then
Add S1 to the table if di�erent from S0

Increment the dist. power for S0 (and S1)
Else

Add the dist. sequence S1 to table, giving
it minimal dist. power

Drop all other faults detected by the sequence
Else /* dist. seq. unsuccessful */

If dist. sequences exist for the FF then
Decrement the dist. power of the sequences

Else
Decrement the observability of the FF

Figure 3: Test generation algorithm

powers for both S0 and S1 are incremented. On the other
hand, if no sequence is found, the distinguishing power of S0

is decremented. If the distinguishing power drops below the
minimal value, S0 is removed from future consideration.

When starting with a set of 
ip-
ops where none has a dis-
tinguishing sequence, the GA is initialized with random seeds.
If a distinguishing sequence is derived, this derived sequence
becomes a candidate distinguishing sequence for every 
ip-

op in the set. It should be noted that this sequence may be
suitable for certain 
ip-
ops only, while un�t for the rest of
the 
ip-
ops in the set, but as the distinguishing sequences
are further pruned, the un�t ones are eventually weeded out.

C Fitness functions

Since the two phases of DIGATE target di�erent goals, their
corresponding �tness functions will di�er. The parameters
that a�ect the �tness of an individual in the GA are as follows:

P1: Fault detection by the individual
P2: Sum of distinguishing powers for the distinguishing

sequences of the 
ip-
ops with FE's
P3: Sum of observabilities for the 
ip-
ops with FE's
P4: Weighted faulty circuit activity induced
P5: No. of hard-to-control 
ip-
ops set to speci�c values
P6: No. of new states visited by the individual

Parameter P1 is self-explanatory, in particular during the
fault propagation phase. It is included in the activation phase
to cover faults that propagate directly to the PO's in the time
frame in which they are excited. P2 measures the quality of

the set of 
ip-
ops reached by the FE's. Maximizing P2 in-
creases the probability that the FE's reach 
ip-
ops having
more powerful distinguishing sequences. If none or few 
ip-

ops have distinguishing sequences, maximizing P3 will avoid
propagating FE's to the hard-to-observe 
ip-
ops for which
obtaining distinguishing sequences is di�cult. P4 measures
the number of weighted events generated in the faulty circuit
by the sequence. Partial cones are computed and set up for the
PO's and the 
ip-
ops associated with either more powerful
distinguishing sequences or low observability values. Figure
4 illustrates the setup of partial cones; each partial cone has

Output partial cones

Poor FF partial cones

Good FF partial cones

Good FF

1/5 of circuit depth

Good FF

Poor FF

Circuit depth

Output

Figure 4: Output and 
ip-
op partial cones.

a depth of one-�fth the circuit's depth. Events are weighted
more heavily if they are inside partial cones of the PO's or

ip-
ops with more powerful distinguishing sequences; events
inside the partial cones of the hard-to-observe 
ip-
ops are
weighted more lightly. Events on any nodes outside these
good and poor FF partial cones are assigned weights of one.
The partial cones are recomputed at the beginning of each of
the three GA stages in order to include cones of 
ip-
ops for
which new distinguishing sequences have been obtained or ob-
servability values have decreased. P5 is used to bias the search
toward �nding sequences that can set the hard-to-control 
ip-

ops. For instance, a sequence that sets a 
ip-
op with a high
0-controllability value (di�cult to set the 
ip-
op to 0) to 0
is given a greater �tness value. The 0 and 1-controllability
values are computed a priori by HITEC [7]. By maximizing
P5, the GA is likely to bring the circuit to previously un-
explored state spaces. P6 is used also to expand the search
space. Pomeranz [22] and Marchok [23] have suggested that
visiting as many di�erent states as possible helps to detect
more faults. The �tness functions in DIGATE favor visiting
more states when the fault detection count drops very low.
Thus, P6 is considered in the �nal stage of DIGATE only.

Di�erent weights are given to each parameter in the �tness
computation during the two phases of DIGATE:

Fault activation phase:

fitness = 0:2P1 + 0:7(P2 + P3) + 0:1(P4 + P5 + P6y)
Fault propagation phase:

fitness = 0:8P1 + 0:1(P2 + P3) + 0:1(P4 + P5 + P6y)
y: evaluated only in the �nal GA stage
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In the fault activation phase, the aim is to excite the fault
and propagate the FE's to as many good 
ip-
ops as possible
with short sequences and minimal time, where good 
ip-
ops
are those with more powerful distinguishing sequences. In the
fault propagation phase, the goal is to �nd a sequence that
will propagate the FE's to a PO, so a heavier weight is given
to fault detection.

