
 1

Efficient Implication - Based Untestable Bridge Fault Identifier*

 Manan Syal†, Michael S. Hsiao†, Kiran B. Doreswamy†† and Sreejit Chakravarty‡
† Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA.

††Intel Corporation, Portland, Oregon.
‡ Intel Architecture Group, Intel Corporation, Santa Clara, CA.

Abstract: This paper presents a novel, low cost technique
based on implications to identify untestable bridging faults
in sequential circuits. Sequential symbolic simulation [1] is
first performed, as a preprocessing step, to identify nets
which are uncontrollable to a specific logic value. Then, an
implication-based analysis is carried out for each fault to
determine if a particular fault is testable or not. We also
use information about the untestable stuck-at faults to filter
out some bridges early in the analysis process. The
application of our technique to ISCAS ’89 sequential
benchmark circuits and a few industrial circuits showed
that a large number of untestable bridges could be
identified at a low cost, both in terms of memory and
execution time.

1. Introduction: A bridge fault between two or more nets
refers to a defect where the nets are unintentionally shorted
together. While the size of the more commonly studied
stuck-at fault list is of the order of the size of the circuit,
bridging fault lists can potentially be of polynomial order in
the size of the circuit. Furthermore, the cost of bridge-fault
ATPG can exceed that of the stuck-at counterpart. Thus, it
would be beneficial to quickly identify bridging faults that
are redundant/untestable, so that tools such as bridging fault
ATPG engines or bridging fault simulators do not waste
time targeting these faults. Our work focuses on efficient
identification of such untestable bridging faults.
 Algorithms have been proposed earlier for two node [2]
and multimode [3] bridge fault extraction/analysis. In our
approach, we limit the analysis to two-node bridges. Also,
we assume the bridge fault to be present between the
outputs of two nodes, and no bridges internal to a Boolean
gate are considered for analysis. Resistance of a bridge
determines the kind of fault effect the bridge produces in a
circuit. Bridges of high resistance type cause the outputs of
the succeeding gates to have a delayed transition, leading to
a delay fault, while bridges having low resistance (hard
short) cause the static behavior of the circuit to change. In
our analysis, we assume the bridge fault to be of the “hard
short” type, which causes the functionality of the circuit to
change. A lot of models have been proposed for the analysis
of such kind of bridges. Stuck-at faults have been used to
model the behavior of bridges [4], along with the voting [5]
and the biased voting method [6], which are the more
popular modeling methods. The model we use for our
purpose of identifying untestable bridges is based on the
wired and the dominant fault models [7].
 Untestable bridges are faults for which no test pattern
exists that can either excite the fault or propagate the fault
effect to an observable point. Current automatic test pattern
generators (ATPGs) waste a lot of time on such faults

before identifying them as untestable or aborting on them.
Although much work has been presented for the
identification of untestable stuck-at faults [8][9][10], there
hasn’t been any significant contribution towards the
identification of untestable bridges in sequential circuits.
Thus, to the best of our knowledge, our work on the
identification of untestable bridges using implications is the
first of its kind. Our implementation is based on the
representation of a sequential circuit as an iterative logic
array (ILA) of fixed length [11]. For each bridge, we
identify a set of conditions that are necessary for the fault to
be testable. We imply these set of conditions within the ILA
and use this information to determine whether the bridge
can be declared as untestable or not. We evaluated our tool
against the larger ISCAS ’89 circuits along with a few
industrial circuits. We validated and compared these results
with our internal ATPG engine for bridging faults.
Interestingly, it was observed that we could identify more
untestable faults using this new tool than the ATPG tool
could identify. The relationship between the untestable
faults identified by the ATPG tool and our new implications
based tool is shown in Figure 1.

It can be seen that ATPG can identify some untestable
bridges which the implication-based technique fails to
capture (); however, the implications based technique
can identify a lot of untestable faults which the ATPG tool
aborts on ().

