
Q-PREZ: QBF Evaluation Using Partition, Resolution and Elimination With
ZBDDs

�

Kameshwar Chandrasekar and Michael S. Hsiao (
�
kamesh, hsiao � @vt.edu)

Department of Electrical and Computer Engineering, Virginia Tech
Blacksburg, VA, 24061

Abstract
In recent years, there has been an increasing interest in

Quantified Boolean Formula (QBF) evaluation, since sev-
eral VLSI CAD problems can be formulated efficiently as
QBF instances. Since the original resolution-based meth-
ods can suffer from space explosion, existing QBF solvers
perform Decision Tree search using the Davis-Putnam Lo-
gemann and Loveland (DPLL) procedure. In this paper, we
propose a new QBF solver, Q-PREZ, that overcomes the
space explosion problem faced in resolution by using ef-
ficient data structures and algorithms, which in turn can
outperform DPLL-based QBF solvers. We partition the
CNF and store the clauses compactly in Zero-Suppressed
Binary Decision Diagrams (ZBDDs). Then, we introduce
new and powerful operators to perform existential and uni-
versal quantification on the partitioned ZBDD clauses as
resolution and elimination procedures. Our preliminary ex-
perimental results show that Q-PREZ is able to achieve sig-
nificant speedups over state-of-the-art QBF solvers.

1. Introduction

Quantified Boolean Formulas (QBF) offer a compact
representation for many problems in Artificial Intelligence
(AI) and Computer-Aided Design (CAD) [1–3]. QBF prob-
lems are a generalization of the Boolean Satisfiability (SAT)
problem, as they accommodate both existential and univer-
sal quantifiers. In a SAT problem, only existential quanti-
fiers are allowed and, as a consequence, the order of vari-
able quantification is immaterial to the resulting satisfiabil-
ity (even though the variable order can influence the effi-
ciency of the search). On the other hand, the evaluation of
a QBF formula depends on the order of variable quantifi-
cation. This can significantly restrict the variable ordering
for the quantification performed on a QBF formula. In com-
plexity theory, the problem of solving QBF instances be-
longs to the class of PSPACE-complete problems, which is
higher in hierarchy than NP-complete problems. It may be
noted that SAT belongs to the class of NP-complete prob-

�
supported in part by NSF Grants CCR-0196470 and CCR-0305881.

lems and QBF is harder than SAT. However, the two prob-
lems are closely related since they generally manipulate a
clause database and they can be solved with similar algo-
rithms - broadly classified as resolution and search methods.

A recent research interest for solving QBF problems
was revived in [4]. The authors introduce a new operator
called Q-Resolution to eliminate many universal variables
in one operation. A practical implementation of resolution-
based methods may result in memory explosion if we di-
rectly perform a list-based manipulation of clauses. As a
consequence, most of the existing QBF solvers [5–10] are
based on variations of Davis-Putnam Logemann and Love-
land (DPLL) procedures. They perform an explicit Deci-
sion Tree search to solve a QBF instance. Considering the
tremendous research effort in SAT, researchers either bor-
rowed or extended the speed-up techniques from the SAT
arena. Intelligent learning techniques, similar to SAT based
procedures, were incorporated to speed up the search. A
complete evaluation of existing QBF solvers and challenges
facing the QBF arena has been reported in [11], where the
authors identify a list of state-of-the-art QBF solvers.

In this work, we develop a ZBDD-based QBF solver
called Q-PREZ - “QBF evaluation using Partition, Resolu-
tion and Elimination with ZBDDs”. The novel features of
Q-PREZ are as follows:

1. We partition the CNF database and store the partitioned
clauses in ZBDDs

2. We introduce new procedures to perform existential &
universal quantification on partitioned ZBDD clauses

3. We use a resolution-based framework for QBF

Our preliminary results show that Q-PREZ is able to achieve
significant speedups over state-of-the-art QBF solvers. The
rest of the paper is organized as follows. In Section 2, we
introduce the preliminaries of QBF and ZBDDs. In Section
3, we introduce the procedures to perform existential and
universal quantification on monolithic ZBDD. In Section 4,
we introduce partitioning of clauses and procedures to per-
form existential and universal quantification on partitioned
ZBDD clauses. We present the experimental results in Sec-
tion 5 and conclude the paper in Section 6.

