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Abstract. Dynamic voltage and frequency scaling has been identified
as one of the most effective ways to reduce power dissipation. This paper
discusses a compilation strategy that identifies opportunities for dynamic
voltage and frequency scaling of the CPU without significant increase
in overall program execution time. The paper introduces a simple, yet
effective performance model to determine an efficient CPU slow-down
factor for memory bound loop computations. Simulation results of a su-
perscalar target architecture and a program kernel compiled at different
optimizations levels show the potential benefit of the proposed compiler
optimization. The energy savings are reported for a hypothetical target
machine with power dissipation characteristics similar to Transmeta’s
Crusoe TM5400 processor.

1 Introduction

Modern architectures have a large gap between the speeds of the memory and the
processor. Several techniques exist to bridge this gap, including memory pipelines
(outstanding reads/writes), cache hierarchies, and large register sets. Most of
these architectural features exploit the fact that computations have temporal
and/or spatial locality. However, many computations have limited locality, or
even no locality at all. In addition, the degree of locality may be different for
different program regions. Such computations may lead to a significant mismatch
between the actual machine balance and computation balance, typically resulting
in long stalls of the processor waiting for the memory subsystem to provide the
data.

We will discuss the benefits of compile-time voltage and frequency scaling
for single loop nests. The compiler not only generates code for the input loop,
but also assigns a clock-frequency and voltage level for its execution. The goal of
this new compilation techniques is to provide close to the same overall execution
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time while significantly reducing the power dissipation of the processor and/or
memory. The basic idea behind the compilation strategy is to slow down the
CPU that otherwise would stall or be idle. Frequency reduction and voltage
reduction may lead to a linear and quadratic decrease of power consumption,
respectively. In addition, recent work by Martin et al. has shown that reducing
peak power consumption can substantially prolong battery life [24].

1.1 The Cost Model

The dominant source of power consumption in digital CMOS circuits is the
dynamic power dissipation (P ), characterized by

P ∝ CV 2f

where C is the effective switching capacitance, V is the supply voltage, and f
is the clock speed [6]. Since power varies linearly with the clock speed and the
square of the voltage, adjusting both can produce cubic power reductions, at
least in theory. However, reducing the supply voltage requires a corresponding
decrease in clock speed. The maximum clock speed for a supply voltage can be
estimated as

fmax ∝
(V − VT )α

V

where VT is the threshold voltage (0 < VT < V ), and α is a technology de-
pendent factor (1 ≤ α ≤ 2). Despite the non-linearity between clock speed and
supply voltage, scaling both supply voltage and clock speed will produce at
least quadratic power savings, and as a result quadratic energy savings. Figure 1
gives the relation between clock speed, supply voltage, and power dissipation for
Transmeta’s Crusoe TM5400 microprocessor as reported in its data sheet [33].
For a program running for a period of T seconds, its total energy consumption
(E) is approximately equal to

E = Pavg ∗ T

where Pavg is the average power consumption.

Frequency (MHz) 70 100 200 300 350 400 500 600 700

Voltage (V) 0.90 0.95 1.10 1.25 1.33 1.40 1.50 1.60 1.65

Power (%) 3.0% 4.7% 12.7% 24.6% 32.5% 41.1% 59.0% 80.6% 100%

Fig. 1. The relation between clock frequency, supply voltage, and power dissipation
of Transmeta’s Crusoe TM5400 microprocessor. The voltage figures for frequencies
100MHz and 70MHz are interpolations and are not supported by the chip.



1.2 Voltage Scheduling

In the context of dynamic voltage scaled microprocessors, voltage scheduling is a
problem that assigns appropriate clock speeds to a set of tasks, and adjusts the
voltage accordingly such that no task misses its predefined deadline while the
total energy consumed is minimized. Researchers have proposed many ways of
determining ”appropriate” clock speeds through on-line and off-line algorithms
[34,14, 13, 16, 28]. The basic idea behind these approaches is to slow down the
tasks as much as possible without violating the deadline.

This ”just-in-time” strategy can be illustrated through a voltage scheduling
graph [27]. In a voltage scheduling graph, the X-axis represents time and the Y-
axis represents processor speed. The total amount of work for a task is defined by
the area of the task ”box”. For example, task 1 in Figure 2 has a total workload of
8,000 cycles. By ”stretching” it out all the way to the deadline without change of
the area, we are able to decrease the CPU speed from 600MHz down to 400MHz.
As a result, 23.4% of total (CPU) energy may be saved on a Crusoe TM5400
processor.
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(a) original schedule. (b) voltage scaled schedule. (c) energy-performance
tradeoffs.

