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Abstract: This paper presents a novel, low cost technique 
based on implications to identify untestable bridging faults 
in sequential circuits. Sequential symbolic simulation [1] is 
first performed, as a preprocessing step, to identify nets 
which are uncontrollable to a specific logic value. Then, an 
implication-based analysis is carried out for each fault to 
determine if a particular fault is testable or not. We also 
use information about the untestable stuck-at faults to filter 
out some bridges early in the analysis process. The 
application of our technique to ISCAS ’89 sequential 
benchmark circuits and a few industrial circuits showed 
that a large number of untestable bridges could be 
identified at a low cost, both in terms of memory and 
execution time. 
 
1.  Introduction: A bridge fault between two or more nets 
refers to a defect where the nets are unintentionally shorted 
together. While the size of the more commonly studied 
stuck-at fault list is of the order of the size of the circuit, 
bridging fault lists can potentially be of polynomial order in 
the size of the circuit. Furthermore, the cost of bridge-fault 
ATPG can exceed that of the stuck-at counterpart. Thus, it 
would be beneficial to quickly identify bridging faults that 
are redundant/untestable, so that tools such as bridging fault 
ATPG engines or bridging fault simulators do not waste 
time targeting these faults. Our work focuses on efficient 
identification of such untestable bridging faults. 
      Algorithms have been proposed earlier for two node [2] 
and multimode [3] bridge fault extraction/analysis. In our 
approach, we limit the analysis to two-node bridges. Also, 
we assume the bridge fault to be present between the 
outputs of two nodes, and no bridges internal to a Boolean 
gate are considered for analysis. Resistance of a bridge 
determines the kind of fault effect the bridge produces in a 
circuit. Bridges of high resistance type cause the outputs of 
the succeeding gates to have a delayed transition, leading to 
a delay fault, while bridges having low resistance (hard 
short) cause the static behavior of the circuit to change. In 
our analysis, we assume the bridge fault to be of the “hard 
short” type, which causes the functionality of the circuit to 
change. A lot of models have been proposed for the analysis 
of such kind of bridges. Stuck-at faults have been used to 
model the behavior of bridges [4], along with the voting [5] 
and the biased voting method [6], which are the more 
popular modeling methods. The model we use for our 
purpose of identifying untestable bridges is based on the 
wired and the dominant fault models [7].  
      Untestable bridges are faults for which no test pattern 
exists that can either excite the fault or propagate the fault 
effect to an observable point. Current automatic test pattern 
generators (ATPGs)  waste  a   lot  of  time  on  such   faults 
 
 

before identifying them as untestable or aborting on them. 
Although much work has been presented for the 
identification of untestable stuck-at faults [8][9][10], there 
hasn’t been any significant contribution towards the 
identification of untestable bridges in sequential circuits.  
Thus, to the best of our knowledge, our work on the 
identification of untestable bridges using implications is the 
first of its kind. Our implementation   is   based   on   the   
representation of a sequential circuit as an iterative logic 
array (ILA) of fixed length [11]. For each bridge, we 
identify a set of conditions that are necessary for the fault to 
be testable. We imply these set of conditions within the ILA 
and use this information to determine whether the bridge 
can be declared as untestable or not. We evaluated our tool 
against the larger ISCAS ’89 circuits along with a few 
industrial circuits. We validated and compared these results 
with our internal ATPG engine for bridging faults. 
Interestingly, it was observed that we could identify more 
untestable faults using this new tool than the ATPG tool 
could identify. The relationship between the untestable 
faults identified by the ATPG tool and our new implications 
based tool is shown in Figure 1. 
 
 
     
 
 
 
 
 
 

It can be seen that ATPG can identify some untestable 
bridges which the implication-based technique fails to 
capture (     ); however, the implications based technique 
can identify a lot of untestable faults which the ATPG tool 
aborts on (      ). 