Rest of the paper is organized as given below:
Section 2 gives an introduction to logic implications, the
symbolic simulation we use to identify uncontrollable nets
and the fault model(s) we use to identify the behavior of a
bridging fault. Section 3 describes our approach and
algorithm, with section 4 reporting the results obtained for
ISCAS ’89 sequential circuits, and a few industrial circuits.
Finally, section 5 concludes the paper.

2. Preliminaries
 2.1 Logic Implications:

Static implications are the implications associated with
binary logic values present at the output of every gate in the
circuit. Static implications consist of direct, indirect and
extended backward implications. Direct implications of a
gate ‘g’ are the implications associated with the gates
directly connected to ‘g’. Direct implications are easy to
compute, unlike Indirect and extended backward

* This research was performed while the first two authors were at Intel
during the period extending from 05/02 to 08/02. This work is also
supported in part by NSF grant #0196470

Figure1: Relationship between the untestable faults identified
 by ATPG and the implications based tool

Unt. faults identified only by ATPG
Unt. faults identified only by implications based tool
Unt. faults identified by both ATPG and implications based tool

 2

implications which require extensive use of transitive and
contrapositive properties associated with implications [10].
The concept of direct and indirect implications can be
understood from the following example:
Example 1: Consider the circuit shown in Figure 2.

Consider the implications of gate A = 1 with respect to its
directly connected nodes.

A = 1 � { (B = 1), (C = 1), (E = 1), (F = 1) }
This set, along with A = 1 forms the direct implications for
node A = 1.
Now, nodes B = 1 and C = 1 do not individually imply any
value on node D. However, together, they imply D = 1.
Thus, A = 1 indirectly implies D = 1. Hence D = 1
becomes an indirect implication associated with gate A = 1.
 �

Another notion associated with implications is that of
backward and forward implications. Let’s say we need to
find the implications of gate g = v (v = 0 or 1). All
implications associated with the input cone of gate g form
the backward implications for g and all implications
associated with the output cone of g form the forward
implications of g. This concept is shown with the aid of an
AND gate in Figure 3.

Although the graphical representation of implications
proposed in [10] is a memory efficient approach, it would
still blow up for large (sequential) industrial circuits (with
size > 100K gates). Also, the use of extended backward
implications on such circuits would prove to be too
expensive both in terms of memory and execution time.
Thus, in our application, we:
a) Do not pre-compute and store the implications associated

with each gate in the circuit. We compute the
implications of a gate on a need basis, i.e. only for gates
that are involved in a bridge. We simply allocate the
maximum space that can possibly be required to store the
implications of a gate, or for the group of gates involved
in a bridge, and we re-use that space for every fault we
analyze.

b) Do not compute extended backward implications
corresponding to every unjustified gate in the implication
list of a gate [10], because it proves to be too expensive.

It may be argued that:
a) If a gate g is involved in a bridge with many other gates,

then we might have to re-compute the implications of g
each time we analyze a bridge in which g is involved.
Since we don’t store the implications of all gates upfront,

this duplication of work may cost us in terms of time.
However, since we compute the implications of a gate
only on a need-basis, i.e. only if the gate is involved in a
bridge, so the time penalty in potentially re-computing
the implications of a gate more than once is far less than
computing and storing the implications of all gates (most
of which are not involved in any bridging fault) upfront.

b) We might lose some information in terms of constants (a
line that is uncontrollable to some logic v is said to be a
constant with value v’), by not evaluating the
implications of every gate in the circuit. However, we
more than compensate for this through the sequential
symbolic simulation.

c) By not performing extended backward implications, we
might not have as powerful an implication engine, as we
might have with the application of extended backward
implications. Though this is true, the time penalty
associated with the computation of extended backward
implications for every unjustified gate in the implication
list for a gate outweighs the advantage of a more
powerful implication engine available with extended
backward implications.

2.2 Symbolic Simulation:

Symbolic simulation is performed as a preprocessing
step to untestable bridge analysis; it identifies nets that are
uncontrollable to a specific logic value. For example, line
‘b’ in the circuit shown in Figure 4 is uncontrollable to
logic ‘0’ assuming that the initial state of the flip-flop is
unknown, and line ‘a’ is fully controllable to any value.

