
__

* This research is supported in part by NSF under contract 0196470
and a grant from NJ Commission on Science and Technology.

High Quality ATPG for Delay Defects*

Puneet Gupta and Michael S. Hsiao
The Bradley Department of Electrical and Computer Engineering

Virginia Tech, Blacksburg, 24060, VA

Abstract: The paper presents a novel technique for
generating effective vectors for delay defects. The test set
achieves high path delay fault coverage to capture small-
distributed delay defects and high transition fault
coverage to capture gross delay defects. Furthermore,
non-robust paths for ATPG are filtered (selected)
carefully so that there is a minimum overlap with the
already tested robust paths. A relationship between path
delay fault model and transition fault model has been
observed which helps us reduce the number of non-robust
paths considered for test generation. To generate tests for
robust and non-robust paths, a deterministic ATPG
engine is developed. Clustering of paths has been done in
order to improve the test set quality. Implications were
used to identify the untestable paths. Finally an
incremental propagation based ATPG is used for
transition faults. Results for ISCAS’85 and full-scan
ISCAS’89 benchmark circuits show that the filtered non-
robust path set can be reduced to 40% smaller than the
conventional path set without losing delay defect
coverage. Clustering reduces vector size in average by
about 40%.

1. INTRODUCTION
 Increasing performance requirements motivated testing
for the correct temporal behavior, commonly known as
delay testing [1]. Delay defects can be modeled in a
number of different ways, among which the most common
are the path delay fault (PDF) model [2] and the transition
fault model [3,4]. Test patterns for transition faults and
PDFs consist of a pair of vectors {V1, V2} where V1 is
required to initialize the target node and V2 is required to
launch the appropriate transition at the target node and
propagate it to an observation point, such as a primary
output (PO). In PDF, cumulative effect of gate delays
along the path is considered whereas in the transition fault,
every transition (both 1→ 0 and 0→1) models excessive
delay on a single node in the circuit. In addition, a
transition fault can be modeled as 2 stuck-at faults, making
test generation simpler.
 The test that delivers a rising (falling) transition to a node
and sensitizes a path from that node to an observation point
will detect a slow-to-rise (slow-to-fall) transition fault at
that node. That same test may detect a path delay fault
associated with the particular route into and out of the node
in question. Conversely, a PDF test may also detect some
transition faults. Nevertheless, a complete transition test
set may not detect all critical paths; likewise, a test set that
exercises longest paths may not detect all transition faults.

Because the transition fault model is for capturing gross
defects, while the PDF model is for detecting small defects,
in order to achieve high delay defect coverage we require
both high path and transition fault coverage.
 Since there can potentially be a large number of paths in
a circuit, we need to have ways to classify them and reduce
the effective number of paths to be tested. PDFs can be
broadly classified in two ways [5]: robust PDF and non-
robust (NR) PDF. A nine-value-based ATPG for both
robust and NR tests is presented in [6]. DYNAMITE [7]
and RESIST [8] give a more in depth analysis of PDFs and
uses deterministic approaches for ATPG. FSIMGEO [9] is
a simulation based ATPG engine for PDFs, but this misses
the delay faults on the less critical paths. To overcome this,
segment delay faults were considered and studied in [10].
In this the authors study the technique of covering delay
defects on untestable critical paths by robustly testing their
longest possible segments that are not covered by any of
the testable critical path. The disadvantage of this scheme
is that there are a large number of untestable critical paths
and generating NR tests for all can be futile. A different
approach for the selection of critical paths has been
presented in [11]. Here the authors try to generate a longest
path passing through each gate. But since the longest path
passing through a gate may actually be one of the shortest
paths in the whole circuit, this technique does not
guarantee a proper coverage of the critical paths if only
these paths are considered. A statistical based approach is
presented in [12-13] where critical paths are selected based
on the statistical properties of the already detected paths.
 Obtaining high PDF coverage may require testing of a
large number of paths, many of which overlap with one
another. To improve the delay test sets, in this paper we
make an attempt to generate tests such that they not only
have high robust path coverage for the critical paths, but
the test set is also capable of detecting other delay fault
models (such as transition faults) that were missed by the
critical path analysis.
 Since the number of paths can be very large for practical
circuits, we try to generate tests for a filtered path set. The
idea behind this filtered set is to reduce the number of NR
paths to be considered for test generation without losing
PDF coverage. Hence, instead of selecting NR paths based
on their lengths, we discard all NR paths that significantly
overlap with previously tested robust paths. This concept
can be understood by considering Figure 1. It shows a
circuit model with 2 paths originating from 2 PIs and
ending at 2 different PO. Let path P1 (PI1-PO1) be longer
than P2 (PI2-PO2) and let us assume that P1 is robustly
testable whereas P2 is robustly untestable. The overlap of
P1 and P2 is Lover. We know that since we can test P1
robustly, the region of overlap is also tested robustly. If
Lover is greater than some preset threshold, then the delay