Rest of the paper is organized as given below: 
Section 2 gives an introduction to logic implications, the 
symbolic simulation we use to identify uncontrollable nets 
and the fault model(s) we use to identify the behavior of a 
bridging fault. Section 3 describes our approach and 
algorithm, with section 4 reporting the results obtained for 
ISCAS ’89 sequential circuits, and a few industrial circuits. 
Finally, section 5 concludes the paper. 
 
2.  Preliminaries 
      2.1 Logic Implications: 

Static implications are the implications associated with 
binary logic values present at the output of every gate in the 
circuit. Static implications consist of direct, indirect and 
extended backward implications. Direct implications of a 
gate ‘g’ are the implications associated with the gates 
directly connected to ‘g’. Direct implications are easy to 
compute, unlike Indirect and extended backward 
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Figure1: Relationship between the untestable faults identified  
                by ATPG and the implications based tool 

Unt. faults identified only by ATPG 
Unt. faults identified only by implications based tool 
Unt. faults identified by both ATPG and implications based tool 
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implications which require extensive use of transitive and 
contrapositive properties associated with implications [10].  
The concept of direct and indirect implications can be 
understood from the following example: 
Example 1: Consider the circuit shown in Figure 2. 
 
 
 
 
 
 
 
Consider the implications of gate A = 1 with respect to its 
directly connected nodes. 

A = 1 � { (B = 1), (C = 1), ( E = 1), (F = 1) } 
This set, along with A = 1 forms the direct implications for 
node A = 1.  
Now, nodes B = 1 and C = 1 do not individually imply any 
value on node D.  However, together, they   imply   D = 1.   
Thus,   A = 1 indirectly implies D = 1. Hence D = 1 
becomes an indirect implication associated with gate A = 1.                    
                                                     �  

Another notion associated with implications is that of 
backward and forward implications. Let’s say we need to 
find the implications of gate g = v (v = 0 or 1). All 
implications associated with the input cone of gate g form 
the backward implications for g and all implications 
associated with the output cone of g form the forward 
implications of g. This concept is shown with the aid of an 
AND gate in Figure 3. 
 
 
  

 
 
 
 
 

Although the graphical representation of implications 
proposed in [10] is a memory efficient approach, it would 
still blow up for large (sequential) industrial circuits   (with 
size > 100K gates). Also, the use of extended backward 
implications on such circuits would prove to be too 
expensive both in terms of memory and execution time.  
Thus, in our application, we: 
a) Do not pre-compute and store the implications associated 

with each gate in the circuit. We compute the 
implications of a gate on a need basis, i.e. only for gates 
that are involved in a bridge. We simply allocate the 
maximum space that can possibly be required to store the 
implications of a gate, or for the group of gates involved 
in a bridge, and we re-use that space for every fault we 
analyze.  

b) Do not compute extended backward implications 
corresponding to every unjustified gate in the implication 
list of a gate [10], because it proves to be too expensive. 

It may be argued that: 
a) If a gate g is involved in a bridge with many other gates, 

then we might have to re-compute the implications of g 
each time we analyze a bridge in which g is involved. 
Since we don’t store the implications of all gates upfront, 

this duplication of work may cost us in terms of time. 
However, since we compute the implications of a gate 
only on a need-basis, i.e. only if the gate is involved in a 
bridge, so the time penalty in potentially re-computing 
the implications of a gate more than once is far less than 
computing and storing the implications of all gates (most 
of which are not involved in any bridging fault) upfront. 

b) We might lose some information in terms of constants (a 
line that is uncontrollable to some logic v is said to be a 
constant with value v’), by not evaluating the 
implications of every gate in the circuit. However, we 
more than compensate for this through the sequential 
symbolic simulation. 

c) By not performing extended backward implications, we 
might not have as powerful an implication engine, as we 
might have with the application of extended backward 
implications. Though this is true, the time penalty 
associated with the computation of extended backward 
implications for every unjustified gate in the implication 
list for a gate outweighs the advantage of a more 
powerful implication engine available with extended 
backward implications. 