We perform symbolic simulation using 11 symbols, that
represent the controllability charactersitics of any given
line. Node “G is uncontrollable to a logic value V” means:

There is no single finite sequence I, which when applied
to the controllable points in the net-list, can set G to value V
for every possible power up state of the sequential elements
in the design, where V ∈ {0,1,Z}.
‘Z’ in the value set refers to the high impedance state of a
net. Since most of the industrial circuits have tri-state
devices and bus structures, we support the high impedance
value in our tool.

The symbols used, and their meaning is described below:
1) Strong_0 (Strong_1): If a line can only take a value of

‘strong 0’ (‘strong 1’), then it is associated with this
symbol. For example, a net directly connected to VSS
(VDD) would take this symbolic value. (Represented as
ST_0 (ST_1)).

2) ControllableToAny (C_ANY) : If a particular net can
assume any value from the defined value set, then it is
associated with the ‘ControllableToAny’ symbol. This
symbol is associated with all the primary inputs and the
scan elements.

3) UncontrollableTo_0 (UncontrollableTo_1): A net that
cannot be controlled to logic 0 (logic 1) is associated with

b
D

a Q

CLK

Figure 4: concept of uncontrollable net

1 A

Figure 2: Illustration of direct and indirect implications

B

C

D E
F

1

1

1

1

1

1

1 0

Figure 3: (a) backward implications (b) forward
 implications

0 1

1

(a) (b)

 3

the ‘UncontrollableTo_0’ (UncontrollableTo_1) symbol.
For example, the output of the OR gate shown in
Figure 4 cannot be driven to logic 0, and hence would
assume this symbol. (Represented as UN_0 (UN_1)).

4) UncontrollableToAny (U_ANY): This symbol is asociated
with the net that cannot be controlled to any value. This is
the symbol associated with the output of every non-scan
latch/flip-flop at the beginning of symbolic simulation.
The symbolic values described above can be associated

with any gate/net in the circuit, while the ones described
below can only be associated with the nets that
produce/transmit a high impedance (Z) state.

5) Strong_Z : Associated with the net that can only take the
high impedence state. For example, a tri-state device with
an active high enable would assume this symbolic value,
if the enable line is a constant 0.

6) UncontrollableTo_Z: A net would assume this value if it
can never achieve the high impedence state. For example,
a controlled buffer with an active high enable would be
associated with this symbolic value if the enable line is a
constant 1.

7) UncontrollableTo_01: If a net can never be driven to
either 0 or 1, then it would be associated with this
symbolic value.

8) UncontrollableTo_1Z: A net which cannot achive either
a high impedenece state or cannot be excited to logic 1
would be associated with this symbolic value. For
example, a wired-AND gate (as shown in Figure 5) with
one driver set at “UncontrollableTo_1Z” would be
associated with this symbolic value, as the
“UncontrollableTo_1Z” on one of the driver’s o/p would
dominate the value on any other driver.

9) UncontrollableTo_0Z: A net which cannot be excited to

either a logic value of 0 or Z would be associated with
this symbolic value. For example, a wired-OR gate with
one driver as “UncontrollableTo_0Z” would be
associated with the symbolic value of
UncontrollableTo_0Z (as shown in Figure 6).

Symbolic simulation is initiated by assigning
ControllableToAny symbol to all primary inputs and scan
elements, and UncontrollableToAny symbol to all latch
elements/flip flops. The simulation is event-driven; it

proceeds in a levelized manner, and each gate is evaluated
one time frame after another, until the circuit settles down
to a stable state. To propagate symbols, pre-computed
characteristic propagation table for each gate is looked
up to determine the resulting symbolic value for the gate.
Such a characteristic table for a 2-input OR gate is shown in
Figure 7.

