
IEEE VLSI Design Conference, 1997. pp. 475-481

Parallel Genetic Algorithms for Simulation-Based

Sequential Circuit Test Generation

Dilip Krishnaswamy Michael S. Hsiao Vikram Saxena

Elizabeth M. Rudnick Janak H. Patel

Coordinated Science Laboratory, University of Illinois, 1308 West Main St., Urbana, IL 61801

Prithviraj Banerjee

4386 Technological Institute, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208

Abstract

The problem of test generation belongs to the class of
NP-complete problems and it is becoming more and
more di�cult as the complexity of VLSI circuits in-
creases, and as long as execution times pose an addi-
tional problem. Parallel implementations can poten-
tially provide signi�cant speedups while retaining good
quality results. In this paper, we present three paral-
lel genetic algorithms for simulation-based sequential
circuit test generation. Simulation-based test gener-
ators are more capable of handling the constraints of
complex design features than deterministic test gener-
ators. The three parallel genetic algorithm implemen-
tations are portable and scalable over a wide range of
distributed and shared memory MIMD machines. Sig-
ni�cant speedups were obtained, and fault coverages
were similar to and occasionally better than those ob-
tained using a sequential genetic algorithm, due to the
parallel search strategies adopted.

1 Introduction

Much research has been done in the area of sequential
circuit test generation using both deterministic and
simulation-based algorithms. In a typical determinis-
tic algorithm, each target fault is excited and the fault
e�ects are propagated to a primary output (PO); the
required state is then justi�ed using reverse time pro-
cessing. Backtracing is a critical step and is used to de-
termine the component input values required to obtain
a particular output value. However, handling compo-
nents other than simple gates is di�cult because of

This research was supported in part by the Semiconductor Re-

search Corporation under Contract SRC 95-DP-109 and the Ad-

vanced Research Projects Agency under contract DAA-H04-94-

G-0273 administered by the Army Research O�ce. We are also

grateful to the National Center for Supercomputing Applica-

tions for providing us access to their Thinking Machines CM-5.

the backtracing step. In a simulation-based approach,
processing occurs in the forward direction only, and
no backtracing is required. Therefore, complex de-
sign features and constraints are handled more easily
[2]. Candidate tests are generated, and a logic or fault
simulator is used to select the best test to apply in a
given time frame. Tests are usually targeted toward
detecting several faults simultaneously.

Genetic algorithms (GAs) have been used e�ec-
tively for simulation-based test generation [3, 4, 5,
6, 7]. Experience has shown that GA-based auto-
matic test pattern generation (ATPG) performs bet-
ter on data-dominant circuits, while deterministic ap-
proaches perform better on highly sequential, control-
dominant circuits [5]. However, the GA-based ap-
proach is better able to handle design and tester con-
straints. In this paper, we present three new paral-
lel GAs for simulation-based sequential circuit ATPG.
These parallel algorithms have been implemented us-
ing the ProperCAD II library [8], which provides a
portable, parallel object-oriented platform for the de-
velopment of parallel algorithms for VLSI CAD appli-
cations. The ProperCAD II library is a C++ library,
built around the Actor paradigm of concurrent object-
oriented computing [14]. It is portable across a vari-
ety of architectures. Supported architectures include
distributed memory multicomputers, such as the Intel
Paragon, Thinking Machines CM-5, and the IBM SP-
2; shared memory multiprocessors, such as the SUN
4/690/MP, the SUN-SparcServer 1000E, and the SGI
Challenge; and networks of workstations.

The �rst algorithm, ProperGATEST1 is a parallel
version of the sequential algorithm which produces the
same result as the sequential algorithm. The second
algorithm, ProperGATEST2, uses a parallel search
strategy where each processor executes the sequential
genetic algorithm with a di�erent seed, and uses mi-
gration to share information between processors. The

third algorithm, ProperGATEST3, is a subpopulation
based version of ProperGATEST2, where subpopula-
tions are distributed across processors and information
is migrated from one processor to another. Signi�cant
speedups have been observed for all three algorithms.