 
2.2 Symbolic Simulation: 

Symbolic simulation is performed as a preprocessing 
step to untestable bridge analysis; it identifies nets that are 
uncontrollable to a specific logic value. For example, line 
‘b’ in the circuit shown in Figure 4 is uncontrollable to 
logic ‘0’ assuming that the initial state of the flip-flop is 
unknown, and line ‘a’ is fully controllable to any value. 
 
    
 
 
 
 
 

We perform symbolic simulation using 11 symbols, that 
represent the controllability charactersitics of any given 
line. Node “G is uncontrollable to a logic value V” means: 

There is no single finite sequence I, which when applied 
to the controllable points in the net-list, can set G to value V 
for every possible power up state of the sequential elements 
in the design, where V ∈  {0,1,Z}. 
‘Z’ in the value set refers to the high impedance state of a 
net. Since most of the industrial circuits have tri-state 
devices and bus structures, we support the high impedance 
value in our tool.   

The symbols used, and their meaning is described below: 
1)  Strong_0 (Strong_1): If a line can only take a value of 

‘strong 0’ (‘strong 1’), then it is associated with this 
symbol. For example, a net directly connected to VSS 
(VDD) would take this symbolic value. (Represented as 
ST_0 (ST_1) ). 

2)  ControllableToAny (C_ANY) : If a particular net can 
assume any value  from the defined value set, then it is 
associated with the ‘ControllableToAny’ symbol. This 
symbol is associated with all the primary inputs and the 
scan elements.  

3)  UncontrollableTo_0 (UncontrollableTo_1): A net that 
cannot be controlled to logic 0 (logic 1) is associated with 
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Figure 4: concept of uncontrollable net 

1 A 

Figure 2: Illustration of direct and indirect implications 
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the ‘UncontrollableTo_0’ (UncontrollableTo_1) symbol. 
For example, the output of  the OR gate shown in    
Figure 4 cannot be driven to logic 0, and hence would 
assume this symbol. (Represented as UN_0 (UN_1) ). 

4) UncontrollableToAny (U_ANY): This symbol is asociated 
with the net that cannot be controlled to any value. This is 
the symbol associated with the output of every non-scan 
latch/flip-flop at the beginning of symbolic simulation. 
The symbolic values described above can be associated 

with any gate/net in the circuit, while the ones described 
below can only be associated with the nets that 
produce/transmit a high impedance (Z) state. 

5)  Strong_Z : Associated with the net that can only take the 
high impedence state. For example, a tri-state device with 
an active high enable would assume this symbolic value, 
if the enable line is a constant 0. 

6) UncontrollableTo_Z: A net would assume this value if it 
can never achieve the high impedence state. For example, 
a controlled buffer with an active high enable would be 
associated with this symbolic value if the enable line is a 
constant 1. 

7) UncontrollableTo_01: If a net can never be driven to 
either 0 or 1, then it would be associated with this 
symbolic value. 

8)  UncontrollableTo_1Z: A net which cannot achive either 
a high impedenece state or cannot be excited to logic 1 
would be associated with this symbolic value. For 
example, a wired-AND gate (as shown in Figure 5) with 
one driver set at  “UncontrollableTo_1Z” would be 
associated with this symbolic value, as the 
“UncontrollableTo_1Z” on one of the driver’s o/p would 
dominate the value on any other driver. 

 
 
 
 
 
 
 
 
 
9) UncontrollableTo_0Z: A net which cannot be excited to 

either a logic value of 0 or Z would be associated with 
this symbolic value. For example, a wired-OR gate with 
one driver as “UncontrollableTo_0Z” would be 
associated with the symbolic value of 
UncontrollableTo_0Z (as shown in Figure 6). 