Proceedings of the 18th International Conference on VLSI Design held jointly with 4th International Conference on Embedded Systems Design (VLSID’05)

1063-9667/05 $20.00 © 2005 IEEE

2. Preliminaries

A Quantified Boolean Formula is of the form
� 	

(1)

where,�
is a propositional formula�

is a variable in

�
� � � � � �

is existential
� 	

/ universal
� � 	

quantifier

Since it is possible to translate any propositional formula
to the Conjunctive Normal Form (CNF), we assume that

�
is given in CNF for our QBF solver. A CNF is a conjunction
of clauses, where each clause is a disjunction of literals. A
literal is a variable occurring in positive or negative polarity.

The QBF can be represented as
� 	

(2)

where,� � � � � � � � � � �
is a partition of the � variables (� � �)�

is a group of consecutive variables of same quantifier�

s alternate in

and

�
in the QBF formula

The variables that are grouped together are said to be in
the same quantification level. The variables that are exis-
tentially quantified are referred as existential variables and
the variables that are universally quantified are referred as
universal variables. In a broader sense, we use QBF to refer
both the formula and the problem of evaluating the formula,
when the meaning is clear from the context.

2.1. QBF Evaluation

QBF can be evaluated using resolution-based methods
or search-based methods. In resolution-based methods, the
formula is expanded and quantification is performed from
the innermost quantifier to the outermost quantifier (

� � � �
to

� � � �
). On the other hand, in search-based methods, a

depth-first search of the Decision Tree is performed from
the outermost quantifier to the innermost quantifier (

� � � �
to

� � � �
). We demonstrate both the methods using the fol-

lowing example in Figure 1. Consider the QBF:� � � � � � � � � � � � �� � �� � �� � 	 � �� � �� 	 � �� � � 	 � �� � � � 	

In Figure 1 (A), a Davis-Putnam Logemann and Love-
land (DPLL) like procedure is used to search the Deci-
sion Tree. We start from the outermost quantifier variables,� � � � �

, and search the Decision Tree. If we reach a SAT
terminal in both branches of every universal variable and at
least one branch of every existential variable, the QBF is sat-
isfiable. Otherwise, it is unsatisfiable. In Figure 1 (A), we
search the 0-branch of every variable first and the variable
order is forced by the quantification levels. Since we reach
a CONFLICT terminal -

� ! " " 	
- in the 1 branch of the uni-

versal variable � , the QBF is NOT satisfiable. In Figure 1
(B), the resolution based method is demonstrated. Universal

(x + y + a + b + z)
(x + a) (y + b)
(x + b)

FALSE

(x + y + a + b)
(x + a) (y + b)
(x + b)

(y + b)
(x + b)

(x + y)

(B) Resolve & Eliminate

Eliminate z

Resolve a

Resolve b

Eliminate x, y

(y + a + b + z)

(y + b)

(a + z)

SAT

(b)

(a) (y + b)

(a) (b) CONF

(a)

SATSAT

(x + y + a + b + z)
(x + a) (y + b)
(x + b)

CONF

N11

x=0 x=1

y=0 y=1

b=1
b=0

a=0a=0

y=0 y=1

N3

N1

N2

N0

(A) Decision Tree Search

(a + b + z)
(b)

b=0

N4
N5

N6

N7

N8

N9

N10

Figure 1. QBF Evaluation

quantification is done by just eliminating the universal vari-
able from the CNF [12]. Existential quantification is done
by resolving all the clauses with respect to the particular
variable, say # , and finally removing the clauses contain-
ing # and

�# . This operation is performed by finding the
Cartesian product of the set of clauses with # and the set
of clauses with

�# [13]. Finally, if we obtain a CNF with an
empty clause, then the QBF is unsatisfiable. If we obtain
a CNF with no clauses at all, then the QBF is satisfiable.
In this example, the QBF is unsatisfiable since we obtain a
CNF with empty clauses after deleting

�
and � in the penul-

timate step. In this paper, we use the latter resolution-based
technique to solve the QBF problem.