We begin with a discussion of the implementation
of the sequential GA-based test generator in Section
2. In Section 3, we present three new parallel genetic
algorithms for simulation-based sequential circuit test
generation, and the three parallel genetic algorithms
for test generation are discussed in detail. Results are
presented and the various algorithms are compared in
Section 4. Section 5 concludes the paper.

2 Sequential GA-Based Test

Generation

The sequential implementation of the test generator
uses a GA similar to the simple GA described by Gold-
berg [11]. The GA contains a population of strings,
or individuals, in which each individual represents a
sequence of test vectors. The population size used is
a function of the string length. Each individual has
an associated �tness, which measures the quality of
the corresponding test sequence in terms of faults de-
tected and other metrics. A sequential circuit fault
simulator is used for the �tness evaluation. The pop-
ulation is initialized with random strings, or possibly
test sequences provided by a previous run of the GA.
The evolutionary processes of selection, crossover, and
mutation are used to generate an entirely new popula-
tion from the existing population, and evolution from
one generation to the next is continued until little or
no improvement is made in the �tness of the popula-
tion or a maximum number of generations is reached.

2.1 Sequential Implementation

Processing in the sequential GA-based test generator
is divided into three stages. Only the �tness function
changes in each stage. In each of the three stages, the
GA targets all faults in the fault list in groups of 31
faults, traversing the fault list several times until little
or no more improvement is made. Between consecu-
tive GA runs, useful vectors from the best sequence
are added to the test set, and the two best sequences
from the previous GA run are used to seed the popu-
lation in the next GA run. The remaining individuals
in the population are initialized with random test se-
quences. The test generation algorithm is given below.
While there is improvement in this stage

While there is improvement in the GA

31 faults

31 faults

GA run #1 GA run #2

Undetected among
the 31 faults
in GA run #1

Target group #1

Target group #2

Undetected faults

Detected faults (dropped)

Remaining
Undetected
Faults

Fault simulate
To drop other faults

Inital Undetected
Faults

Figure 1: Fault grouping of 31 faults.

For all undetected faults, in groups of 31 faults

target-faults = next 31 undetected faults

best-sequence = GA-test-generate (target-faults)

fault-simulate (best-sequence)

seed the next GA population (best 2 sequences)

compute improvement;

compute overall improvement

The GA population evolves over several generations
until no more improvements in �tness values are ob-
tained or the maximum of eight generations is reached.
The population size is a function of the string length,
and the string length is equal to the number of pri-
mary inputs in the circuit multiplied by the test se-
quence length. A multiple of the sequential depth of
the circuit is used as the test sequence length, where
the sequential depth is de�ned as the minimum num-
ber of
ip-
ops in a path between the primary inputs
and the farthest gate. The test sequence length is
set equal to the sequential depth in the �rst stage,
two times the sequential depth in the second stage,
and four times the sequential depth in the third stage.
Also, the population size is doubled in the third stage
to further expand the search space.

Each individual in the population is simulated us-
ing a group of 31 faults, for the purpose of evaluating
the �tness of the individual. The reason 31 faults are
chosen is to maximize the execution speed. Fault sim-
ulation on the entire fault list is very costly, and previ-
ous work has shown that small fault samples give good
quality results as well [5]. The good circuit evaluation
requires only one bit position out of the 32 available
positions in a computer word, and the remaining posi-
tions can be used for faulty circuit simulations. Thus,
groups of 31 faults are used as fault samples in the
current work.

Figure 1 shows how faults are grouped for test gen-
eration. Initially the �rst 31 undetected faults are used
as the fault group targeted for test generation. All in-

dividuals in the GA population target the same group
of 31 faults, and the individuals evolve in successive
generations until no more improvements in �tness val-
ues are obtained. Then a full-scale fault simulation is
performed, using the entire list of undetected faults
and the best test sequence found, and all detected
faults are dropped from the fault list. An improved
version of PROOFS [10] was used as the fault sim-
ulator. For the next GA run, the next group of 31
undetected faults is obtained, starting at the position
in the fault list where the previous fault group left
o�. Only the good portion of the best test sequence
is added to the test set to keep the test set compact.