 
 
 
 
 
 
 
 
 
Symbolic simulation is initiated by assigning 
ControllableToAny symbol to all primary inputs and scan 
elements, and UncontrollableToAny symbol to all latch 
elements/flip flops. The simulation is event-driven; it 

proceeds in a levelized manner, and each gate is evaluated 
one time frame after another, until the circuit settles down 
to a stable state. To propagate symbols, pre-computed 
characteristic  propagation   table  for  each  gate is  looked  
up to determine the resulting symbolic value for the gate. 
Such a characteristic table for a 2-input OR gate is shown in 
Figure 7. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2.3 Fault Models 

The fault models that we use to describe the behavior 
of a bridge, along with conditions that are required to excite 
the bridge fault of each type, is shown in Table 1[7]. 
Column one in Table 1 represents the bridge fault models 
used. Column two shows the representation for each model 
and column three shows the excitation condition(s) for each 
bridging fault type. Here, a and b represent the nets in the 
good machine, while a’ and b’ represent the same nets in 
the faulty machine. Also, a DOM b implies that logic 
values on net a dominate that on net b, while a DOMV b 
means that net a dominates b only if a = V. It may be 
argued that since the excitation conditions for the DOM 
bridge fault covers the excitation condition for the DOM0  
and DOM1 bridge fault, analyzing DOM0 and/or DOM1 
bridge fault model between two nets would not be 
necessary if the DOM bridge fault between the nets is being 
analyzed. This would be true if the DOM bridge fault 
between the two nets is found to be untestable. Then both 
DOM0 and DOM1 bridge faults would also be untestable, 
and it would be redundant to analyze them. However, the 
converse is not true. That is, it is possible that even though 
a DOM bridge between two nets is testable, either DOM0 
or DOM1 bridge fault could still be untestable. So, it would 
be necessary to consider the DOM0 and DOM1 fault 
models even though they form a subset of fault models such 
as DOM or Wired-AND or Wired-OR model. 
 
3.  Algorithm 
        The following definition of an observation point is 
necessary to understand before we can discuss the 
algorithm: 
 
Definition 1: (Observation point) 

An observation point for a fault is defined as the 
nearest fanout stem, a primary output or a latch element, in 
the fanout cone of the fault site. 

Wired - AND gate 
UncontrollableTo 1Z 

UncontrollableTo_1Z

 Figure 5: Wired-AND gate gets associated with symbolic 
value of UncontrollableTo_1Z.  

Wired -OR gate 
UncontrollableTo 0Z 

UncontrollableTo_0Z

Figure 6: Wired-OR gate gets associated with symbolic   
value of UncontrollableTo_0Z.  

C_ANY         U_ANY           ST_0          ST_1         UN_0           UN_1 
 
C_ANY 
 
U_ANY  
 
ST_0    
 
 ST_1 
 
UN_0 
 
UN_1    

A 
B 

A 
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  Figure 7: (a) OR gate (b) Its symbolic evaluation table 
 (b) 

C_ANY UN_0 C_ANY ST_1 UN_0 C_ANY 

UN_0 U_ANY U_ANY ST_1 UN_0 U_ANY 

C_ANY U_ANY ST_0 ST_1 UN_0 UN_1 

ST_1 ST_1 ST_1 ST_1 ST_1 ST_1 

UN_0 UN_0 UN_0 ST_1 UN_0 UN_0 

C_ANY U_ANY UN_1 ST_1 UN_0 UN_1 
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Also, our analysis is based on the ILA (iterative logic 

array, of fixed length K) representation of a sequential 
circuit, where the latch elements of the lowest time frame 
(i.e.frame –K/2) of the ILA are fully controllable, and the 
latch elements in the right most time frame (i.e. frame K/2) 
are fully observable. 
 