Fig. 2. The essence of voltage scheduling.

In case of a soft deadline, energy can be saved by trading off program per-
formance for power savings. For example, if the voltage schedule starts with a
300MHz clock speed for 8 seconds and then switches to 400MHz for 14 seconds,
the resulting execution time for task 1 is 22 seconds. The schedule pays 10% of
performance penalty (with respect to the deadline), but it saves 29.1% of total
energy as compared to the 600MHz case. These estimates assume that there is
no performance penalty for the frequency and voltage switching itself.

1.3 Our Contributions

We propose a simple compile-time model to identify and estimate the maximum
possible energy savings of dynamic voltage and frequency scaling under the con-
straint that overall program execution times may only be slightly increased, or
not increased at all. In many cases, a compiler is able to predict and shape the fu-
ture behavior of a program and the interaction between large program segments,
giving compilers an advantage over operating systems techniques. Typically, op-
erating system techniques rely on the observed past program behavior within



a restricted time window to predict future behavior. Preliminary simulation re-
sults show the effectiveness of our model for optimized and unoptimized loops.
The impact of various compiler optimizations on energy savings is discussed. In
summary, we propose a simple model and new compilation strategy for dynamic
voltage and frequency scaling.

The rest of the paper is organized as follows: Section 2 presents the simple
model. Using a single simple benchmark, the effect of various compiler optimiza-
tions is illustrated in Section 3. Section 5 gives a brief summary of related work,
and Section 6 concludes the paper.

2 Compiler-Directed Frequency Scaling

Consider the simple C program kernel in Figure 3(a). The loop scans a two-
dimensional array in column-major order, and has no temporal locality (i.e.,
each array element is referred only once). Array size n is carefully chosen so that
no spatial locality is present across iterations of the outermost j-loop. The loop
will have spatial locality (i.e., successively accessed array elements reside in the
same cache block) only if the array is scanned in row-major order.

Suppose the program is executed on a hypothetical superscalar machine with
out-of-order execution, non-blocking loads/stores, and a multi-level memory hi-
erarchy.1

The graphs shown in Figures 3(b) and (c) illustrate the opportunities for
dynamic frequency scaling for our program kernel. The unoptimized version is
heavily memory-bound, allowing a potential processor slow-down of up to a
factor of 20 without a significant performance penalty. Figure 3(b) shows several
scaled clock speeds whose relative performance is very close to 100%. These
scaled speeds are 1/2, 1/5, 1/10, and 1/20 and result in performance penalties
of less than 1%. If we are able to identify these scaled speeds, CPU energy
consumption can be reduced by more than one order of magnitude for our target
architecture, assuming it has an energy characteristics similar to that of a Crusoe
TM5400 processor.

Using advance optimizations such as loop interchange, loop unrolling, and
software prefetching, the computation/memory balance of the example loop can
be significantly improved. Given that our target architecture has an L2 block size
of 64 bytes and a single bank memory with a latency of 100 cycles, Figure 3(c)
shows the best performance possible for the code, i.e., the performance is only
limited by the physical memory bandwidth of the architecture.2 Even for this
best case scenario, there is still significant opportunity for voltage and frequency
scaling with a performance penalty of less than 1%.

Both examples show that choosing the right slow-down factor is crucial to
achieve energy savings with minimal performance penalties. In fact, increasing
the slow-down factor may actually result in overall performance improvements,

1 More details regarding our target machine can be found in Section 4.
2 More details regarding the performed optimizations can be found in Section 3.



float A[n][n], accu

for (j=0; j<n; j++)

for (i=0; i<n; i++)

accu += A[i][j];
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(a) A simple loop. (b) No loop optimizations, (c) Highly optimized:
and no data locality. loop interchange & unrolling,

software prefetching.

Fig. 3. A simple C program and its unoptimized and optimized performance under
different CPU clock frequencies. The horizontal lines indicate the threshold for a 1%
performance degradation.

a somewhat non-intuitive result. This behavior can be attributed to synchro-
nization effects between memory and CPU.