2.2 Fitness function

The three stages of the test generator target di�er-
ent goals, and their corresponding �tness functions
are di�erent. In recent work by Wah et. al. [12]
and Pomeranz and Reddy [13], the results have indi-
cated that fault e�ect propagation should out-weigh
fault detection when the easier faults have been de-
tected, and maximization of state visitation increases
fault coverage. Thus, these parameters are included
for consideration when computing �tness values. The
parameters that a�ect the �tness are as follows:
P1: Number of faults in the given fault group detected,
P2: Number of new states visited,
P3: Number of
ip-
ops that carry fault e�ects at the
end of simulation.
All three parameters are evaluated but given di�erent
weights in the �tness computation for the three stages:
Stage 1: fitness = 0:9 � P1 + 0:1 � P3
Stage 2: fitness = 0:1 � P1 + 0:45 � P2 + 0:45 � P3
Stage 3: fitness = 0:5 � P1 + 0:4 � P2 + 0:1 � P3

In the �rst stage, the aim is to detect as many faults
as possible with short sequences and minimal time.
Thus, more weight is given to the number of faults
detected. In the second stage, the goal is to maxi-
mize visitation of new states and fault e�ect propa-
gation to state
ip-
ops. In the �nal stage, the focus
is shifted once again to target the remainder of the
faults that have been hard to detect in the prior two
stages. Therefore, the �tness evaluation weights fault
detections and new state identi�cations more heavily.

2.3 Fault Redundancy Identi�cation

A simulation-based test generation approach such as a
GA cannot identify redundant faults. Hence although
a high fault coverage may be achieved, the e�ciency
of the test generator is no better than the fault cover-
age. Hence once the GA has �nished generating test

vectors, one should run a redundancy-identifying al-
gorithm to identify the redundant faults in the list of
undetected faults that remain. This will improve the
e�ciency of the overall test generation process. A de-
terministic test generator such as HITEC [1] can be
used to accomplish this. HITEC targets each fault in
a fault list one at a time. Usually, most redundant
faults can be identi�ed in a very short amount of time
compared to the actual test generation process. So by
assigning a short time-out of 1 sec per fault, one can
identify most of the redundant faults among the faults
that remain in the fault list after the GA has �nished
test generation. In principle, one could have used any
program which would accomplish the task of redun-
dancy identi�cation. HITEC was used for the pur-
pose, as a parallel version of HITEC, properHITEC
[9], was already available.

Hence the overall approach that has been adopted
in our approach is to use a simulation-based approach
using genetic algorithms to get good fault coverage
and small test sizes, followed by a short redundancy
identi�cation step to improve the e�ciency of the test
generator.

3 Parallel Genetic Algorithms

for Simulation-Based Testing

Previous parallel approaches to test generation have
focussed on parallelizing deterministic algorithms for
testing. Excellent reviews on these approaches can
be found in [15, 16]. A review of parallel genetic al-
gorithms can be found in [18]. In GATTO [17], a
parallel genetic algorithm was presented which is sim-
ilar to ProperGATEST1 and the di�erences between
these two algorithms will be highlighted in the discus-
sion that follows. We have implemented paralleliza-
tion with data decompostion, migration-based parallel
GA and the subpopulation-based GA with migration
approaches. Figure 2 shows a graphical outline of the
approaches used in each of the algorithms for 4 pro-
cessors.

3.1 ProperGATEST1: Parallelization

using data decompostion

In this approach, we parallelize the loop which eval-
uates the �tness of all individuals in a given popu-
lation, as illustrated in Figure 2(a). Each proces-
sor maintains its own copy of the entire population.
The work of evaluating the �tness is equally and stat-
ically distributed over the processors. The fault list
is the same on all processors. Hence, if we have N

individuals and P processors, we assign N

P
individu-

als to each processor. The �tness values computed by
the respective processors are communicated to a single
processor, which collects this information and broad-
casts it to all processors. Each processor now has the
information regarding the �tness values of all individ-
uals and can evolve the next generation and compute
the best individual in the population for the current
generation. After processing for the last generation
is completed, the best individual is added to the test
set if it detects one or more faults out of the current
set of 31 faults targeted. Each processor generates its
own test set, and the test sets for all processors are
identical, since the random number generators for all
processors are initialized with the same seed. An ex-
haustive fault simulation is then done by all processors
using this best-�t individual.