due to the non-overlapping portion of P2 alone will not
likely make P2 faulty (if the defects on the non-overlapping
segment are small distributed delay defects). Hence, the
likely fault that can make P2 faulty is a large delay present
in the non-overlapping section. By making sure that the test
set covers the transition faults associated with these gates,
we can discard many paths like P2, reducing the total
number of paths needed to be considered for test
generation. Due to this observation, a high-quality delay
test set should achieve a high Transition Fault Coverage
(TFC) to cover those NR paths that the test strategy did not
specifically target.

Fig. 1. A circuit model with 2 paths

 A general relationship between paths can be deduced
from the Venn diagram of Figure 2. Out of the total
possible P paths in the circuit, region R1 (right rectangle)
represents the robust paths in the circuit, while Region R5
(left rectangle) represents the robustly untestable paths. R6
represents the untestable NR paths. R6 is a subset of R5
because untestable NR paths are also robustly untestable.
Region R4 represents the conventional M longest paths
considered for ATPG. Note that this set contains some
robust and some non-robust paths. Nevertheless, not all
paths from R4 need to be tested, since many of them
overlap with already tested robust paths, as explained
earlier. Using our proposed filtering technique, we choose
paths more intelligently. Let us suppose that the region R2
contains the set of NR paths that do not overlap with the
tested robust paths. Then, region R3 (overlapping between
R2 and R4) contains paths which are both long and do not
overlap with an already tested robust path. Thus, while
selecting NR paths for test generation, we want to select

paths from R3, rather than all of NR paths in R4. If the test
set can accommodate more patterns, we can choose
additional paths from R2. Results show that there has been

a reduction in the NR path set by as much as 40% for some
circuits.
 In the paper we also propose clustering of paths to reduce
the test set size by considering multiple compatible paths
together for test generation. Results show that clustering of
paths reduces test set data by about 40%. Untestable paths
are dropped in the initialization phase and reusable vector
storage schemes [14] have been used to further reduce the
test set size.
 The rest of the paper is divided as follows. Section 2 gives
the basic definitions and terminology used in the paper.
Section 3 describes the delay testing algorithms along with
the observation for NR path dropping. Optimization of
vector sets using clustering is also described in Section 3.
Section 4 presents the results for combinational and full-
scan ISCAS’85 and ISCAS’89 benchmark circuits.
Conclusions are given in Section 5.

 2. TERMINOLOGY
 A scan based delay test [3, 4, 14], consists of two patterns
<V1,V2>, applied on two successive clock pulses. The first
pattern initializes the nodes along the path (and possibly
also the off-path inputs) and the second pattern propagates
the transition along that path to a PO. Since the patterns
must be applied at the rated speed, at-speed testing is
needed. For full scan circuits, both the vectors in the scan
flip-flops must be ready for consecutive time frames to
ensure at-speed testing.
 A physical path P is an interconnection of gates from PI
to PO. A rising (falling) path Pr (Pf) is defined as the path
corresponding to a rising (falling) transition starting at the
PI. The polarity of the transition for each gate on the path
depends on the inversion parity along that path. Path
Length is defined, as the number of gates in a given path P.
Segment S is a contiguous section of a path P. A segment
can start and end at any point in the given path P.

2.1. DELAY FAULT MODELS
 Given a combinational or a full scan circuit C, a delay
defect may manifest as a lumped delay defect on a
gate/signal or small-distributed delay over C due to process
variations. The transition fault model is considered as a
logical model and is a good candidate for modeling lumped
delay defect. It considers a rising or a falling transition at
the inputs and the outputs of logic gates. The vector pair
<V1,V2> detects a transition fault, if it launches the
transition at the fault site and V2 detects the corresponding
stuck-at fault.
 A vector pair <V1,V2> is said to be a non-robust path
delay test for a path P, if it launches the transition at the
beginning of P, and all off path inputs of P under V2 have a
non-controlling value (NCV).
 A vector pair <V1,V2> is said to be a robust path delay
test for a path P if (a) it is a NR test for P and (b) whenever
the on-path input of a gate G on P takes a NCV under V1,
then all the side inputs of G should take NCV under V1 as
well.