2.2. Zero Suppressed BDDs (ZBDDs)

In [14], Minato introduced ZBDDs to efficiently repre-
sent sets of combinations and perform set operations. It is
believed that ZBDDs overcome the spatial explosion prob-
lem of ROBDDs and they are known for their compact rep-
resentation of sparse sets. Originally, they were used to
solve unate covering, graph optimization and logic mini-
mization problems. An excellent tutorial on ZBDDs is avail-
able at the website [15], and ZBDD algorithms have been
implemented in CUDD [16] and Extra [17] packages.

Sets of combinations $ % � � � � � � � � � � �� � & � ' � � � � � � �
� � � (�) � � � �� � * � + � �

are represented in a ZBDD as shown
in Figure 2 (A). Each path from the root to TERMINAL-1
represents a set in the ZBDD. A 1-edge from a node denotes
the presence of the element in the set and a 0-edge denotes
its absence. The number of paths from root to TERMINAL-
1 denote the number of sets stored in the ZBDD.

Recently, ZBDD based methods are gaining importance
in SAT-solvers. ZBDDs were initially used to store clauses
and solve the Boolean Satisfiability problem using Davis-
Putnam Procedure in [13]. Later, in [18] and [19], ZBDD
CNFs were used to solve the Boolean Satisfiability problem
using DPLL procedure and breadth-first search respectively.

Proceedings of the 18th International Conference on VLSI Design held jointly with 4th International Conference on Embedded Systems Design (VLSID’05)

1063-9667/05 $20.00 © 2005 IEEE

Existential Quantification

(P + Q).R

(a + b + c + d)
(a + b + g + h)
(e + f + c + d)
(e + f + g + h)
(y + z)

Universal Quantification

P . Q . R

(a + b)
(e + f)
(c + d)
(g + h)
(y + z)

(x +a + b)
(x +c + d)
(x +e + f)
(x +g + h)
(y + z)

P = (a + b)(e + f)
Q = (c + d)(g + h)
R = (y + z)

(x + P)(x + Q)R
CNF

CNF

(B) Existential Quantification

a

b e

f

c

d g

h

1 0

y

z

01

a

b
e

cf

d

h

g

z

y

(C) Universal Quantification

1−branch
0−branch

(A) CNF stored in a ZBDD

x

a

b e

f

c

d

x

y

zh

g

01

P

Q

R

ZBDD CNF − Var order: x,a,b,e,f,c,d,g,h,y,z

Figure 2. Quantification Using ZBDDs on Variable
�

It may be noted that any CNF can be represented as sets
stored by the ZBDD. Due to the high compression power of
ZBDDs, they are able to perform resolution and subsump-
tion check using set operations efficiently. In this paper, we
use ZBDDs to store the clauses and perform existential and
universal quantification using set operations on the ZBDDs.
Based on these operations, we aim at evaluating the satisfi-
ability of a QBF formula.

3. Simple QBF Evaluation on ZBDD clauses

In QBF evaluation, we need to perform quantification
from innermost variable to outermost variable as specified
by quantifiers in the formula. Quantification involves the
process of finding cofactors in the CNF. In order to find the
cofactors quickly, we use the variable ordering of quantifiers
(innermost to outermost) as the ZBDD variable ordering.
Each variable appears in its positive polarity first, followed
by its negative polarity in the variable ordering.

3.1. Existential Quantification

Suppose we need to existentially quantify a CNF with
respect to

�
. Using the distributive rule of Boolean algebra,

the set of clauses where
�

occurs in positive polarity can be
written as

� � � � �
, and the set of clauses where

�
occurs in

the negative polarity can be written as
� �� � � �

. Let � be
the remaining set of clauses. Then, the CNF can be written
as � 	 � � � � �
 � �� � � �
 � ; where,

�
,

�
and � are sets

of clauses. Existential quantification,� � � 	 � � � � �

	 � � � � �
 �
Since the clauses in the CNF are stored as sets,� � � 	 � � � � � � �

where, �
is Cartesian Product operation on sets�
is union operation on sets

In the ZBDD, existential quantification is performed by
taking the Cartesian Product of clauses in 1-branch of