The �nal results in terms of the number of faults de-
tected and the test set generated are identical to those
obtained on a uniprocessor when this algorithm is
used. Therefore, there is no degradation in the quality
of the solution obtained through parallelization. This
approach is similar to the one used in GATTO* [17].
One major di�erence is that, while we target 31 faults
at a time using a fault parallel approach, only one
fault is targeted at a time in GATTO*. Secondly, the
same �tness function is used at all times in GATTO*,
which may slow down execution. Thirdly, GATTO*
required an additional central processor, which was
not required in our thread-based implementation.

3.2 ProperGATEST2: Parallel migra-

tion based genetic search

In this algorithm, processors interact with each other
by exchanging individuals, possibly the �ttest individ-
uals, among each other, at an interval determined by
the epoch for the parallel GA. The hope is that with
exchange of information between processors which are
exploring di�erent parts of the search space, there will
be an improvement in the overall solution (the num-
ber of faults detected will be greater, the overall test
set size will be smaller, etc.). This algorithm is il-
lustrated in Figure 2(b). We always assign the same
number of individuals to each processor that are as-
signed in the sequential algorithm, irrespective of the
number of processors. Hence, each processor is as-
signed the same amount of workload as in the sequen-
tial case. Each processor is now following a di�erent
search path. There is now a possibility that the pro-
cessors will �nish faster due to the migration of infor-
mation between them. This is indeed the case in our
implementation as processors converge to their results

faster with the added advantage that the quality of
the result is improved in certain cases.

Each processor maintains an independent fault list
and proceeds completely independently, generating its
own test set. Periodically, each processor transmits
the individual with the best �tness to a random pro-
cessor. A queue of messages is maintained on each
processor to receive migrating individuals from other
processors. These individuals are absorbed into the
local subpopulation as it evolves. This gives rise to
the possibility of obtaining P di�erent solutions to the
problem using a randomized parallel genetic search.

3.3 ProperGATEST3: Subpopulation-

based GA with migration

This approach is similar to the previous approach, ex-
cept that each processor starts with a population of
M = N

P
individuals. This algorithm is illustrated in

Figure 2(c). One can expect speedups for two reasons.
Each processor works on a subpopulation, and there-
fore, the population size being used is smaller, and
each processor individually has less work to do. Also,
due to migration of �t individuals from one processor
to another, each processor can detect faults faster than
if they were to run independent GA's with a reduced
population size.

One possible disadvantage of this approach is that,
for a circuit with a relatively small population size
(corresponding to a circuit with small number of pri-
mary inputs and small sequential depth), the algo-
rithm is not very scalable. If the population size for
the GA becomes too low, one can expect a degradation
in the results obtained. But if the population size is
large, as is the case for large circuits, then this should
not be problem.

4 Experimental Results

The algorithms ProperGATEST1, ProperGATEST2,
and ProperGATEST3 were implemented in the Prop-
erCAD II environment. All implementations are
portable to a wide variety of parallel platforms. All
algorithms were implemented on a SUN-SparcServer
1000E, a shared memory multiprocessor with 8 pro-
cessors and 512 MB of memory. In addition, the al-
gorithm ProperGATEST1 was ported to a network of
SUN-Sparc5 workstations and to the Thinking Ma-
chines CM-5, a distributed memory multicomputer
with a SUN-sparc1 processor on each node and 32 MB
of memory per node, to demonstrate the portability
of the implementations.