Fig. 2. Relationship between robust and non-robust
paths

R5:
Untestable

RP

R6:
Untestable

NRP

P: Total Paths

R4: M
longest NR

Paths R3: R2 ∩ R4

R2: Filtered
NR Paths R1: Robust

Paths

Consider the circuit in Figure 3. The rising path P1= PI-1-
2-3-4-5-PO has a path length LP1 = 7. P1 is robustly
testable as shown in the figure. Now consider another path
P2 = PI-1-2-3-6-5-PO which also has LP2 = 7. To robustly
test P2, the off-path input of gate 6 must be a steady one,
which is not possible in this case. Hence P2 is robustly
untestable.

2.2. DELAY TEST SET SIZE
 As mentioned earlier, a scan based delay test needs two
vectors for testing a given transition. Hence, any given test
set V having n test patterns can be represented as:
V={(v11,v12),(v21,v22),……(vi1,vi2),……(vn1,vn2)}.
 Vector Reusable Test Set (VRTS)[14] is a special form of
vector storage in which a test set T having m elements can
be represented as:
T={(v11,v12),(v12,v22),……(v(i-1)2,vi2), …… (v(m-1)2,0vm2)}
where m<n. Thus, instead of storing 2n vectors for test set
V, we only need to store m vectors. Since this method
reuses the vector space, it is called VRTS.

3. DELAY TEST METHOD
 Since a circuit can potentially have a large number of
paths, we want to select a small number of paths for ATPG
and still want to have a high quality test set. A robustly
tested path detects small-distributed delays along the path,
and hence NR path that overlap significantly with this path
may become futile to test. By considering the transition
fault model along with the PDF model, we can compute a
measure for selecting NR paths for ATPG. The two fault
models can be related to each other by the following
observation.
Observation 1: By making sure that a test set has high
transition fault coverage, many of the NR paths that
overlap largely with already tested robust paths need not be
tested.
 We will explain the observation with the following
example: Using Figure 1, consider the case when a large
portion of a NR path (e.g. P2) overlaps significantly with
an already robustly tested path (e.g. P1). One of the
following two scenarios can occur:

1) The non-overlapping portion of P2 has a small delay
(according to distributed delay model): Since LP1≥LP2, and
P1 is already tested robustly, this small delay alone is not
likely to make P2 faulty. Hence we don’t need to consider
P2 separately for ATPG, similar to those less critical or
shorter paths that we do not consider (region P-R1-R2-R4-
R6 of Figure 2).
2) The non-overlapping portion of P2 has a large (lumped)
delay: This large delay can always be tested by using the

transition fault model at the nodes of the non-overlapping
portion of P2. ٱ

 Thus, in order to have high quality delay test, we need to
have high robust path coverage, high NR path coverage
and high transition fault coverage. To achieve this
efficiently, we have designed a 3-phase ATPG. All 3
phases are described in the following sub-sections.

3.1. ROBUST TEST GENERATION PHASE
 The first step towards the test generation for robust paths
is to enumerate the robustly testable paths for which tests
are to be generated. We use an implication-based technique
similar to [15] for the removal of all the untestable robust
paths. This implication-based technique can be best
understood by a simple example. Consider the circuit of
Figure 3. To robustly test the path Pr

 = PI-1-2-3-6-5-PO,
there is a transition from a non-controlling (NCV) to a
controlling value (CV) at the input of gate 6. Hence, the
off-path inputs of gate 6 should have a steady NCV for
both V1 and V2, which imply a constant ‘0’ at the output of
gate 2. This is a conflict and hence Pr is robustly
untestable. This implication-based analysis identifies a
large number of untestable robust paths for most of the
circuits.
 After removing paths that are robustly untestable, we
want to generate tests for the N longest paths. The
algorithm used for doing this is as follows:

robust_ATPG(){
 For all paths P not detected {
 essential_values(P,val0,val1);
 Generate vector Vi (values in val0 need to be satisfied)
 //only need to do logic simulation
 If Vi generated {
 Generate vector Vi+1 (values in val1 needs to be

satisfied) //only need to do logic simulation
 If Vi+1 generated {
 Add Vi and Vi+1 to the test set T
 Drop all path detected by vector pairs <Vi-1,Vi> and