Figure 8 outlines the overall algorithm: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
Let us now look at the algorithm in detail: 
a)Symbolic simulation and absorption of stuck-at 

information:  As discussed earlier   in   section   2.1, we 
perform a sequential symbolic simulation using 11 
symbols, to identify controllability characteristics of nets 
in the  circuit. At   the   beginning  of  the  simulation,  we  

 
    associate the primary inputs (PIs) and the controllable 

latch elements with the symbol ControllableToAny, and 
the other sequential (latch) elements with the symbol 
UncontrollableToAny, and propagate these symbols 
across the circuit. We use the table look-up scheme 
described earlier, until the circuit stabilizes to steady state 
w.r.t. symbolic values.  

We absorb a fault list which lists all untestable stuck at 
faults in the circuit, and screen out certain bridge faults 
before starting the per-fault analysis. For example, if the 
fault “b stuck-at 0” is untestable, then the bridging fault 
“a DOM0 b” between nets a and b would also be 
untestable, and can be dropped from the original bridge 
fault list. Our tool that identifies untestable stuck-at faults 
is based on symbolic simulation and Boolean 
satisfiability analysis, but we would not discuss the 
details of that tool in this paper. 

b)  Per-Fault Analysis: After filtering the initial fault list, 
we perform the following analysis on each fault in the 
reduced list: 
b.1) Identification of conditions necessary for fault 

detection: Depending upon the fault type, we identify 
the fault site and the condition(s) for fault excitation (as 
previously shown in Table 1). For example, if a “a 
DOM0 b” bridge exists between nets a and b, then the 
fault excitation condition would be (a = 0) and            
(b = 1), and the fault site would be net b, because a 
fault effect of 0/1 (good machine value / faulty 
machine value) appears on this net. Then, we identify 
the conditions necessary to propagate the fault effect to 
an observation point. This basically means that we 
identify the non-controlling values on each gate in the 
off-path from the fault site to the observation point. 
These conditions must be met if the fault has to be 
testable.  

Fault Model Representation Excitation Condition(s) 

Wired-AND Bridge  
(a AND b) 

 
1) (a = 0) and (b = 1)      
2) (a = 1) and (b = 0)                             

Wired-OR Bridge  
(a OR b) 

 
1) (a = 0) and (b = 1) 
2)    (a = 1) and (b = 0)   

DOM Bridge 
(a DOM b) 

 
1) (a = 0) and (b = 1) 
2) (a = 1) and (b = 0) 

DOM0 Bridge 
(a DOM0 b) 

 

    1)    (a = 0) and (b = 1) 

DOM1 Bridge  
(a DOM1 b) 

 

    1)   (a = 1) and (b = 0) 

a 
b 

a’ 
b’ 

a 
b 

a’ 
b’ 

a 

b 
a’ 
b’ 

a 

b b’ 
a’ 

a 

b 
a’ 
b’

Figure 8: Algorithm for untestable bridge identification 

a) Perform Symbolic Simulation to obtain information about 
constants in the circuit.  

    Absorb the untestable stuck-at information to screen out 
some bridging faults. 

b) For the remaining faults (per-fault analysis): 
b.1) Find the necessary condition(s) to excite the fault, 

and to propagate the fault effect to an “Observation 
Point”.  

b.2) Backward imply/justify these set of conditions. 
b.3) If no conflict exists, forward imply with the logic 

values set in the circuit. If a conflict exists in 
backward / forward implications, bridge fault is 
untestable. 

b.4) Perform observability analysis to determine if the 
fault effect can be propagated to a PO or to the 
latch/flip-flop boundary in the last time frame of the 
k-frame unrolled circuit. 