Each of the parallel genetic algorithms on comple-
tion was followed by a phase of properHITEC, exe-
cuted in parallel, to drop any redundant faults among
the faults left undetected by the genetic algorithm. A
short time-out of 1 second was assigned per fault for
this purpose. All three parallel genetic algorithms ex-
ecute in the same fashion on a single processor. Table
1 shows the performance of the genetic algorithm run-
ning on a single processor. The circuits taken are part
of the ISCAS89 benchmark suite. A collapsed fault
list for each circuit was taken as the initial fault list.
All execution times are in seconds. \Fault Det" refer
to faults that were detected by the genetic algorithm
and \Faults Red" refers to the redundant faults identi-
�ed by ProperHITEC. It can be seen that the amount
of time spent in the ProperHITEC phase is a small
fraction of the overall execution time and it helps in
improving the e�ciency of the overall ATPG process.

Table 2 shows the performance of ProperGATEST1
on eight processors. It can be seen that the results
remain unchanged from the uniprocessor run and that
execution times have been reduced signi�cantly.

As a comparison, Table 3 shows the results for the
same circuits when a parallel deterministic algorithm
such as ProperHITEC is used in isolation[9]. One
must look at the total execution time, the overall test
set size in terms of the number of vectors, the fault
coverage and the fault e�ciency when comparing dif-
ferent algorithms. One can observe that ProperGAT-
EST1 performs better for some circuits such as s298,
s344, s349 and s5378 while ProperHITEC performs
better for circuits such as s1494 and s35932. We there-
fore believe that a hybrid strategy needs to be adopted
in practice.

Table 4 shows the performance of ProperGATEST2
on eight processors. The speedups obtained with this
algorithm were purely due to the migration of �t indi-
viduals from one processor to another. Nevertheless,
good speedups were obtained. This algorithm takes
longer to execute than ProperGATEST1 but provides
better quality results, in terms of the fault coverage
obtained, more often than not, when compared to
ProperGATEST1.

The algorithm ProperGATEST3, whose perfor-
mance can be seen in Table 5 provides excellent ex-
ecution times, but the test set sizes are larger than
the previous algorithms. The quality of the result in
terms of the fault coverage and e�ciency is usually
worse than that given by ProperGATEST2 and bet-
ter than ProperGATEST1 in most cases. For Prop-
erGATEST3, the GA population size is inversely pro-
portional to the number of processors. Hence, for a
large number of processors, this algorithm may not

always perform well.
We will now report results of portability of our par-

allel algorithms on various parallel platforms. For this
part of the study we did not use the redundancy iden-
ti�cation phase of ProperHITEC hence the fault cov-
erage and e�ciency numbers are not reported; we only
report execution times and speedups on multiple pro-
cessors. Owing to lack of space, we will only report
results of one of the parallel algorithms, ProperGAT-
EST1. Results of the other parallel algorithms are
similar and can be obtained from the authors directly.
Results for the algorithm ProperGATEST1, running
on the SUN-SparcServer 1000E, are shown in Table 6.
The numbers of faults detected in the parallel and se-
quential cases are the same. Hence the quality of the
result was not a�ected, and signi�cant speedups were
obtained on 8 processors.

Table 7 shows the results obtained for the algorithm
ProperGATEST1 on a network of 6 SUN-SPARC5
workstations. Table 8 shows results for the same al-
gorithm on the Connection Machine-5 (CM5). These
results demonstrate the performance and portability
of the code on various parallel platforms. The quality
of the results was una�ected, and good speedups were
obtained.

5 Conclusion

In this paper, we have presented three parallel genetic
algorithms, ProperGATEST1, ProperGATEST2, and
ProperGATEST3, for simulation-based sequential test
generation. The results obtained here using these al-
gorithms are in general better than those obtained us-
ing GATTO* [17]. ProperGATEST1 is a good algo-
rithm in general, as it provides signi�cant speedups
without degradation in the quality of the result. It
exploits the parallelism available corresponding to the
evaluation of �tness values of the individuals in a pop-
ulation. ProperGATEST2 exploits the search paral-
lelism available through parallel randomized genetic
search with migration of information. It attempts
to improve the quality of the results and is a highly
scalable implementation, as it can run over any num-
ber of processors irrespective of the population size.
However, the speedups for this algorithm grow at a
slower rate compared to the other algorithms. Prop-
erGATEST3 provides a dual degree of parallelism by
using a subpopulation-based GA approach to reduce
the work-load among the processors and by exploit-
ing the bene�ts of the randomized migration strategy
used. However, there is a likelihood of degradation
in the quality of the result for this algorithm for very
large number of processors due to a corresponding de-