� � � �
& clauses in 1-branch of

�� � � �
and union the resultant with

clauses that are independent of
� � � �

. This is explained for

a CNF shown in Figure 2 (A). The CNF shown in Figure 2
(A) can be re-written as the following (where

�
,

�
, and �

are explicitly grouped):
� � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � ! �

� " � � � � � � � � � � � � � � � � ! �
� #" � � � � � � � � � � � � � � � � ! �

$ " � � � " � � #"
� % & � � � � � � � � � � ' � & � � � � � � � � � � ' (� � � ! �
� �

� � ! �

The last step performs the Cartesian product of literals in�
and

�
. These operations are efficiently performed using

set operators in ZBDDs (see Figure 2 (B)).

3.2. Universal Quantification

We show that universal quantification can be performed
using the set-union operation in ZBDDs. Again, the CNF
can be written as � 	 � � � � �
 � �� � � �
 �

Universal Quantification,) � � 	 � �
 � �

	 � �
 � �
 �

In set theoretic terms,) � � 	 � � � � �

where,
�

is the union operation on sets
In the ZBDD, universal quantification is performed by

taking the union of clauses in 1-branch of
� � � �

, clauses in
1-branch of

�� � � �
and the clauses that are independent of� � � �

. We will explain this using the simple CNF shown
in Figure 2 (A). Again, the CNF given in the Figure can be
re-written as the following:

� � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � ! �
* " � � � " � � #"

� % & � � � � � � � � � � ' � & � � � � � � � � � � ' (� � � ! �
� � ! �

The set of clauses in the universally quantified CNF is the
union of sets of clauses in

�
,

�
and � (see Figure 2 (C)).

Proceedings of the 18th International Conference on VLSI Design held jointly with 4th International Conference on Embedded Systems Design (VLSID’05)

1063-9667/05 $20.00 © 2005 IEEE

4. Efficient QBF Evaluation on Partitioned
ZBDD clauses

The complexity of performing set operations on ZBDDs
depends directly on the size of ZBDD. In order to speed up
the set operations, we propose to partition the CNF clauses
and represent each partition of clauses as a separate ZBDD.
Our objective is to place the variables that are highly related
to each other in the same partition. This reduces the size
of ZBDD and helps to perform set operations efficiently. In
this section, we explain the notion of clause partitioning and
define procedures to perform existential and universal quan-
tification over partitioned ZBDD clauses.

4.1. Clause Partitioning

The key idea behind partitioning the clauses is as fol-
lows. If a variable occurs in a single partition of the clauses,
then the quantification of that variable can be carried out
in a smaller ZBDD without affecting the clauses in other
partitions. Since we perform set operations on a smaller
size ZBDD, the time taken to perform the operation will be
lesser. If a variable occurs in more than one partition of
the clauses, it will be necessary to consider all those parti-
tioned ZBDDs. In order to avoid manipulating many par-
titions for quantifying a single variable, our objective is to
minimize the overlap of variables between multiple parti-
tions of clauses. Note that our quantification procedures are
valid even if we perform a random partition of the clauses.

In order to perform better clause partitioning, we can use
the well advanced Graph partitioning techniques. We con-
struct a Variable Graph, with the variables as nodes, and
an edge exists between two variables if their corresponding
literals occur in the same clause. Next, we use Graph par-
titioning algorithms to obtain a vertex separator-set and a
fair partition of the variables in the graph. We use the pub-
licly available Graph partitioning package Metis [20] to per-
form Graph partitioning. (Metis is known to perform multi-
level Graph partitioning quickly). In cases where partition-
ing takes longer run-times, we can perform a random par-
tition of clauses. Then, based on the variables in different
components, we partition the clauses such that the variables
overlapping in different clause partitions is minimized. If all
the variables in a clause are in a single component, then we
add that clause to one partition. Otherwise, we find the par-
tition to which the maximum number of literals in a clause
belong, and assign the clause to that partition.