Table 1: Fault models, their representations and excitation condition(s) 
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b.2) A backward implication routine is then invoked on the 
necessary set of conditions. We could have separately 
implied each necessary condition and added the 
individual implication lists to obtain the composite 
implication list corresponding to the set of necessary 
conditions. This is exactly what would have been done 
if implications corresponding to each gate were 
computed as a pre-processing step.  However, we 
compute the implications associated with the entire set 
of necessary conditions in one go, because this 
technique helps in learning more implications. The 
backward implication process begins at the fault 
injection frame, and goes on till the lowest time frame 
in the ILA expansion is reached     (i.e. –K/2, in an ILA 
representation of K frames) or till no more implications 
can be learnt. 

b.3) If  no  conflict  is encountered  in  the backward 
implication process, then a forward implication process 
is invoked on the already learnt implication set. This 
implication process begins at the lowest level of the 
ILA expansion, and continues till the last frame of the 
ILA is reached (i.e. begins at –K/2, or the lowest frame 
that has a valid implication associated with it, and 
continues till frame K/2) or till no more implications 
can be learnt. 

b.4) If no conflict occurs during either the backward 
implication process or during the forward implication 
process, then an observability analysis is carried out to 
determine if the fault effect can be observed or not. 
This observability analysis marks the last step of 
untestability analysis for a fault, and the motivation 
behind the observability analysis is to check if the 
excitation conditions for the fault block the fault effect 
from propagating to the primary output(s) or not. The 
way we implement this observability analysis is 
through multiple ID propagation. This is explained 
below: 
        We associate an ID with the fault site, (say X), 
and propagate it through the circuit. We also keep a 
track of the polarity of this ID, and identify the inverted 
value of this ID as X’. This is done to identify masking 
of fault effects (For example, if an id of X and X’ 
appear at the input of an AND gate, the fault effect 
would get killed due to the opposite polarities of the 
fault IDs). Since most of the industrial designs contain 
tri-state devices, and buses, we use another ID, which 
is a generic ID, and we call it IDG. The motivation of 
using IDG can be understood through Figure 9. 
 
 
 
 
 

 
 

Let’s assume that fault ID X (lets assume X represents a 
faulty state of 0/1) appears at the select line of a tri-state 
device, as shown in figure 9, with an active high enable. 
The faulty machine value at the output of the gate would be 
the value applied at the input of the gate, but the good 
machine value will be Z, i.e. high impedance state. A fault 

effect of Z/0 or Z/1 cannot be directly associated with either 
X or X’ (because X and X’ are of the form 0/1 or 1/0). 
Thus, this fault effect is represented by a new ID, i.e. IDG.                        
    Thus, if any of these IDs, i.e. X, X’ or IDG propagate to 
either a PO or to the latch boundary in the last time frame of 
the ILA expansion, then the fault is not declared untestable. 
However, if none of these IDs can propagate to a 
completely observable point, then the bridge is marked as 
untestable. 
 
4. Results:  

The proposed algorithm was implemented in C++ and 
experiments were conducted on ISCAS89 and some 
industrial circuits on a 500 MHz, HP workstation. The 
results are reported in Table 2. Column 1 in Table 2 shows 
the ISCAS ’89 circuits, and the industrial circuits (C1, C2, 
C3) for which the tool was evaluated. Column 2 shows the 
number of faults our bridge fault ATPG engine identified as 
untestable, with the backtrack limit set to 1000. Column 3 
shows the number of faults identified as untestable using 
the new implications-based tool, with the time frame 
expansion of the circuit being from –2 to 2. The numbers in 
the parenthesis in this column show two values. The first 
value is the number of faults identified as untestable both 
by the new tool and by ATPG, and the second value in bold 
identifies  the  number  of  faults  that our tool identified as 
untestable, for which ATPG aborted after 1000 backtracks. 
For example, for circuit s5378, ATPG identified 261 faults 
as untestable. With the implications based approach, we 
identified 552 faults as untestable. Out of these 552 faults, 
187 faults were identified as untestable by both ATPG and 
the implications based tool, while the rest 365 faults 
identified as untestable, were the faults on which ATPG 
aborted. So, the gain here is w.r.t the 365 faults which our 
new tool could identify as untestable, while for which 
ATPG could not generate a pattern. Column 5 shows the 
number of faults identified as untestable by the new tool, 
using K = 0, i.e. by unrolling the sequentail circuit in just  
one time frame  (effectively combination analysis). Finally, 
columns 4 and 6 show the time taken by the implications 
based tool to analyse all faults for an ILA size of 5 (K = 2) 
and ILA size of 1 (K = 0)  respectively.  Table 3   shows   
the  time  spent  by ATPG to analyze the faults  identified 
as  untestable  using  the implications based algorithm. 
Column 1  in  Table 3 shows the circuit name, and the 2nd  
column shows the time spent by ATPG only  on  the  faults 
which were identified as untestable using the implications 
based tool (Sunt for  K = 2). For example, for s15850, the 
ATPG engine took 953 seconds to analyze the 1190 faults 
identified as untestable by our tool for K = 2. It   was   
observed   that  the  number  of untestable  faults   identified 
with   K = 0   (combinational analysis)  is  almost   the   
same   as   the  number  of  faults identified by expanding 
the ILA to a length of 5 frames for most of the circuits. 
Thus, it can be seen that even in a combinational 
framework, our tool can quickly identify more untestable 
faults than the ATPG tool can capture. It was also seen that 
although our implications based approach for identifying 
untestable bridges worked out  better than ATPG  for  
ISCAS circuits,  it identified only a subset of the faults 
identified as   untestable   by   the   ATPG   engine   for   the 