<Vi,Vi+1> }
 }}

The function essential_values() analyzes a given path P
and finds the values needed by V1 and V2 on all the gates
of P and stores them in vectors val0 and val1, respectively.
It also finds the essential off-path values under V2. For
example, in Figure 3 for path Pr

 = PI-1-2-3-4-5-PO values
in val0 = gate1=1, gate2=1, gate3=1, gate4=1, gate5=1, and
val1 = gate1=0, gate2=0, gate3=0, gate4=0, gate5=0. val1
also contains nodes corresponding to side input of gate2 to
be logic 1 and the side input of gate4 to be logic 1 as well.
Since the function needs to satisfy the values in val0 and
val1, only 3-valued logic simulation is needed. A vector
pair is produced for P if Vi and Vi+1 satisfy all the values in
val0 and val1 corresponding to P respectively. All other
paths detected by <Vi-1,Vi> and <Vi,Vi+1> are then
dropped. The final test set produced after considering all N
paths is called TR.

Fig. 3. A sample circuit

3.2. NON-ROBUST TEST GENERATION PHASE
 An implication-based approach similar to that used to
enumerate robust paths is used to first drop all the paths
that cannot be tested non-robustly. However, this
implication based technique poses restrictions on the
values required by V2 only. After dropping the identified
untestable NR paths, we further remove additional NR
paths that satisfy the following two conditions according to
observation 1:

1) The NR path PNR overlaps with an already detected
robust path PR with an amount greater than a preset
threshold ∆NR. The overlapping section should be
contiguous.
2) L(PR) ≥ L(PNR).

After dropping paths based on above criteria, we can drop
a large number of NR paths. But the number of paths
dropped depends on the number of robust paths detected.
Higher robust path coverage generally translates to more
NR paths dropped. We also drop additional paths that are
incidentally detected by the robust test set TR generated in
Section 3.1.
 Once we have the set of filtered NR paths, we generate
test for the longest M paths (if the number of paths is still
large). The algorithm for NR path ATPG is similar to that
of robust path ATPG used in Section 3.1, except that NR
condition is enforced. Hence for V1, the ATPG needs to
satisfy only the conditions at the PI. The final test set
produced after the end of this function is called TR+NR.

3.3. TRANSITION FAULT ATPG
 The test set produced so far may not have high transition
fault coverage (TFC) since we did not target some NR
paths (by observation 1) that overlap with an already
detected robust path. The dropped NR paths can still cause
a delay fault if a large delay defect is present on the nodes
of the path that can be captured by using the transition fault
model.
Genetic Algorithm (GA) is used for the transition fault
ATPG. The advantages of GA over conventional
deterministic approach are: (1) multiple transition faults
can be easily targeted simultaneously, and (2) without
backtracking, vectors can be produced in a reasonably
shorter time. GA has been used before for stuck-at faults
[16-18]. Calculation of fitness function through multiple
fault simulation is a bottleneck in the efficiency of GA’s.
We developed an ATPG called Incremental Propagation
Based ATPG, which circumvents the problem of fault
simulation required for the calculation of fitness function.
The algorithm is divided into three phases. Instead of
generating tests that will guarantee the detection of some
faults, we generate tests incrementally.
All the transition faults detected by the test set TR+NR are
dropped initially and the TFC achieved by TR+NR is defined
as TFCphase 0.The three phases are described as follows.

Phase I: In this phase of the ATPG, we generate test
patterns that will only launch the targeted transitions. We
try to maximize the launch coverage L1 in this phase and

add all the vectors produced to the test set. Hence at the
end of the first phase we have a set T0={v1, v2, v3……vN },
where vectors v1 to vN are stored in the VRTS fashion. Now
a Transition Fault Simulation is performed using this
vector set and all the detected faults are dropped. Therefore
now we have N vectors, which have launch coverage of L1
and transition fault coverage of TFCphase I. For most of the
circuits L1 is near to 100%. For every transition fault f that
is launched, we keep track of the vector number in a
vec_num database, which launched f. This information is
later used in phase III. The importance of phase I come
from the fact that a large number of transition faults are
easy to detect and we want to drop all the easy faults as
soon as possible so as to save execution time. Moreover the
database vec_num produced in this phase helps reduce the
time to regenerate V1 for faults that are hard to detect in the
later phases.