We demonstrate clause partitioning for the CNF in Fig-
ure 3 (A) and corresponding Variable Graph in Figure 3 (B).
It can be seen that

� � � � � � �
is a minimal vertex separator

set. We mark that variables
� � � � � � � � � � � � �

belong to com-
ponent 1, variables

� � � � � 	 � �
 � � � �
belong to component 2

and variables
� � � � � � � � � � � �

belong to component 3. We
partition the clauses based on these variables. For instance,� � � � � � �

belongs to partition 1, since both the variables

x1

x2 x5

x6

x7

x8

x9

x0

x4

x3

(B) Variable Graph

(x4 + x2)

(x5 + x7)

(x7 + x0 + x9)

(x1 + x2 + x3)

(x1 + x2 + x3)

(x4 + x2) (x5 + x7)
(x6 + x7)

(A) CNF

(x4 + x3)

(x7 + x8 + x9)

(x4 + x2)
(x3 + x7)

(x3 + x5 + x7)

(x8 + x0)
(x6 + x7)

(C) Clause Partitions

(x7 + x8 + x9)
(x4 + x3)

(x3 + x5 + x7)

(x4 + x2)

(x3 + x7)
(x8 + x0)
(x7 + x0 + x9)

Figure 3. Clause Partitioning

belong to component 1.
� � � � � � � � � �

also belongs to
partition 1, since majority of the variables are in component
1. Note that we are using only a greedy approach and are
not guaranteed to get the best possible clause partitions. We
represent each partition of clauses as separate ZBDDs and
perform quantification operations on the partitioned ZBDD.
Since we reduce the size of individual ZBDDs, it is expected
that the quantification time will be reduced.

4.2. Existential Quantification

Similar to monolithic ZBDDs, partitioned ZBDDs also
follow the same variable order as the quantification order
(innermost to outermost) of the QBF. We intend to perform
quantification on the partitioned ZBDD clauses and retain
the number of partitions after the quantification operation.

Suppose we have � -partitions of clauses, stored in �
ZBDDs, and we would like to perform quantification on the
partitioned ZBDD clauses with respect to

�
. Let us assume

that the variable
�

occurs only in the first � partitioned ZB-
DDs. The CNF can be represented as,

� �
where, � �

represents the � � � partition of the CNF
Let

 �
,

! �
represent the clauses in � �

that contain
�

,
"�

respectively and # �
represent the clauses in � �

that do not
contain

�
or

"�
such that, � � � � � � � � � � "� � ! � � � # �

. Then,
$ % & ' () * + & ,' (- * + . * / & ' () 0 + & ,' (- 0 + . 0 / / /

& ' () 1 + & ,' (- 1 + . 1 / $ 1 2 * / / / $ 3
% & ' () * /) 0 / / /) 1 + / & ,' (- * / - 0 / / / - 1 + / . * / . 0

/ / / . 1 / $ 1 2 * / / / $ 3
4 5 $ % $ 5 ($ 65

% 7 &) * /) 0 / / /) 1 + (& - * / - 0 / / / - 1 + 8 . * / . 0 / / / . 1
/ $ 1 2 * / / / $ 3

9 : ; < %) * /) 0 / / /) 1
4 5 $ % 7 & < (- * + / & < (- 0 + / / / & < (- 1 + 8 . * / . 0 / / / . 1

/ $ 1 2 * / / / $ 3
% 7 & < (- * + / . * 8 7 & < (- 0 + / . 0 8 / / / 7 & < (- 1 + / . 1 8

/ $ 1 2 * / / / $ 3

Proceedings of the 18th International Conference on VLSI Design held jointly with 4th International Conference on Embedded Systems Design (VLSID’05)

1063-9667/05 $20.00 © 2005 IEEE

In set theoretic terms,� � � � � � � � � � � � �
� 	
 � � � � � � � � � � �

� � � �
��

� � � � � � � � � � � � � � � � �

Each � �
is stored as a separate partition of clauses in

the resulting partitioned ZBDD. Basically, we find the � -
partitions that contain

�
. Since we have ordered the ZBDDs

in the order of quantification, it is sufficient to check the first
element in each partitioned ZBDD to obtain the � -partitions
containing

�
. We perform a union operation of the clauses

in the 1-branch of
�

(
� �

) in � -partitions to obtain � . Then,
to obtain each partition � �

, we perform Cartesian product
of � and 1-branch of

��
(

 �
) and union the resultant with

the clauses independent of
�

(! �
), in " # $ partition. Note that

the remaining
% & ' � (

clauses need not be disturbed while
quantifying

�
. Due to the sparsity of literals in the CNF, it

is generally the case that � is much smaller than & .