2.1 A Simple Model

We divide the total program execution time (T ) into three portions:

T = cpuBusy +memBusy + bothBusy

with the right-hand side entities defined as follows:

– the CPU is busy while the memory is idle (cpuBusy); this includes CPU
pipeline stalls due to hazards,

– the memory is busy and the CPU is stalled while waiting for data from
memory (memBusy), and

– CPU and memory are both active at the same time, i.e., are working in
parallel (bothBusy).

Consider now the CPU speed is reduced by a factor of δ. Assume that the
program in the reduced clock speed behaves exactly the same for every program
step as the program in the normal speed, but only executed in ”slow motion”.3
The new, slowed-down execution time becomes

Tnew(δ) = δ ∗ cpuBusy + max

(
bothBusy +memBusy

δ ∗ bothBusy

)
In order to have the new execution time very close to the original one, for

instance Tnew(δ)/T ≤ 101%, δ ∗ cpuBusy needs to be very close to cpuBusy,
3 This may not be the case in practice, for instance due to out-of-order instruction

execution.



and also δ ∗ bothBusy cannot be too large. Based on the model, we propose two
conditions

(δ − 1) ∗ cpuBusy ≤ 1% (1)

1 ≤ δ ≤ 1 +
memBusy

bothBusy
(2)

such that once they are satisfied, the new execution time is within 1% of the
original execution time.

Condition (1) indicates that cpuBusy can be used as a measure of perfor-
mance penalty. When it is relatively large, the clock speed cannot be slowed
down without hurting the performance significantly. In addition, Condition (2)
states that the slow-down factor cannot be arbitrarily large. How much it can be
slowed down is highly dependent on how much the CPU is stalling due to mem-
ory requests. The more CPU stalls, the slower we can set the CPU speed. For
the unoptimized loop in Figure 3(b), simulation produces the following figures:

cpuBusy memBusy bothBusy

0.01% 93.99% 6.00%

From Condition (1) and (2), it can be derived that δ ≤ 1 + 1%/cpuBusy =
1 + 1%/0.01% = 101 and δ ≤ 1 + 93.99%/6.00% = 16.67, respectively. Since
both conditions need to be satisfied, the maximum slow-down factor suggested
by the simple model is 17. In other words, the clock speed can be reduced to as
much as 1/17 without more than 1% performance penalty.

However, as observed in Figure 3(b), not all CPU speed reductions (≤ 1/17)
result in a ≤1% or less performance slow-down. For example, execution time
increases by 30.0% when the clock speed is set to 1/12 of the original speed. The
reason for this significant performance decrease is the mismatch of the memory
and CPU cycle times, resulting in clock skew effects during synchronization. Our
model takes this effect into account by introducing a third condition:

memory latency is divisible by δ (3)

Finally, in order to simplify the analysis, we require the forth condition:

δ has an integral value (4)

As a result, the model correctly identifies speed reductions 1/2, 1/4, 1/5, and
1/10 that satisfy the deadline constraint. However, the speed reduction by 1/20 is
not suggested by our model. Possible reasons include the imprecision of CPU and
memory workload prediction and the ”ideal-world” assumption that program
behavior remains the same under different clock speeds. For the optimized code
of Figure 3(c), our model selects the slow-down factor δ = 2.



(1) Identify program regions as scheduling candidates

(2) Model expected performance
(a) Determine cpuBusy, memBusy, and bothBusy
(b) Compute slow-down factor δ using model discussed in Section 2.1

(3) Generate voltage/frequency scheduling instructions for each scheduling
candidate; adjust performance optimizations, if necessary

Fig. 4. Outline of basic compilation approach

2.2 Basic Compilation Strategy

The basic compilation strategy is show in Figure 4. The granularity of scheduling
candidates has to be large enough to compensate for the overhead of voltage
and frequency adjustments. Each scheduling candidate will be assigned a single
voltage and frequency, allowing dynamic changes of voltage and frequency only
between scheduling candidates. Initially, we will consider loop nests as scheduling
candidates that will be analyzed and assigned a frequency and voltage. Possible
identification of such candidate loop nests include the phase definition introduced
by Kennedy and Kremer in the context of automatic data layout [21].