2.3 Fault Models

The fault models that we use to describe the behavior
of a bridge, along with conditions that are required to excite
the bridge fault of each type, is shown in Table 1[7].
Column one in Table 1 represents the bridge fault models
used. Column two shows the representation for each model
and column three shows the excitation condition(s) for each
bridging fault type. Here, a and b represent the nets in the
good machine, while a’ and b’ represent the same nets in
the faulty machine. Also, a DOM b implies that logic
values on net a dominate that on net b, while a DOMV b
means that net a dominates b only if a = V. It may be
argued that since the excitation conditions for the DOM
bridge fault covers the excitation condition for the DOM0
and DOM1 bridge fault, analyzing DOM0 and/or DOM1
bridge fault model between two nets would not be
necessary if the DOM bridge fault between the nets is being
analyzed. This would be true if the DOM bridge fault
between the two nets is found to be untestable. Then both
DOM0 and DOM1 bridge faults would also be untestable,
and it would be redundant to analyze them. However, the
converse is not true. That is, it is possible that even though
a DOM bridge between two nets is testable, either DOM0
or DOM1 bridge fault could still be untestable. So, it would
be necessary to consider the DOM0 and DOM1 fault
models even though they form a subset of fault models such
as DOM or Wired-AND or Wired-OR model.

3. Algorithm
 The following definition of an observation point is
necessary to understand before we can discuss the
algorithm:

Definition 1: (Observation point)

An observation point for a fault is defined as the
nearest fanout stem, a primary output or a latch element, in
the fanout cone of the fault site.

Wired - AND gate
UncontrollableTo 1Z

UncontrollableTo_1Z

 Figure 5: Wired-AND gate gets associated with symbolic
value of UncontrollableTo_1Z.

Wired -OR gate
UncontrollableTo 0Z

UncontrollableTo_0Z

Figure 6: Wired-OR gate gets associated with symbolic
value of UncontrollableTo_0Z.

C_ANY U_ANY ST_0 ST_1 UN_0 UN_1

C_ANY

U_ANY

ST_0

 ST_1

UN_0

UN_1

A
B

A

B (a)

 Figure 7: (a) OR gate (b) Its symbolic evaluation table
 (b)

C_ANY UN_0 C_ANY ST_1 UN_0 C_ANY

UN_0 U_ANY U_ANY ST_1 UN_0 U_ANY

C_ANY U_ANY ST_0 ST_1 UN_0 UN_1

ST_1 ST_1 ST_1 ST_1 ST_1 ST_1

UN_0 UN_0 UN_0 ST_1 UN_0 UN_0

C_ANY U_ANY UN_1 ST_1 UN_0 UN_1

 4

Also, our analysis is based on the ILA (iterative logic

array, of fixed length K) representation of a sequential
circuit, where the latch elements of the lowest time frame
(i.e.frame –K/2) of the ILA are fully controllable, and the
latch elements in the right most time frame (i.e. frame K/2)
are fully observable.

Figure 8 outlines the overall algorithm:

Let us now look at the algorithm in detail:
a)Symbolic simulation and absorption of stuck-at

information: As discussed earlier in section 2.1, we
perform a sequential symbolic simulation using 11
symbols, to identify controllability characteristics of nets
in the circuit. At the beginning of the simulation, we

 associate the primary inputs (PIs) and the controllable

latch elements with the symbol ControllableToAny, and
the other sequential (latch) elements with the symbol
UncontrollableToAny, and propagate these symbols
across the circuit. We use the table look-up scheme
described earlier, until the circuit stabilizes to steady state
w.r.t. symbolic values.