D Selection of the target fault

In the traditional deterministic approach to test generation,
the target fault selected is the �rst fault among the remaining
undetected faults, since during state justi�cation, the state has
to be backtraced to an entirely unknown state using reverse
time processing. In DIGATE, however, since only forward
propagation is involved, the subsequent fault to be targeted
can be selected more intelligently.

In [16], choosing the target fault is done iteratively by max-
imizing an evaluation function which indicates the amount of
circuit activity generated by a particular fault. Instead of mea-
suring circuit activity, DIGATE selects the fault that has its
FE's propagated to a 
ip-
op having a distinguishing sequence
of maximum distinguishing power. The activation phase of
DIGATE is omitted by the selection of this target fault, since
the e�ects of the targeted fault have already reached at least
one 
ip-
op. Thus, DIGATE can enter the propagation phase
immediately. The target fault selected in this manner is likely
to have a much higher probability of detection than a ran-
domly selected fault.

If no fault has reached any 
ip-
op having a distinguishing
sequence, the selection of the target fault is biased toward
the fault that has reached the greatest number of 
ip-
ops.
However, the activation phase of DIGATE is not omitted in
this case.

IV Experimental Results

DIGATE was implemented in C++, and experiments were
conducted on the ISCAS89 sequential benchmark circuits [24],
as well as several synthesized circuits, to evaluate its per-
formance. All circuits were evaluated on an HP 9000 J200
with 256 MB RAM. Table 1 displays the characteristics of the
synthesized circuits. Sequential depth (structural), number

Table 1: Characteristics of Synthesized Circuits

Circuit Seq. Depth FF's PI's PO's Faults

am2910 4 87 20 16 2391

mult16 9 55 18 33 1708

div16 19 50 33 34 2147

pcont2 3 24 9 8 11300

piir8o 5 56 9 8 19920

piir8 5 56 9 8 29689

of 
ip-
ops, number of PI's, number of PO's, and the total
number of collapsed faults for each circuit are given in the
table. The functions of these circuits are as follows: am2910
is a 12-bit microprogram sequencer [25]; mult16 is a 16-bit
two's complement multiplier using a shift-and-add algorithm;
div16 is a 16-bit divider using repeated subtraction to perform

division; pcont2 is an 8-bit parallel controller for DSP appli-
cations; and both piir8o and piir8 are 8-point in�nite impulse
response DSP �lters.

Results are given in Table 2 for DIGATE and various other
test generators. For each circuit, the total number of collapsed
faults is given, followed by the number of faults detected and
the test set length for each test generator. The number of dis-
tinguishing sequences generated by DIGATE is also reported
for each circuit. The �rst test generator is HITEC [7], a de-
terministic test generator, followed by the GA-based test gen-
erators GATEST [15, 26], CRIS [12], GATTO [16], and �nally
our new test generator, DIGATE.

Fault coverage is de�ned as the percentage of faults de-
tected. From the table, the fault coverages achieved by DI-
GATE are signi�cantly higher than those obtained by the
other GA-based test generators for most of the circuits.
For the larger circuits, DIGATE performs better than both
HITEC and the GA-based test generators. For the hard-
to-test ISCAS89 circuits, such as s400, s444, s526, s1423,
s5378, and s35932, where long execution times are required
by HITEC, the fault coverages achieved by DIGATE are sig-
ni�cantly higher. DIGATE outperforms both HITEC and
GATEST for all the synthesized circuits. The circuits that
DIGATE does not perform as well on are s820, s832, s1488,
and s1494. These circuits contain faults that require speci�c
and often long sequences for fault activation. None of the
GA-based test generators could match the results of HITEC
for these circuits, since only HITEC was able to generate the
exact sequences required to excite the faults.

The test sets obtained by DIGATE are shorter than those
obtained by HITEC, even when higher fault coverages are
achieved by DIGATE. The test sets are shorter than those ob-
tained by CRIS and GATTO for most of the circuits. The test
set lengths are comparable to those for GATEST, although
sometimes longer due to the two-phase strategy of activating
and propagating the fault. A small number of vectors at the
beginning of the test set is able to detect a large fraction of the
faults, while the remainder of the test set targets a few di�-
cult faults at the expense of long sequences. This phenomenon
is illustrated in Table 3 for several large circuits, which indi-
cates that DIGATE is able to achieve very high fault coverages
using a small number of vectors in a short time.