Different strategies can be used to determine values for the our model param-
eters cpuBusy, memBusy, and bothBusy. Static compile-time analysis, on and
off line performance monitoring, or a combination of static and dynamic tech-
niques are currently under investigation. For this discussion, we assume that the
values of the three model parameters are available. The main focus of this paper
is the discussion of a model that is able to select a suitable slow-down factor δ for
a deadline constraint ds, given values for cpuBusy, memBusy, and bothBusy.

The third and last compilation step will insert frequency and voltage adjust-
ment instructions before each scheduling candidate, i.e., before each candidate
loop nest. Assuming that the overhead of switching relative to the computa-
tion within a single loop nest is so small that it can be ignored, the collection
of solutions for individual loop nests will represent an optimal solution for the
entire program. We are currently investigating scheduling candidates of a finer
granularity where the switching overhead is significant. In this case, an optimal
frequency and voltage assignment requires multiple scheduling candidates to be
considered at the same time.

3 The Impact of Compiler Optimizations

In the following, some of the advanced memory hierarchy optimizations will be
used to demonstrate the impact of performance-oriented optimizations on the
possibility of slowing down the CPU speed without noticeable penalty. Such
optimizations can either reduce the number of memory references (e.g.: loop in-
terchange, loop tiling), or hide the memory latency (e.g.: loop unrolling, software
prefetching).



3.1 Techniques to Optimize Workloads

At the beginning of Section 2, it is mentioned that the array is scanned in column-
major order while C uses row-major order. As a consequence, the program does
not have any data locality. Loop interchange can be used to access consecutive
rows of the array, resulting in spatial locality and a reduction in the total amount
of memory accesses. Figure 5(a) gives the transformed program through loop
interchange and its model parameters.

for (i=0; i<n; i++)

for (j=0; j<n; j++)

accu += A[i][j];

cpuBusy 18.93%

memBusy 73.66%

bothBusy 7.41%

(a) Transformed loop. (b) Its workload.

Fig. 5. The impact of loop interchange.

Loop interchange effectively reduces workload of both CPU and memory.
Since spatial locality is exploited, total memory work is reduced to 1/16 (every 16
j-iteration will generate a memory access). At the same time, sequential memory
access pattern simplifies the address computations, and, as a result, 20% of pure
computations (in instructions) are eliminated. In addition, instructions can be
grouped more efficiently, and total CPU work (in cycles) is reduced to 1/2. As
a result, the transformed program speeds up by a factor of 10.73.

However, according to our model, the transformed program is not a good
candidate for slowing down the CPU without noticeable performance impact;
cpuBusy (18.93%) is too large to satisfy Condition (1). The source of the problem
is that the work of the CPU and memory has little overlap. A careful examination
of the execution trace reveals that since the resources (RUU units) are used up
very quickly, only a few j-iterations are issued, and then the fetch process is
stalled until data arrives from memory. Once these j-iterations are executed, a
few more j-iterations need to be executed before a new memory request is made.

Resources are used up very quickly because of the associated overheads in
every j-iteration. Loop unrolling may be able to alleviate the problem by reduc-
ing the iteration overheads. Figure 6(a) gives the transformed program with the
j-loop unrolled 16 times. As a result, many more j-iterations (24 to be exact)
can be issued before the memory access is completed. New memory requests
are made before the old memory access is done. In other words, loop unrolling
has the effect of ”implicit” data prefetching in our hypothetical machine. This
explains why cpuBusy is so small (0.67%).

As discussed in the previous section, loop unrolling is designed to reduce CPU
workload but it has the side-effect of workload overlapping through ”implicit”
data prefetching. Data prefetching can be done explicitly as well. The intention



for (i=0; i<n; i++)

for (j=0; j<n-15; j+=16) {
accu += A[i][j];

...

accu += A[i][j+15]; }

cpuBusy 0.67%

memBusy 65.60%

bothBusy 33.73%

(a) Transformed loop. (b) Its workload.

Fig. 6. The impact of loop unrolling.

is to prefetch needed data to avoid CPU interlocks. Figure 7(a) shows a version
of the transformed code.

for (i=0; i<n; i++) {
prefetch A[i][0]

for(j=0; j<n-16; j+=16) {
prefetch A[i][j+16]

accu += A[i][j];

...

accu += A[i][j+15]; } }

cpuBusy 0.67%

memBusy 74.04%

bothBusy 25.29%

(a) Transformed loop. (b) Its workload.

Fig. 7. The impact of software data prefetch.