4.3. Universal Quantification

In Section 2.1, we saw that universal quantification can
be performed by simply eliminating the universal variable
from the CNF. We deduce the operations on partitioned ZB-
DDs formally in the following equations. Using the same
notations as in the previous section;) � � � � � � � *�

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � �

� 	
 + � � � � � � � � � � �
) � � � + � � + � � � � + � � � � � � � � � � �

In set theoretic terms,+ � � � � � � � � � � �
) � � �

��
� � � + � � � � � � � � � � � � �

Now, each , �
is stored as a separate partitioned ZBDD.

The ZBDD for , �
is obtained by taking the union of the

clauses in the 1-branch of
�

(
� �

), clauses in the 1-branch of��
(

 �
) and clauses that are independent of

�
and

��
(! �

), in
the " # $ partition. This operation is performed in only the � -
original partitions, where

�
occurs. The remaining

% & ' � (
partitions are undisturbed, since they are independent of

�
.

5. Experimental Results

We implemented the above techniques using CUDD 2.4
[16] and Extra 2.0 [17] BDD packages in C and integrated
them into a framework called Q-PREZ. The experiments
were conducted on a 1.8 GHz Pentium 4 machine with
512 MB RAM running Linux, on the benchmarks available
in [21] and compared with state-of-the-art QBF solvers -
Qube-Rel [9] and Quaffle [5, 6].

Table 1. Prop. modal logic QBF instances
Benchmark SAT? Qube Quaffle Q-PREZm Q-PREZp

T(s) T(s) T(s) T(s)
k d4 n-4 Yes 588.72 105.53 53.73 6.31

k d4 n-20 Yes T O T O T O 31.52
k d4 n-21 Yes T O T O T O 29.62
k d4 p-6 No T O 102.57 47.48 3.74

k dum n-5 Yes 32.92 13.75 12.90 3.08
k dum p-5 No 0.79 0.26 4.69 1.59
k dum p-7 No 5.32 1.04 13.84 3.79
k grz n-2 Yes 9.38 1.04 7.19 2.82

k path n-4 Yes 21.62 5.85 16.19 5.00
k path n-5 Yes 212.95 48.14 31.35 4.46
k path p-6 No 48.52 42.86 33.49 4.15

k path n-20 Yes T O T O T O 21.37
k path n-21 Yes T O T O T O 18.83
k poly p-2 No 2.05 0.87 1.37 0.38
k poly p-3 No 26.73 8.61 3.90 1.05
k t4p n-2 Yes 131.55 56.75 20.50 6.47
k t4p p-2 No 5.27 7.35 8.49 3.28
k t4p p-3 No 32.90 48.11 22.08 3.54

k branch n-3 Yes 8.39 1.97 145.51 33.54
k branch p-3 No 1.11 0.93 144.48 23.61

(a)T O: Time Out (b) Q-PREZp includes clause-partition time

In the first set of experiments, MLK (propositional modal
logic) QBF instances were targeted with a time limit of 1200
seconds, and the results are reported in Table 1. In Table 1,
columns 1 and 2 list the name of the benchmark and if it is
satisfiable or not. Columns, 3, 4, 5 and 6 list the time taken
in seconds for Qube-Rel, Quaffle, Q-PREZm (using mono-
lithic ZBDD) and Q-PREZp (using partitioned ZBDD). It
is observed that Q-PREZp is generally an order of magni-
tude faster than Q-PREZm. In comparison with Qube, Q-
PREZp achieves a significant speedup for most of the bench-
marks, especially for those that are difficult. For instance,
in k d4 p-6, Qube was not able to finish, whereas Quaf-
fle took 102.57 seconds and Q-PREZp determines that the
QBF instance is unsatisfiable in only 3.74 seconds. We can
see orders of magnitude improvement for certain QBF in-
stances like k d4 n-4, k dum n-5, k path n-5 and k path p-
6. On the other hand, Q-PREZ did not do as well for cer-
tain QBF instances like k branch n-3 and k branch p-3. We
postulate that this is due to the absence of advanced sim-
plification techniques in Q-PREZ such as trivial falsity that
help to identify the satisfiability of the QBF instance using
quick CNF processing methods. Finally, Q-PREZp is faster
than Quaffle for most of the benchmarks, even as Quaffle is
generally faster than Qube. The power of partitioning the
clauses is exhibited in k d4 n-20, k d4 n-21, k path n-20
and k path n-21, where all the other methods fail to finish
but Q-PREZp is able to finish.