ProperGATest1 on 4 processors ProperGATest2 on 4 processors ProperGATest3 on 4 processors

P0

P0 P1 P2 P3

P0 P1 P2 P3P0 P1 P2 P3

N individuals in population per processor N/4 individuals in population per processor

(a) (b) (c)

Each processor executes the same GA Algorithm
but performs N/4 fitness evaluations

P0 collects the fitness info from all processors
and broadcasts this information to all processors

Each Processor executes GA algorithm Each Processor executes GA algorithm
starting with its own seed starting with its own seed

Figure 2: Comparison of three proposed parallel algorithms.

crease in the population size.
We have thus presented three new parallel genetic

algorithms. All three parallel genetic algorithms are
comparable in performance to each other and to exist-
ing parallel deterministic approaches such as Proper-
HITEC [9]. The algorithms are scalable and also eas-
ily amenable to parallelization. We have also demon-
strated the need for a parallel redundancy identi�ca-
tion program to improve the e�ciency of simulation-
based approaches such as the parallel genetic algo-
rithms presented in this paper, to improve the e�-
ciency of the overall test generation process.

References

[1] T. M. Niermann and J. H. Patel, \HITEC: A test gen-
eration package for sequential circuits," Proceedings
of the European Conference on Design Automation,
pp. 214-218, 1991.

[2] E. M. Rudnick and J. H. Patel, \A genetic approach
to test application time reduction for full scan and
partial scan circuits," Proc. Eighth Int. Conf. VLSI
Design, pp. 288-293, 1995.

[3] D. G. Saab, Y. G. Saab, and J. A. Abraham,
\CRIS: A test cultivation program for sequential
VLSI circuits," Proc. Int. Conf. Computer-Aided De-
sign, pp. 216-219, 1992.

[4] M. Srinivas and L. M. Patnaik, \A simulation-based
test generation scheme using genetic algorithms,"
Proc. Int. Conf. VLSI Design, pp. 132-135, 1993.

[5] E. M. Rudnick, J. G. Holm, D. G. Saab, and J. H. Pa-
tel, \Application of simple genetic algorithms to se-
quential circuit test generation," Proc. European De-
sign and Test Conf., pp. 40-45, 1994.

[6] E. M. Rudnick, J. H. Patel, G. S. Greenstein, and T.
M. Niermann, \Sequential circuit test generation in a
genetic algorithm framework," Proc. Design Automa-
tion Conf., pp. 698-704, 1994.

[7] P. Prinetto, M. Rebaudengo, and M. Sonza Reorda,
\An automatic test pattern generator for large se-
quential circuits based on genetic algorithms," Proc.
Int. Test Conf., pp. 240-249, 1994.

[8] S. Parkes, J. A. Chandy, and P. Banerjee, \A Library-
based approach to portable, parallel, object-oriented
programming: Interface, implementation and appli-
cation," Proc. Supercomputing'94, pp. 69-78, 1994.

[9] S. Parkes, P. Banerjee and J. Patel, \ProperHITEC:
A portable, parallel, object-oriented approach to se-
quential test generation," Proc. Design Automation
Conf., pp. 717-721, 1994.

[10] T. M. Niermann, W. -T. Cheng, and J. H. Patel,
\PROOFS: A fast, memory-e�cient sequential circuit
fault simulat or," IEEE Trans. Computer-Aided De-
sign, pp. 198-207, February 1992.

[11] D. E. Goldberg, Genetic Algorithms in Search, Op-
timization, and Machine Learning, Reading, MA:
Addison-Wesley, 1989.

[12] B. W. Wah, A. Ieumwananonthachai, L. C. Chu,
and A. Aizawa, \Rational scheduling of experiments
and generalization in genetics-based learning," IEEE
Trans. Knowledge and Data Engineering, 1995.