We absorb a fault list which lists all untestable stuck at
faults in the circuit, and screen out certain bridge faults
before starting the per-fault analysis. For example, if the
fault “b stuck-at 0” is untestable, then the bridging fault
“a DOM0 b” between nets a and b would also be
untestable, and can be dropped from the original bridge
fault list. Our tool that identifies untestable stuck-at faults
is based on symbolic simulation and Boolean
satisfiability analysis, but we would not discuss the
details of that tool in this paper.

b) Per-Fault Analysis: After filtering the initial fault list,
we perform the following analysis on each fault in the
reduced list:
b.1) Identification of conditions necessary for fault

detection: Depending upon the fault type, we identify
the fault site and the condition(s) for fault excitation (as
previously shown in Table 1). For example, if a “a
DOM0 b” bridge exists between nets a and b, then the
fault excitation condition would be (a = 0) and
(b = 1), and the fault site would be net b, because a
fault effect of 0/1 (good machine value / faulty
machine value) appears on this net. Then, we identify
the conditions necessary to propagate the fault effect to
an observation point. This basically means that we
identify the non-controlling values on each gate in the
off-path from the fault site to the observation point.
These conditions must be met if the fault has to be
testable.

Fault Model Representation Excitation Condition(s)

Wired-AND Bridge
(a AND b)

1) (a = 0) and (b = 1)
2) (a = 1) and (b = 0)

Wired-OR Bridge
(a OR b)

1) (a = 0) and (b = 1)
2) (a = 1) and (b = 0)

DOM Bridge
(a DOM b)

1) (a = 0) and (b = 1)
2) (a = 1) and (b = 0)

DOM0 Bridge
(a DOM0 b)

 1) (a = 0) and (b = 1)

DOM1 Bridge
(a DOM1 b)

 1) (a = 1) and (b = 0)

a
b

a’
b’

a
b

a’
b’

a

b
a’
b’

a

b b’
a’

a

b
a’
b’

Figure 8: Algorithm for untestable bridge identification

a) Perform Symbolic Simulation to obtain information about
constants in the circuit.

 Absorb the untestable stuck-at information to screen out
some bridging faults.

b) For the remaining faults (per-fault analysis):
b.1) Find the necessary condition(s) to excite the fault,

and to propagate the fault effect to an “Observation
Point”.

b.2) Backward imply/justify these set of conditions.
b.3) If no conflict exists, forward imply with the logic

values set in the circuit. If a conflict exists in
backward / forward implications, bridge fault is
untestable.

b.4) Perform observability analysis to determine if the
fault effect can be propagated to a PO or to the
latch/flip-flop boundary in the last time frame of the
k-frame unrolled circuit.

Table 1: Fault models, their representations and excitation condition(s)

 5

b.2) A backward implication routine is then invoked on the
necessary set of conditions. We could have separately
implied each necessary condition and added the
individual implication lists to obtain the composite
implication list corresponding to the set of necessary
conditions. This is exactly what would have been done
if implications corresponding to each gate were
computed as a pre-processing step. However, we
compute the implications associated with the entire set
of necessary conditions in one go, because this
technique helps in learning more implications. The
backward implication process begins at the fault
injection frame, and goes on till the lowest time frame
in the ILA expansion is reached (i.e. –K/2, in an ILA
representation of K frames) or till no more implications
can be learnt.

b.3) If no conflict is encountered in the backward
implication process, then a forward implication process
is invoked on the already learnt implication set. This
implication process begins at the lowest level of the
ILA expansion, and continues till the last frame of the
ILA is reached (i.e. begins at –K/2, or the lowest frame
that has a valid implication associated with it, and
continues till frame K/2) or till no more implications
can be learnt.

b.4) If no conflict occurs during either the backward
implication process or during the forward implication
process, then an observability analysis is carried out to
determine if the fault effect can be observed or not.
This observability analysis marks the last step of
untestability analysis for a fault, and the motivation
behind the observability analysis is to check if the
excitation conditions for the fault block the fault effect
from propagating to the primary output(s) or not. The
way we implement this observability analysis is
through multiple ID propagation. This is explained
below:
 We associate an ID with the fault site, (say X),
and propagate it through the circuit. We also keep a
track of the polarity of this ID, and identify the inverted
value of this ID as X’. This is done to identify masking
of fault effects (For example, if an id of X and X’
appear at the input of an AND gate, the fault effect
would get killed due to the opposite polarities of the
fault IDs). Since most of the industrial designs contain
tri-state devices, and buses, we use another ID, which
is a generic ID, and we call it IDG. The motivation of
using IDG can be understood through Figure 9.