In a second set of experiments, we target at evaluating
the QBF problems arising in VLSI CAD such as sequen-
tial depth computation(1-4), partial equivalence checking(5-
10), counters(11-14) and circuit problems(15-20) and com-
pare our results with Qube-Rel alone. Since these prob-

Proceedings of the 18th International Conference on VLSI Design held jointly with 4th International Conference on Embedded Systems Design (VLSID’05)

1063-9667/05 $20.00 © 2005 IEEE

lems are very difficult for state-of-the-art QBF solvers, we
set a time-limit of 6000s and use Q-PREZp version of our
QBF solver. From Table 2, it can be seen that Q-PREZp is
able to achieve significant speed-ups for the sequential depth
computation problems. Because Qube aborts for higher
circuits as well, we report the results for s27 only. It is
seen that Q-PREZp is able to complete within a second for
all instances of s27, whereas Qube times out for sequen-
tial depths, 4 and 5. For the partial equivalence checking
and counter QBF instances, Q-PREZp outperforms Qube in
comp*0* out, term1*1*0 out and cnt06. For the Adder cir-
cuit problems, Qube is better than Q-PREZp in Adder-2-8-
s, whereas Q-PREZ outperforms Qube in Adder-2-4-s. The
better performance of Qube may be again due to the CNF
processing techniques in it.

Table 2. VLSI CAD QBF instances
No Benchmark SAT? Qube, T(s) Q-PREZp, T(s)
1 s27 d2 Yes 0.09 0.02
2 s27 d3 No 909.00 0.08
3 s27 d4 No T O 0.34
4 s27 d5 No T O 0.85
5 z4ml*0*0 inp No 0.02 0.03
7 z4ml*1.*0 inp No 0.02 0.02
8 z4ml*1*0 out No 0.04 0.02
9 comp*0*1 out Yes T O 5426.61

10 term1*1*0 out No T O 1781.22
11 cnt02e Yes 0.01 0.23
12 cnt02 Yes 0.01 0.02
13 cnt04e Yes 0.44 120.14
14 cnt06 Yes T O 388.98
15 Adder2-2-c No 0.020 0.18
16 Adder2-2-s Yes 0.04 0.04
17 Adder2-4-s Yes T O 11.54
18 Adder2-6-s Yes T O 30.47
19 Adder2-8-s Yes 0.04 59.52
20 flip-flop-3-c No 0.01 0.02

(a)T O: Time Out (b) Q-PREZp includes partition time

A very recent resolution-based QBF solver, Quantor [22]
operates on a list-based framework for performing resolu-
tion, and their experiments show that a brute-force quan-
tification results in memory explosion. So, the author pro-
poses optimization techniques and quantification schedul-
ing that helps to speed up the QBF solving and compete
with state-of-the art QBF solvers. On the other hand, our
ZBDD-based framework is capable of competing with state-
of-the art QBF solvers without any quantification schedul-
ing. Since the quantification scheduling is orthogonal to
the Q-PREZ-framework, we conjecture that it is possible to
speed up our framework with quantification scheduling.

6. Conclusion and Future Work

In this paper, we present a new and powerful QBF solver,
Q-PREZ, that is based on resolution-methods in contrast
to existing DPLL-based QBF solvers. ZBDDs are used to
compactly represent the clauses. We developed efficient ex-
istential and universal quantification procedures that are per-

formed using set operations of ZBDDs. In particular, we
partition the clauses and perform the quantification on par-
titioned ZBDD clauses to reduce the execution time. Ex-
perimental results showed that the proposed techniques are
promising and hold potential for future research. It is nec-
essary to experiment with different partitioning techniques
for the CNF and also integrate advanced optimization tech-
niques into Q-PREZ to tackle harder problems. In the fu-
ture, we also intend to implement speed up techniques such
as trivial-truth, trivial-falsity and quantification scheduling
techniques [22] to further enhance the Q-PREZ framework.