0 
1 

X 

Z/0 
Z/1 

Figure 9: Use of generic ID, IDG 
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industrial circuits.  This is primarily due to the fact that the 
bus structures present more commonly in industrial designs 
limit the strength of implications, and hence limit the 
untestable fault identification capability. Nevertheless, our 
tool provides a novel technique to quickly identify non-
trivial untestable bridging faults, thereby reducing the size 
of the bridging fault list to be analyzed by bridge-fault 
ATPG engines. 
 
5.  Conclusion: 
In this paper, we proposed an implication based approach 
complemented with a symbolic simulator to identify 
untestable bridging faults at gate level.  Our tool was tested 
on large ISCAS ’89 circuits, and three industrial circuits. 
We found the following: 
a) The proposed algorithm could identify a lot of 

untestable bridging faults in ISCAS ’89 circuits. 
b) The proposed algorithm when applied to an ILA of size 

K = 0 could identify almost as many untestable faults 
as could be identified with an ILA of size 5.  

c)    Our  tool  is  very inexpensive in terms of both memory 
and the time taken to identify untestable faults. Both 
these performance metrics (time and memory) are 
always linear in the size of the circuit. Also, the faults 
that we identify as untestable are non-trivial, as ATPG 
aborts for most of these faults. 
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Circuit ATPG Red. 
(bk = 1000) 

Sunt 
(K* = 2) 

Time 
(sec) 
K = 2 

Sunt 
(K = 0) 

Time 
(sec) 
K = 0 

s5378 261 552   
(187/365) 361 176        

(176/0) 40 

s9234 965 5585 
(679/4906) 356 5568 

(676/4892) 47 

s13207 1595 13163 
(1485/11711) 318 13160  

(1485/11708) 31 

s15850 496 1190 
(230/960) 804 1183 

(228/955) 95 

s35932 1382 945      
(915/30) 979 927      

(897/30) 534 

s38417 535 428   
(115/311) 2139 418    

(111/307) 100 

s38584 1113 868   
(714/154) 3085 861 

(711/150) 846 

C1 154 39           
(39/0) 63 39           

(39/0) 23 

C2 43 27           
(27/0) 90 27           

(27/0) 63 

C3 76 21           
(21/0) 97 21           

(21/0) 14 

Circuit TATPG 
(sec) 

s5378 58 

s9234 592 

s13207 14380 

s15850 953 

s35932 60 

s38417 86 

s38584 405 

C1 10 

C2 13 

C3 8 

*K = ± number of frames in which the sequential circuit is unrolled 

Table 3: Time taken by 
ATPG  to analyze Sunt 

Table 2: Results obtained for 16000 randomly generated bridges 