[13] I. Pomeranz and S. M. Reddy, \LOCSTEP: A logic
simulation based test generation procedure," Proc.
Fault Tolerant Computing Symp., June 1995.

[14] G. A. Agha, Actors: A model of concurrent computa-
tion in distributed systems, Cambridge MA: The MIT
Press, 1986.

[15] P. Banerjee, Parallel Algorithms for
VLSI Computer-aided Design Applications, Prentice
Hall, Englewoods-Cli�s, NJ, 1994, pp. 477-590.

[16] R. Klenke, R. D. Williams and J. Aylor, \Parallel Pro-
cessing Techniques for Automatic Test Pattern Gen-
eration," IEEE Computer, Jan. 1992, pp. 71-84.

[17] F. Corno, P. Prinetto, M. Rebaudengo, M. Sonza Re-
orda, and E. Veiluva, \A portable ATPG tool for
parallel and distributed systems," Proc. VLSI Test
Symp., pp. 29-34.

[18] P. Adamidis, \Review of parallel genetic algorithms
bibiliography," Techn. Report, Aristotle University of
Thessaloniki, Thessaloniki, Greece, 1994.

ProperGATEST1 ProperHITEC Total Test Fault Fault
Circuit Faults Faults Det Time Faults Red Time Time Set Size Coverage E�ciency

s298 308 265 67.70 22 25.01 92.70 166 0.86 0.93

s344 342 329 60.08 8 5.45 65.53 55 0.96 0.995

s349 350 335 63.53 10 5.50 69.03 77 0.96 0.995

s1196 1242 1236 457.20 3 0.1 457.3 516 0.995 0.997

s1238 1355 1281 776.94 72 1.46 778.4 576 0.945 0.999

s1494 1506 1297 1378 20 107 1485 286 0.86 0.87

s5378 4603 3243 23864 114 1037 24901 468 0.70 0.73

s35932 39094 34456 43578 3984 1155 44733 158 0.88 0.983

Table 1: ProperGATest1: Uniprocessor run on a SUN-SPARCServer1000E

shared-memory multiprocessor

ProperGATEST1 ProperHITEC Total Test Fault Fault
Circuit Faults Faults Det Time Faults Red Time Time Set Size Coverage E�ciency

s298 308 265 15.9 22 8.4 24.3 166 0.86 0.93

s344 342 329 13.9 8 3.5 17.4 55 0.96 0.995

s349 350 335 13.5 10 1.3 14.8 77 0.96 0.995

s1196 1242 1236 86.8 3 0.1 86.9 516 0.995 0.997

s1238 1355 1281 117.2 72 0.4 117.6 576 0.945 0.999

s1494 1506 1297 241.4 20 24 265.4 286 0.86 0.87

s5378 4603 3243 3804 114 198 4002 468 0.70 0.73

s35932 39094 34456 6328 3984 261 6589 158 0.88 0.983

Table 2: ProperGATest1: Eight processor run on a SUN-SPARCServer1000E

shared-memory multiprocessor

One Processor ProperHITEC Eight Processor ProperHITEC
Circuit Faults Faults Det Faults Red Test Size Time Faults Det Faults Red Test Size Time

s298 308 265 22 306 974 262 22 322 268

s344 342 324 11 121 331 318 11 103 79

s349 350 335 10 137 182 335 10 124 46

s1196 1242 1239 3 453 24 1238 3 471 18

s1238 1355 1283 72 375 7.5 1281 70 373 21

s1494 1506 1453 50 1249 345 1451 50 1374 89

s5378 4603 3155 189 844 26141 3130 188 1002 7492

s35932 39094 35090 3984 207 1354 35043 3984 303 381

Table 3: ProperHITEC: One and eight processor runs on a SUN-

SPARCServer1000E shared-memory multiprocessor

ProperGATEST2 ProperHITEC Total Test Fault Fault
Circuit Faults Faults Det Time Faults Red Time Time Set Size Coverage E�ciency