The explicitly data-prefetched program has similar workload distribution as
the implicit version. Both allow the CPU speed to be reduced to 1/2 with only
less than 1% of performance penalty. Figure 8 gives a summary of the relative
performance, possible slow-down factors, and potential energy consumption for
different versions of the optimized code.

The results show that even at the highest optimization levels, dynamic volt-
age and frequency scaling can achieve energy savings of 35% over the fastest,
fully optimized version without any significant performance penalty (< 1%).
For the unoptimized case, the 70% energy savings are obtained without any
performance degradation.

3.2 Relationship with Program Balance

The concept of balance (β) has been defined in a number of studies (e.g., [11, 12,
25,17, 2]) as a ratio of the number of memory operations M to the number of
floating-point operations F , i.e., β = M/F . When applied to a particular ma-
chine, β can indicate either peak [11,12] or ”average” [25] machine performance.
Similarly, every program (or loop) has its own balance value βp, which may take



δ T f V E

unoptimized 1 100.00% 700 1.65 100.00%

10 100.00% 70 0.90 29.75%

inter- 1 9.32% 700 1.65 9.32%
change 2 11.84% 350 1.33 7.69%

unroll 1 6.37% 700 1.65 6.37%
2 6.43 % 350 1.33 4.18%

prefetch 1 6.37% 700 1.65 6.37%
2 6.44% 350 1.33 4.18%

Fig. 8. The impact of optimizations on performance and energy consumption: T is
the relative execution time performance over the original, unoptimized code; δ is the
f and V are the corresponding adjustment if running on an architecture with energy
characteristics similar to the Crusoe TM5400 processor; E ∝ V 2T is the relative energy
consumption over the unoptimized code. The values for δ selected by our model are
shown in bold typeface.

into account pipeline interlock [11]. Optimization techniques are proposed to
restructure a program so that its balance be closer to the underlying machine
balance.

In terms of our model, program balance is a relationship between the work of
the CPU and the memory, and their overlaps. When there is no overlap, slowing
down CPU without significant performance penalties is not possible (cpuBusy
is too large). This situation is already illustrated in Figure 5. On the other hand,
when the work of CPU and memory overlaps almost perfectly, the program can
be either cpu-bound or memory-bound.

The loops in Figure 6 and 7 are considered memory-bound. Simulation re-
sults show that 16 j-iterations take 32 cycles in total, assuming a perfect cache.
Since the memory latency is 100 cycles, it cannot be be fully hidden in 16 j-
iterations. On the other hand, CPU work is almost ”embedded” in memory work.
Memory-boundness may create opportunities for reducing CPU clock speed with
negligible performance impact.

Some workload reduction transformations change the program from memory-
bound to cpu-bound. For instance, loop fusion combines the bodies of multiple
loops into a single loop. It not only reduces loop overheads and memory accesses,
but also increases CPU work relatively more than memory work per iteration.
According to our model, such cpu-bound programs cannot be slowed down with-
out significant performance penalty. On the other hand, memory accesses can
be slowed down without affecting the total performance.

4 Experiments

All simulations are done through the SimpleScalar tool set [9], version 3.0a,
with memory hierarchy extensions [10]. SimpleScalar provides a cycle-accurate



simulation environment for modern out-of-order superscalar processors with 5-
stage pipelines and fairly accurate branch prediction mechanism. Speculative
execution is also supported. The processor core contains a Register Update Unit
(RUU) [30] which acts as a unified reorder buffer, issue window, and physical
register file. Separate banks of 32 integer and floating point registers make up
the architected register file and are only written on commit.

The processor’s memory system employs a load/store queue (LSQ). It sup-
ports multi-level cache hierarchies and non-blocking caches. The extensions add a
one-level page table, finite miss status holding registers (MSHRs) [23], and simu-
lation of bus contention at all levels, but not simulation of page hits, precharging
overhead, refresh cycles, or bank contention.

4.1 Simulation Parameters

The baseline processor core includes the following: a four-way issue superscalar
processor with a 64-entry issue window for both integer and floating point oper-
ations, a 32-entry load/store queue, commit bandwidth of four instructions per
cycle, a 256-entry return address stack, and an extra branch misprediction of 3
cycles.