References
[1] C. Scholl and B. Becker, “Checking equivalence for partial implemen-

tations”, In Proc. of DAC, 2001, pp. 18-22.
[2] M. Mneimneh and K. Sakallah, “Computing Vertex Eccentricity in Ex-

ponentially Large Graphs: QBF Formulation and Solution”, In Proc. of
Sixth Intl. Conf. on Theory and Applications of SAT Testing, 2003.

[3] C. Haubelt and R. Feldmann, “SAT-Based Techniques in System Syn-
thesis”, In Proc. of DATE, 2003, pp. 1168-1169.

[4] H. Kleine-Buning, M. Karpinski and A. Flogel, “Resolution for Quan-
tified Boolean Formulas”, In Information and Computation, 1995.

[5] L. Zhang and S. Malik, “Conflict Driven Learning in a Quantified
Boolean Sat. Solver”, In Proc. of ICCAD, 2002.

[6] L. Zhang and S. Malik, “Towards symmetric treatment of conflicts
and satisfaction in Quantified Boolean Satisfiability solver”, In Proc.
of Constrained Programming, 2002.

[7] M. Cadoli, M. Schaerf, A. Giovanardi and M. Giovanardi, “An al-
gorithm to evaluate quantified Boolean formulae and its experimental
evaluation”, In Highlights of SAT Research in 2000, IOS Press, 2000.

[8] J. Rintanen, “Improvements to the evaluation of Quantified Boolean
Formulae”, In Proc. of IJCAI, 1999.

[9] E. Giunchiglia, M. Narizzano and A. Tacchella, “Qube: A system for
deciding Quantified Boolean Formulas Satisfiability.”, In Proc. of IJ-
CAR, 2001.

[10] E. Giunchiglia, M. Narizzano and A. Tacchella, “Backjumping for
Quantified Boolean Logic Satisfiability”, Proc. of IJCAI, 2001.

[11] D.L. Berre, L. Simon and A. Tacchella, “Challenges in QBF arena:
SAT’03 evaluation of QBF solvers”, In Proc. of LNAI, 2003.

[12] F.M. Brown, “Boolean Reasoning: The Logic of Boolean Equations”,
Kluwer Academic Publishers, 1990.

[13] P. Cathalic and L. Simon, “Multi-resolution on compressed sets of
clauses”, In Proc. of ICTAI, 2000.

[14] S. Minato, “ZBDDs for Set Manipulation in Combinatorial Prob-
lems”, In Proc. of DAC, 1993, pp. 272-277.

[15] A. Mishchenko, “An Introduction to ZBDDs”,
http://www.ee.pdx.edu/ alanmi/research.

[16] F. Somenzi, “CUDD: CU Decision Diagram Package”,
http://vlsi.colorado.edu/ fabio/CUDD/.

[17] A. Mishchenko, “EXTRA v 2.0: Software Lib. Extending CUDD”,
http://www.ee.pdx.edu/ alanmi/research/extra.htm.

[18] F. Aloul, M. Mneimneh and K. Sakallah, “Search based SAT using
ZBDDs”, In Proc. of DATE, 2002, pp. 1082.

[19] D. B. Motter and I. L. Markov, “A compressed Breadth First Search
for Satisfiability” LNCS, 2002, Vol. 2409, pp. 29-42.

[20] G. Karypis, “METIS v 4.0.1: Serial Graph Partitioning”, http://www-
users.cs.umn.edu/ karypis/metis/metis/index.html.

[21] M. Narizanno and A. Tacchella, ”QBFLIB - The Quantified Boolean
Formulas Satisfiability Library”, www.qbflib.org.

[22] Armin Biere, “Resolve and Expand”, Proc. of SAT 2004, 2004.

Proceedings of the 18th International Conference on VLSI Design held jointly with 4th International Conference on Embedded Systems Design (VLSID’05)

1063-9667/05 $20.00 © 2005 IEEE