Phase II: In the second phase, we generate VRTS such
that the first vector excites as many undetected faults F as
possible and the corresponding next vector excites as many
opposite of F as possible and also propagates them to k
levels ahead from the fault site; where k is the iteration
number within phase II. Note here that the second vector
need not propagate the fault to a primary output. Hence
after the end of first iteration within phase II, we have
another test set T1={vN+1, vN+2, vN+3…vN+m}. Transition
fault simulation is again performed on T1 and the detected
faults are dropped.
 After the end of k iterations (k in worst case can be equal
to maximum number of levels in the circuit) we have k test
sets. These can be appended together to get the test set T =
{(T1, T2, T3,…, …, Tk)}.Thus the TFC of phase II is :

TFCphase II = ∑(TFC(Ti)) + Φ

And Φ = TFC(VT1

α1, VT2
1) + TFC(VT2

α2 , VT3
1) + +

TFC (VT(k-1)
α(k-1) , VTk

1)

Where αi is the number of vector in test set Ti and the VTi

x

represents vector number X of test set Ti. The term Φ
accounts for the TFC for the vectors that are at the
boundary of the two VRTS, Ti and Ti+1.

Phase III: This phase targets the remaining hard-to-detect
transition faults and is a fault dependent phase. Unlike the
other two phases it adds a vector pair for each detected
fault. In this phase every undetected transition fault is
considered separately and a test is generated for it. Fitness
of an individual is defined as the number of fault events
produced. Once a vector pair <V1,V2> is generated for a
transition fault f , we drop all the other undetected faults
that might be detected by <V1,V2>. From the vec_num
database generated in phase I, it is easy to find the vectors
that launch the transition. We don’t have to waste effort in
regenerating vector V1. Hence, if a transition fault F has a
database entry in vec_num, then we only need to generate
V2. The TFC at the end of this phase is given by TFCphase III.
Hence, after the end of all three phases the final TFC is:

Fig. 5. Clustering helps in NR path filtering

 TFC = TFCphase 0 + TFCphase I + TFCphase II + TFCphase III.
And the final test set is called TR+NR+TF.

3.4. CLUSTERING OF PATHS TO REDUCE TEST SET SIZE
 It follows from Section 3.1 and 3.2 that tests are generated
for each path separately and 2 vectors are added for each
path detected. Although additional paths detected by an
added vector pair are dropped, using an optimization called
clustering, we can further reduce the vector space. All the
paths are clustered based on their compatibility with each
other. Then, instead of considering one path at a time, we
consider a whole cluster at a time. Two paths are clustered
if none of the values in val0 and val1 of both the paths
contradict each other. It is to be noted that 2 paths need not
overlap each other for being compatible. In order to limit
the compatible path space, we only combine a path Pi with
Pj such that j ≤ i, where the initial ordering of paths can be
arbitrary. In our case the initial ordering of paths was the
same as the order in which paths are generated. Moreover,
cluster size was limited to 50 for each path due to memory
limitations.
 Once clustering is done based on path compatibility, we
generate test for a whole group. The algorithm targets the
first path in the cluster. Once it is detected, we try to fill the
remaining don’t care values of the produced vector such
that another paths in the cluster also gets detected. It is a
form of compaction with the exception that vectors are
modified dynamically based on the clustered paths. The
concept of clustering can be best understood by the
following example.

Fig. 4. A Sample Circuit

Consider the circuit of Figure 4. Let paths P1, P2, P3 and P4
be defined as: P1

r=1-7-9-14; P2
f=4-6-11-13-17-19; P3

f=2-8-
9-12-15-16-18; P4

f=2-8-10-12-15-16-18.
Without clustering, we will require 8 vectors to detect all
the 4 paths. But with clustering the compatibility relations
(С) are as follows:
P1С (P1, P3); P2С (P2, P3, P4); P3С (P1, P2, P3); P4С (P2, P4).
Hence the cluster of paths will be as follows:
Group 1: P1, P3; Group 2: P2, P3; Group 3: P3; Group 4:
P4;
Note that group 2 does not contain P4 since P3 is not
compatible with P4. Suppose a test <V1, V2> is generated
for group 1, which detected both path P1 and P3. Hence the
final test set will be reduced to only 6 vectors. Thus
clustering can help reduce number of vectors.
Since each vector pair using clustering detects more paths,
the filtered path set may be further reduced. Consider a
vector pair detecting 2 robust paths P1 and P2 that share at-
least a small common segment and a NR path overlaps

them as shown in Figure 5. Let segment SL1 of length L1 be
the overlap of NR path with P1 and segment SL2 with length
L2 be the overlap of NR path with P2. Further assume that
L1 and L2 are both less than ∆NR but L1+L2 > ∆NR. If the
segments SL1 and SL2 are contiguous, we can drop the NR
path and further enhance the definition of observation 1
made in Section 3. Thus clustering not only reduced the
test set volume, but can also improve the process of
filtering NR paths.