Table 3 also shows the e�ectiveness of DIGATE in terms of
execution time for the large circuits. The best results of the
other test generators in Table 2 are listed beside the results
of DIGATE. The run times at three checkpoints are displayed
for DIGATE. These checkpoints were placed at the end of
each GA stage of DIGATE. The fault coverages at the end
of the �rst GA stage are already higher than the �nal fault
coverages of the other test generators for many circuits. Sim-
ilar phenomena were also observed for the smaller circuits,
although the results are not shown in the table. The total
number of 
ip-
ops and the number of 
ip-
ops having dis-
tinguishing sequences are given for each checkpoint. Note that
a small portion of 
ip-
ops having distinguishing sequences is
su�cient to improve the overall fault coverage, and for cir-
cuits having distinguishing sequences for a signi�cant portion
of 
ip-
ops, the fault coverages improved greatly.
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Table 2: Comparison of Fault Coverages

Circuit Total HITEC [7] GATEST [15, 26] CRIS [12] GATTO [16] DIGATE
faults Det Vec Det Vec Det Vec Det Vec Det Vec Dist

s298 308 265 306 264 161 253 476 - - 264 239 7

s344 342 328 142 329 95 328 115 - - 329 109 8

s382 399 363 4931 347 281 273 246 - - 363 581 6

s400 426 383 4309 365 280 357 758 - - 382 3369 11

s444 474 414 2240 405 275 397 519 - - 420 1393 9

s526 555 365 2232 417 281 428 692 - - 446 2867 9

s641 467 404 216 404 139 398 628 - - 404 180 17

s713 581 476 194 476 128 475 1124 - - 476 147 17

s820 850 813 984 517 146 451 1381 - - 621 465 9

s832 870 817 981 539 150 370 1328 - - 606 703 9

s1196 1242 1239 453 1232 347 1180 2744 1226 5202 1236 549 13

s1238 1355 1283 478 1274 383 1229 4313 1274 4672 1281 504 12

s1423 1515 776 177 1222 663 1167 2696 1265 3394 1393 4044 30

s1488 1486 1444 1294 1392 243 1355 1960 1344 631 1378 542 5

s1494 1506 1453 1407 1416 245 1357 1928 1277 912 1354 581 6

s5378 4603 3238 941 3175 511 3029 1255 3277 1132 3447 10500 94

s35932 39094 34902 240 35009 197 34481 1525 32943 563 35100 386 301

am2910 2391 2164 874 2163 745 - - - - 2195 2206 71

mult16 1708 1640 273 1653 204 - - - - 1664 915 32

div16 2147 1665 189 1739 634 - - - - 1802 4481 3

pcont2 11300 3354 7 6826 272 - - - - 6837 3452 0

piir8o 19920 14221 347 15013 531 - - - - 15072 506 0

piir8 29689 11131 31 - - - - - - 18140 603 0

Det: number of faults detected Vec: test set length Dist: number of distinguishing sequences generated
Highest numbers of detections are highlighted

V Conclusions

A test generation framework which utilizes genetically-
engineered distinguishing sequences was presented. DIGATE
is composed of three stages involving GA's, and several passes
through the fault list are made in each stage. Test generation
for a targeted fault is carried out in two phases. The �rst
phase tries to excite a fault and propagate the FE's to the

ip-
ops, and the second phase attempts to drive the FE's
from the 
ip-
ops to the PO's. Various types of distinguishing
sequence are computed in the preprocessing step and during
the test generation process. These distinguishing sequences
are seeded in the GA to evolve valid distinguishing sequences
for the target fault in the fault propagation phase. Pruning of
distinguishing sequences is done adaptively during test gen-
eration to improve their e�ectiveness, quanti�ed by the dis-
tinguishing power index. The GA uses �tness functions that
maximize the number of detected faults, propagation of FE's
to 
ip-
ops with powerful distinguishing sequences, faulty cir-
cuit events, and reachable state-space. With the aid of the
distinguishing sequences, DIGATE achieves high fault cover-
ages in short execution times, and the overall fault coverage
is improved signi�cantly compared to results obtained from
other test generators.
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