Let’s assume that fault ID X (lets assume X represents a
faulty state of 0/1) appears at the select line of a tri-state
device, as shown in figure 9, with an active high enable.
The faulty machine value at the output of the gate would be
the value applied at the input of the gate, but the good
machine value will be Z, i.e. high impedance state. A fault

effect of Z/0 or Z/1 cannot be directly associated with either
X or X’ (because X and X’ are of the form 0/1 or 1/0).
Thus, this fault effect is represented by a new ID, i.e. IDG.
 Thus, if any of these IDs, i.e. X, X’ or IDG propagate to
either a PO or to the latch boundary in the last time frame of
the ILA expansion, then the fault is not declared untestable.
However, if none of these IDs can propagate to a
completely observable point, then the bridge is marked as
untestable.

4. Results:

The proposed algorithm was implemented in C++ and
experiments were conducted on ISCAS89 and some
industrial circuits on a 500 MHz, HP workstation. The
results are reported in Table 2. Column 1 in Table 2 shows
the ISCAS ’89 circuits, and the industrial circuits (C1, C2,
C3) for which the tool was evaluated. Column 2 shows the
number of faults our bridge fault ATPG engine identified as
untestable, with the backtrack limit set to 1000. Column 3
shows the number of faults identified as untestable using
the new implications-based tool, with the time frame
expansion of the circuit being from –2 to 2. The numbers in
the parenthesis in this column show two values. The first
value is the number of faults identified as untestable both
by the new tool and by ATPG, and the second value in bold
identifies the number of faults that our tool identified as
untestable, for which ATPG aborted after 1000 backtracks.
For example, for circuit s5378, ATPG identified 261 faults
as untestable. With the implications based approach, we
identified 552 faults as untestable. Out of these 552 faults,
187 faults were identified as untestable by both ATPG and
the implications based tool, while the rest 365 faults
identified as untestable, were the faults on which ATPG
aborted. So, the gain here is w.r.t the 365 faults which our
new tool could identify as untestable, while for which
ATPG could not generate a pattern. Column 5 shows the
number of faults identified as untestable by the new tool,
using K = 0, i.e. by unrolling the sequentail circuit in just
one time frame (effectively combination analysis). Finally,
columns 4 and 6 show the time taken by the implications
based tool to analyse all faults for an ILA size of 5 (K = 2)
and ILA size of 1 (K = 0) respectively. Table 3 shows
the time spent by ATPG to analyze the faults identified
as untestable using the implications based algorithm.
Column 1 in Table 3 shows the circuit name, and the 2nd
column shows the time spent by ATPG only on the faults
which were identified as untestable using the implications
based tool (Sunt for K = 2). For example, for s15850, the
ATPG engine took 953 seconds to analyze the 1190 faults
identified as untestable by our tool for K = 2. It was
observed that the number of untestable faults identified
with K = 0 (combinational analysis) is almost the
same as the number of faults identified by expanding
the ILA to a length of 5 frames for most of the circuits.
Thus, it can be seen that even in a combinational
framework, our tool can quickly identify more untestable
faults than the ATPG tool can capture. It was also seen that
although our implications based approach for identifying
untestable bridges worked out better than ATPG for
ISCAS circuits, it identified only a subset of the faults
identified as untestable by the ATPG engine for the

0
1

X

Z/0
Z/1

Figure 9: Use of generic ID, IDG

 6

industrial circuits. This is primarily due to the fact that the
bus structures present more commonly in industrial designs
limit the strength of implications, and hence limit the
untestable fault identification capability. Nevertheless, our
tool provides a novel technique to quickly identify non-
trivial untestable bridging faults, thereby reducing the size
of the bridging fault list to be analyzed by bridge-fault
ATPG engines.