4. RESULTS
This section presents the results for combinational and full
scan sequential ISCAS’85 and ISCAS’89 benchmark
circuits. The programs were written using C++ and
experiments were conducted on a 1.7GHz, Pentium 4,
running the Linux operating system. For the calculation of
static implications, an implication engine presented in [19]
was used. Table 1 presents the analysis on robust and NR
paths. The second column shows the total number of paths
present in each circuit. The paths include both rising and
falling paths. Since the implication engine is not complete,
we cannot conclude the detectability about the paths that
were not detected as untestable. Column 3 gives the
untestable NR paths (PUNR) and column 4 reports the
number of untestable robust paths (PUR).

Table 1. Untestable Robust and Non-robust paths

Ckt # of paths P Untestable
NRP(PUNR)

Untestable
RP(PUR)

C880 17284 163 326
C2670 1359920 1190899 1322192
C5315 2682610 2026131 2205279
S641 3488 1079 1280
S1196 6196 1289 1976
S1238 7118 2725 2793
S1423 89452 41102 52923
S1488 1924 0 0
S5378 27084 3645 3645
S9234 489708 419108 446665
S38584 2161446 1646624 1926898
S35932 394282 334713 355494
S38417 2783158 1469251 1795854

Table 2. ATPG results for robust paths
Without Clustering Clustering

Circuit

Paths
(N) #Det #Vec TC(s) #Det #Vec TS(s)

C880 5000 4728* 5756 5.83 4728* 3190 29.27
C1355 5000 337 674 101.1 337 674 785.1
C2670 5000 3742 3744 73.99 3742 3484 242.81
C5315 5000 14* 24 10.85 14* 14 77.37
C7552 5000 34* 68 15.67 34* 68 166.67
S641 2208 2096* 1328 1.09 2096* 818 5.67

S1196 4220 3710* 2404 2.02 3710* 1766 11.26
S1423 5000 4822* 3934 10.64 4822* 3136 57.01
S1238 4325 3665* 2392 2.33 3665* 1832 10.1
S5378 5000 4048* 4186 11.24 4048* 2560 54.44
S9234 5000 3085 4458 337.36 3085 2394 5416.7
S35932 5000 4851* 2512 39.6 4851* 1914 130.44
S38417 5000 3638 5266 20895.23 3638 4536 66685.3

 * Rest all of the paths were proven to be untestable by the ATPG.

Table 3a. ATPG results for NR paths with and without filtering of NR paths
Overlap=100% (No Filtering) Overlap=90%

Circuit #NR
paths
(PNR)

#Det/MNR # Vec
(VNR) TNR(s)

NR Fil.
Paths
(PNRF)

#Det/MNRF # Vec
(VNRF) TNRF(s)

C880 163 129/129 100 0.85 34 34/34 28 0.28
C1355 5504 2752/4672 1896 23.3 5504 2752/4672 1896 23.3
C2670 131293 44760/63448 3452 12675.1 131293 44760/63448 3452 12675.1
C5315 179148 15101/39447 4500 846.95 179148 15101/39447 4500 846.95
C7552 90442 3983/11030 3644 187.9 90442 3983/11030 3644 187.9
S641 201 11/11 0 0.09 176 6/6 0 0.08

S1196 147 6/12 0 0.14 146 6/12 0 0.14
S1423 11821 939/939 512 9.22 9386 392/392 114 4.06
S9234 27557 590/6736 22 6909.16 27557 590/6736 22 6909.16
S5378 0 0 0 0.0 0 0 0 0.0
S35932 20781 11888/12320 0 43.32 20781 11888/12320 0 43.31

Table 3b. ATPG results for NR paths with and without filtering of NR paths

Overlap=80% Overlap=70%

Circuit # NR Fil.
Paths
(PNRF)

#Det/MNRF # Vec
VNRF TNRF (s)

NR Fil.
Paths
(PNRF)

#Det/MNRF # Vec
(VNRF) TNRF(s)