In the memory system, we use separate 32KB, direct-mapped level-one in-
struction and data caches, with a 512KB, direct-mapped, unified level-two cache.
The L1 caches have 32-byte blocks, and the L2 cache has 64-byte blocks. The
L1/L2 bus is 256 bits wide, requires one cycle for arbitration, and runs at the
same speed as the processor core. Each cache contains eight MSHRs with four
combining targets per MSHR. The L2/memory bus is 128 bits wide, requires
one bus cycle for arbitration, and runs 1/4 of the processor core speed. Figure 9
summarizes the simulation parameters used in the paper.

4.2 Dynamic Voltage Scaling Capability

The current implementation of the SimpleScalar tool set does not support dy-
namic frequency scaling. Our simulation is done by multiplying the total number
of CPU cycles and the slow-down factor. For example, if the clock speed of the
baseline processor is reduced by half, the latencies of the memory and L2/bus are
reduced by half. The total number of CPU cycles is then multiplied by two to get
the absolute performance. We are in the process of extending the SimpleScalar
instruction et to support dynamic speed setting.

The energy estimation of the program is not yet incorporated into our version
of the SimpleScalar simulator. In the future we will implement energy accounting
as suggested by Wattch [5], which is based on SimpleScalar version 3.0 and
publicly available.

4.3 Experimental Results

In addition to measurements for the accumulator loop shown in Figure 3(a)
with results shown in Figure 8, we evaluated our model for the two BLAS1



Simulation
parameters Value

fetch width 4 instructions/cycle
decode width 4 instructions/cycle

issue width 4 instructions/cycle, out-of-order
commit width 4 instructions/cycle

RUU size 64 instructions
LSQ size 32 instructions

FUs 4 intALUs, 1 intMULT, 4 fpALUs, 1 fpMULT, 2 memports
branch predictor gshare, 17-bit wide history

L1 D-cache 32KB, 1024-set, direct-mapped, 32-byte blocks, LRU,
1-cycle hit, 8 MSHRs, 4 targets

L1 I-cache as above
L1/L2 bus 256-bit wide, 1-cycle access, 1-cycle arbitration

L2 cache 512KB, 8192-set, direct-mapped, 64-byte blocks, LRU,
10-cycle hit, 8 MSHRs, 4 targets

L2/mem bus 128-bit wide, 4-cycle access, 1-cycle arbitration
memory 100-cycle hit, single bank, 64-byte/access

TLBs 128-entry, 4096-byte page

compiler gcc 2.7.2.3 -O3

Fig. 9. System simulation parameters.

kernels sdot and saxpy. Both codes were optimized by hand using advanced
transformations such as loop unrolling, loop splitting, software pipelining and
software prefetching. The resulting code versions were compiled using gcc -O3.
The following table lists the measured values for the three model parameters
cpuBusy, memBusy, and bothBusy, and the resulting slow-down factor δ as
computed by our model.

sdot saxpy

cpuBusy 0.19% 0.92%

memBusy 73.53% 85.88%

bothBusy 26.27% 13.20%

δ 2 2

The performance of the optimized versions of the two kernels under different
slow-down factors is reported in Figure 10. As in the case of the optimized accu-
mulator kernel, the graphs show a performance behavior that is nearly constant
for small values of δ, until the performs starts to degrade close to linearly with
the slow-down factor. Figure 11 shows the performance characteristics of the
optimized codes and the computed CPU slow-down factor δ. In both cases, the
model determines δ = 2. For sdot, the resulting energy saving is 33% with a
3% performance penalty relative to the optimized version running at full CPU
speed. For saxpy, these figures are 34% energy savings and 1.9% performance
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(a) Highly optimized sdot: (b) Highly optimized saxpy:
loop splitting and unrolling, loop unrolling,

software pipelining & prefetching. software pipelining & prefetching.

Fig. 10. Two simple BLAS1 kernels and their optimized performance under different
CPU clock frequencies. The horizontal lines indicate the threshold for a 1% performance
degradation.

penalty. For the unoptimized code versions, the model was not able to determine
slow-down factors greater than 1.

δ T f V E

unoptimized 1 100.00% 700 1.65 100.00%

sdot

optimized 1 75.18% 700 1.65 75.18%
2 77.45% 350 1.33 50.32%

saxpy

optimized 1 93.18% 700 1.65 93.18%
2 94.92% 350 1.33 61.67%

Fig. 11. The impact of optimizations and computed CPU slow-down on performance
and energy consumption for sdot and saxpy. The values for δ selected by our model
are shown in bold typeface.