s298 308 265 21.9 22 8.3 30.2 156 0.86 0.93

s344 342 329 19.7 8 3.6 23.3 55 0.96 0.995

s349 350 335 23.5 10 1.3 24.8 70 0.96 0.995

s1196 1242 1235 154.9 3 0.1 155 548 0.994 0.997

s1238 1355 1282 362.1 72 0.4 362.5 592 0.946 0.999

s1494 1506 1365 382.5 20 26 408.5 278 0.91 0.92

s5378 4603 3261 4619 112 194 4813 548 0.71 0.73

s35932 39094 35006 8137 3984 214 8351 226 0.896 0.997

Table 4: ProperGATest2: Eight processor run on a SUN-SPARCServer1000E

shared-memory multiprocessor

ProperGATEST3 ProperHITEC Total Test Fault Fault
Circuit Faults Faults Det Time Faults Red Time Time Set Size Coverage E�ciency

s298 308 264 10.2 22 8.4 19.6 184 0.857 0.928

s344 342 329 4.7 8 3.6 8.0 75 0.96 0.995

s349 350 335 4.8 10 1.3 6.1 90 0.96 0.995

s1196 1242 1235 96.2 3 0.1 96.3 612 0.994 0.997

s1238 1355 1271 113.9 72 0.4 114.3 586 0.94 0.991

s1494 1506 1348 71.2 20 26 77.2 312 0.895 0.91

s5378 4603 3214 3227 114 233 3460 542 0.70 0.72

s35932 39094 34832 5924 3984 238 6162 284 0.890 0.992

Table 5: ProperGATest3: Eight processor run on a SUN-SPARCServer1000E
shared-memory multiprocessor

1 processor 2 processors 4 processors 8 processors
Circuit Faults Faults Det Time Time Speedup Time Speedup Time Speedup

s298 308 265 67.70 35.47 1.91 21.92 3.09 15.95 4.24

s344 342 329 60.08 31.75 1.89 18.15 3.31 13.97 4.30

s349 350 335 63.53 35.08 1.87 19.92 3.8 13.45 4.72

s1196 1242 1236 457.20 231.03 1.98 117.38 3.89 86.85 5.26

s1238 1355 1281 776.94 455.46 1.71 242.40 3.21 117.18 6.63

s1494 1506 1297 1378.09 719.37 1.92 398.34 3.46 241.38 5.71

Table 6: ProperGATest1: Runtime in seconds and speedup on SUN-
SPARCServer 1000E (shared memory multiprocessor)

1 processor 2 processors 4 processors 6 processors
Circuit Faults Faults Det Time Time Speedup Time Speedup Time Speedup

s298 308 265 119.84 60.53 1.98 35.99 3.33 33.16 3.61

s344 342 329 78.57 42.76 1.84 36.26 2.17 32.47 2.42

s349 350 335 76.35 42.38 1.82 28.98 2.63 21.95 3.48

s1196 1242 1226 680.05 540.59 1.26 377.61 1.80 298.68 2.28

s1238 1355 1281 2267.79 1455.86 1.56 747.99 3.03 504.13 4.50

s1494 1506 1304 1887.49 984.29 1.92 615.16 3.07 433.05 4.36

Table 7: ProperGATest1: Runtime in seconds and speedup on a network of 6
workstations (SUN-SPARC5)

1 proc 2 proc 4 proc 8 proc 16 proc
Circuit Faults Faults Det Time Time Spd Time Spd Time Spd Time Spd

s298 308 265 368.47 193.86 1.90 100.40 3.67 62.06 5.94 51.68 7.12

s344 342 329 232.83 123.83 1.88 69.56 3.35 41.21 5.65 34.26 6.80

s349 350 335 271.69 147.19 1.85 76.82 3.54 48.65 5.58 37.04 7.33

s1196 1242 1226 820.68 652.84 1.26 439.54 1.87 247.87 3.31 236.48 3.47

s1238 1355 1281 2860.66 1845.04 1.55 739.18 3.87 556.00 5.51 499.69 5.72

s1494 1506 1304 3307.48 1702.13 1.94 824.46 4.01 532.95 6.21 399.85 8.27

Table 8: ProperGATest1: Runtime in seconds and speedup (Spd) on the CM-5
(distributed memory multicomputer)