C880 34 34/34 28 0.28 34 34/34 28 0.28
C1355 5504 2752/4672 1896 23.3 5504 2752/4672 1896 23.3
C2670 131247 44760/63448 3452 12675.1 126740 40792/59468 3426 11635.1
C5315 179140 15095/39439 4500 962.11 178986 15033/39285 4482 839.72
C7552 90442 3983/11030 3644 187.9 90379 3956/10967 3684 185.86
S641 18 1 / 2 0 0.07 0 0 0 0.0

S1196 130 3/9 0 0.14 92 0/1 0 0.14
S1423 8544 286/286 90 3.01 7107 1175/1445 750 22.75
S9234 27501 534/6680 22 6445.80 27286 350/6496 22 6869.85
S5378 0 0 0 0.0 0 0 0 0.0
S35932 17693 8944/9232 0 33.82 14763 6158/6302 0 28.88

Since untestable NR paths ⊆ untestable robust paths, the
number of robust paths (NR) needed to be considered for
test generation is P-PUR and number of paths considered for
NR path ATPG is PUR–PUNR. The results of Table 1 suggest

that there are a large number of paths that cannot be tested
robustly or non-robustly.
 After filtering out untestable paths, we generate tests for
longest N robust paths. Table 2 reports the results for

Fig. 7. Percent reduction in the # of paths using
filtering

0

20

40

60

80

100

C
88

0

C
26

70

S
64

1

S
11

96

S
14

23

S
12

38

S
92

34

S
35

93
2Fig. 6. Percent reduction in # of vectors using

clustering

0
5

10
15
20
25
30
35
40
45
50

C
88

0

C
53

15

S
64

1

S
11

96

S
14

23

S
12

38

S
53

78

S
92

34

S
35

93
2

S
38

41
7

robust ATPG. Column 2 of Table 2 gives N for various
circuits. The upper limit on N was chosen to be 5000.
Fewer robust paths are chosen if there were not 5000
robust paths in the circuit (e.g. S1196). Next, we report the
results of the ATPG without and with clustering,
respectively. The effect of clustering can be seen by
comparing the number of detected paths and the number of
vectors generated. For all cases, the number of vectors
generated using clustering is less than the number of
vectors generated without clustering, without any loss in
the path coverage. This is because a group of paths are
considered together for ATPG rather than targeting
individual paths. Figure 6 shows the percentage decrease in
the number of vectors because of clustering. The average
reduction of vector size is about 40%. Execution times for
big circuits are about 4-5 times more with clustering but
are still under limits. The test set produced after robust
path ATPG is called VRD.

 Table 3a and 3b presents the ATPG result for NR paths.
First, we filter out the NR paths that overlap with the tested
robust paths. Then, we select all paths that are at least 85%
longer than the longest path in the filtered set. ∆NR (overlap
threshold required to drop the path) was kept to be a path
dependent quantity. Clustering was again used for this
ATPG. Table 3 (a-b) shows results for the NR paths with
and without filtering with varying values of ∆NR.
Specifically, we report results for ∆NR of 100%, 90%, 80%,
and 70%. The second column under NR path ATPG gives
the number of NR paths detected/number of NR paths
considered of ATPG (MNR). Note here that ∆NR = 100%
means that no filtering has been done.
 Paths in the set MNR are covered under region 4 with
reference to Figure 2 and also MNR ⊆ PNR. In our
experiments we choose PNR (# NR Paths) such that PNR ∩
NR = Ф. For most of the circuits the coverage is high at the
cost of the addition of few extra vectors (VNR) to the
already present vector set VRD.
 The column PNRF under ‘NR filtered path ATPG’
represents the paths after filtering with varying values of
∆NR. As ∆NR decreases from 90% to 70%, the number of
paths (MNRF) goes on decreasing for almost all the circuits.
This also results in the reduction of the number of vectors.

Hence we can infer that filtering at a correct threshold not
only decreases the number of vectors but also increases the
delay quality of the test set. Using a filtered set of paths
enables us to detect a better path set, which is small and
hence easy to detect. We can see that for some big circuits
the reduction in path size (PNR-PNRF) is about 40%. Set
MNRF ⊆ PNRF and is essentially region 3 of Figure 2.
 The increase in the number of paths when the threshold is
reduced to 70% in circuit S1423 and C7552 can be
explained by the definition of MNRF. Since after filtering,
the longest path remaining had a small length, set MNRF for
∆NR = 70% is greater than set MNRF for ∆NR = 80%.
 The percentage decrease in the number of filtered paths
produced with (∆NR=70%) and without filtering
(∆NR=100%) is plotted in Figure 7 for various circuits. For
almost all the circuits there has been a reduction in the
number of paths required for testing to achieve high delay
coverage. We can also see that the number of vectors
required are more with ∆NR=100% (no filtering) than
∆NR=70% in almost all the cases and the execution times
are always less with the help of filtering. This proves that
the concept of filtering helps us reduce number of vectors
with an increase in delay coverage.