The experiments show that our model was not able to precisely predict the
performance penalty as a result of the CPU slow-down. In our measured cases,
this imprecision has no significant impact. However, we are currently investi-
gating refinements to our model that will include the basic computation and
memory access patterns of program regions, in particular loop nests.

5 Related Work

Extensive research on optimizing compilers has been carried out in the last few
years [35,26], mostly execution time oriented and for high-performance proces-



sors. Since battery-powered mobile computers are getting more popular, there
is a growing interest in optimizing software for low power.

In general, most performance-oriented transformations will also improve the
overall energy consumption of an application [32]. However, recent results indi-
cate that optimization techniques such as loop tiling and data transformations
may increase the energy usage of the datapath while reducing memory system
energy, which leads to challenging trade-offs between prolonging battery life and
limiting dissipated energy within a package [19, 20]. In the context of loop tiling,
it has been found that the best tile size for the least energy consumed is different
from that for the best performance [19].

Other recent research has shown that power-aware register relabeling algo-
rithm can reduce the overall power consumption of the register file by up to 12%
without any performance impact [36]. For handheld battery-powered devices,
compiler-directed remote task execution can be an effective technique to save
energy on the mobile device [22].

5.1 Energy Models

Just as performance-oriented compiler optimizations need performance models
to evaluate various coding schemes, power-aware optimizations need power mod-
els.

Tiwari et al. [32] proposed to assign each instruction an energy cost and es-
timate total energy consumption of a software based on instructions. Along the
same way, [4] proposed a functional decomposition of the activities accomplished
by a generic microprocessor and exhibited generalization capabilities. In [29], a
function-level power estimation methodology is proposed. With this method, mi-
croprocessor vendors can provide users the ”power data bank” without releasing
details of the core to help users get early power estimates and eventually guide
power optimization.

A lot of attention has been given to the memory subsystem for its energy
consumption. For example, [31, 15, 18] all proposed analytical models for the
memory subsystem with various precision. A more precise model may possibly
take into account the run-time access statistics, which can be derived analyti-
cally (as many classical optimizations already do) or through simulation [1]. The
analytical energy models for buses are also proposed recently [37]. In addition,
many simulators were built in the past few years to more precisely capture the
energy consumption of the processor core. Wattch [5] and SimplePower [36] are
two such examples. More details can be found in [3].

5.2 Dynamic Voltage Scaling

Recently, methods have been developed to dynamically control supply voltage to
adopt to the program’s execution behavior. For example, operating frequency can
be set to the lowest possible for the program execution, and dynamically vary the
voltage accordingly. This approach is used by Transmeta [33] and researchers at
the University of California at Berkeley [8]. Another approach is to dynamically



adjust a transistor’s threshold voltage. The chip can also be divided into blocks,
with independent supply voltage control for each block. If a block is not in use,
its supply can be cut to save energy.

Dynamic voltage scaling does not come without overheads. For example, for
a large voltage change, the transition can take as long as 520µs and consumes
energy 130µJ [7]. Such a long transition time suggests the coarse speed control
and gradual speed settings.

6 Conclusion and Future Work

Dynamic frequency and voltage scaling is an effective way to reduce power dis-
sipation and energy consumption of memory bound loops. Choosing a maximal
CPU slow-down factor is a difficult problem if deadlines have to be met. This
paper discussed a simple performance model that allows the selection of efficient
slow-down factors . Experiments based on three numerical kernels and a simu-
lator for an advanced superscalar architecture indicate the effectiveness of the
new model. Assuming the power characteristic of Transmeta’s Crusoe proces-
sor, the resulting energy savings of our compilation strategy are in the range of
33% to 70%. The results show that even for highly optimized code there is still
significant room for additional energy savings by applying our power optimiza-
tion strategy. More experiments will be needed to further validate our proposed
compilation strategy.

The implementation of the proposed models and compilation techniques
are currently underway. In addition, we are extending our model to deal with
computation-bound loops that allow energy savings by slowing down the mem-
ory subsystem. Algorithms for partitioning the program into regions of fixed
frequency and voltage assignments, with voltage and frequency transitions be-
tween them need to be developed. In this paper, we have concentrated on single
loop nests with single voltage and frequency assignments. Future work will ad-
dress global, whole program solutions that will consider the execution time and
energy overheads of voltage and frequency scaling.
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