5. Conclusion:
In this paper, we proposed an implication based approach
complemented with a symbolic simulator to identify
untestable bridging faults at gate level. Our tool was tested
on large ISCAS ’89 circuits, and three industrial circuits.
We found the following:
a) The proposed algorithm could identify a lot of

untestable bridging faults in ISCAS ’89 circuits.
b) The proposed algorithm when applied to an ILA of size

K = 0 could identify almost as many untestable faults
as could be identified with an ILA of size 5.

c) Our tool is very inexpensive in terms of both memory
and the time taken to identify untestable faults. Both
these performance metrics (time and memory) are
always linear in the size of the circuit. Also, the faults
that we identify as untestable are non-trivial, as ATPG
aborts for most of these faults.

References:
[1] Hsing - Chung Liang, Chung Len Lee, Jwu E. Chen.

Identifying untestable faults in sequential circuits. IEEE
Design and Test of Computers. Pages 14-23, Fall 1995.

[2] S. T. Zachariah, S. Chakravarty, C. D. Roth. A novel
algorithm to extract two-node bridges. Design Automation
Conf., 2000. pages 790-793.

[3] S.T. Zachariah, S. Chakravarty. A novel algorithm for multi-
node bridge analysis of large VLSI circuits. VLSI Design,
2001, pages 333-338.

[4] S.D. Millman, E.J. McCluskey, and J.K. Acken. Diagnosing
CMOS bridging faults with stuck-at fault dictionaries. In Int’l
Test Conf., pages 860-870, 1990.

[5] S. D. Millman, Sir J.P. Garvey. An accurate bridging fault
test pattern generator. Int’l Test Conf., pages 411-417, 1991.

[6] P.C. Maxwell and R.C. Aitken. Biased voting: A method for
simulating CMOS bridging faults in the presence of variable
gate logic thresholds. In Int’l Test Conf., pages 63-72, 1993.

[7] M. Abramovici, M.A. Breuer and A.D. Friedman. Digital
Systems Testing and Testable Design. Cmputer Science Press,
1990.

[8] M. A. Iyer and M. Abramovici, “FIRE: a fault independent
combinational redundancy algorithm”, IEEE Trans. VLSI
sy.s, June 1996, pages. 295-301.

[9] M.A. Iyer, D.E. Long, Abramovici, "Identifying sequential
redundancies without search," Design Automation
Conference, 1996, pages. 457-462.

[10] J. Zhao, J. A. Newquist and J. Patel, “A graph traversal based
framework for sequential logic implication with an
application to c-cycle redundancy identification”, Proc. VLSI
Design Conf., 2001, pp. 163-169.

[11] V. D. Agrawal and S. T. Chakradhar, "Combinational ATPG
Theorems for Identifying Untestable Faults in Sequential
Circuits," IEEE Trans. CAD, vol. 14, Sept. 1999, pp. 1155-
1160.

Circuit ATPG Red.
(bk = 1000)

Sunt
(K* = 2)

Time
(sec)
K = 2

Sunt
(K = 0)

Time
(sec)
K = 0

s5378 261 552
(187/365) 361 176

(176/0) 40

s9234 965 5585
(679/4906) 356 5568

(676/4892) 47

s13207 1595 13163
(1485/11711) 318 13160

(1485/11708) 31

s15850 496 1190
(230/960) 804 1183

(228/955) 95

s35932 1382 945
(915/30) 979 927

(897/30) 534

s38417 535 428
(115/311) 2139 418

(111/307) 100

s38584 1113 868
(714/154) 3085 861

(711/150) 846

C1 154 39
(39/0) 63 39

(39/0) 23

C2 43 27
(27/0) 90 27

(27/0) 63

C3 76 21
(21/0) 97 21

(21/0) 14

Circuit TATPG
(sec)

s5378 58

s9234 592

s13207 14380

s15850 953

s35932 60

s38417 86

s38584 405

C1 10

C2 13

C3 8

*K = ± number of frames in which the sequential circuit is unrolled

Table 3: Time taken by
ATPG to analyze Sunt

Table 2: Results obtained for 16000 randomly generated bridges