 Table 4 presents the results for the transition fault
coverage achieved. The second column presents the TFC
for the vector set generated so far (VRD+VNRF=70%). We
still need to perform transition fault ATPG for some
circuits to account for the faults that VRD+VNRF=70% did not
detect. For most of the circuits, the additional number of
vectors (VTF) added to the previous test set (VRD+VNRF) are
very few since a lot of transition faults are detected while
generating tests for the robust paths. For cases such as
s35932, we don’t need to add any additional vector. The
incremental propagation based ATPG produces a high TFC
for almost all the circuits in a reasonable amount of time.
The last column presents the total number of vectors and
total time taken to generate the whole vector set. The time
is the sum of TD + TNRF + TTF and the total vectors
produced is the sum of VRD+ VNRF + VTF. These final test
sets achieve high robust coverage for the 5000 longest
robust paths, high non-robust coverage for the filtered NR
paths that do not significantly overlap with tested robust
paths, and high transition coverage.

Table 4. TFC and the Total Test Set Size
Transition Fault ATPG Final Test set

Circuit

TFC
(%)

VRD+
VNRF

TFC
(%)

#Vec
(VTF) TTF(s) #Vec

(V‡) T (s) †

C880 98.69 100.0 22 4.16 3240 33.71
C1355 97.14 99.76 160 22.88 2730 831.28
C2670 82.9 87.83 296 317.0 7206 12194.9
C5315 99.1 99.54 22 45.79 4518 962.88
C7552 93.08 96.14 1069 1200.0 4821 1552.53
S641 100.0 100.0 0 0.0 818 5.67

S1196 99.84 100.0 9 1.64 1775 13.04
S1238 96.77 97.26 95 15.48 3231 72.49
S1423 98.2 99.2 122 29.1 2704 61.95
S9234 71.14 90.89 2705 3978.8 5122 10085.3
S5378 93.4 98.23 434 196.1 2994 250.54
S35932 90.5 90.5 0 0.0 1914 159.32

T(s) † = TRD + TNRF + TTF; V‡ = VRD + VNRF + VTF.

5. CONCLUSION
 A high quality Delay Fault ATPG has been presented.
Robust paths, non-robust paths and transition faults were
considered for ATPG. Since the number of paths in circuits
can be huge, measures are taken to select specific paths for
ATPG. Selecting non-robust paths based on their lengths
can be non-optimal and hence we drop non-robust paths
that significantly overlap with an already-tested robust
path, and the results show that the final test set is rich in all
three aspect of delay testing. In other words, the obtained
test sets capture both gross and distributed delay defects in
the circuits. For transition fault ATPG, a special
incremental propagation algorithm is proposed to reduce
the vector space and generate a high TFC test vector.
Clustering of paths has been shown to improve the fault
coverage and also reduce the number of vectors by 40%.

REFERENCES:

1. A. K. Majhi and V.D. Agrawal, “Delay Fault Model and

Coverage”, Proceedings of the VLSI Design Conference,
1998.

2. G. L. Smith “Model for delay faults based upon paths,” Int.

Test Conf. 1985.

3. J. Savir and S. Patil, “On Broad Side Delay Test”, Proc.

VLSI Test symposium, 1994.

4. J.Savir and S. Patil, “Scan-Based Transition Test,” IEEE

Trans. on CAD of Integrated Circuits and Systems, 1993.

5. K. T. Cheng, and H. C. Chen, “Classification and

identification of non-robust untestable path delay faults”,
CAD of Integrated Circuits and Systems, 1996.

6. A. K. Majhi, J. Jacob, L.M. Patnaik and V.D. Agrawal, “An
efficient automatic generation system for path delay faults in
combinational Circuits”, VLSI Design Conference, 1995.

7. K. Fuchs, F. Fink and M. Schulz, “DYNAMITE: An

efficient automatic test pattern generation system for path
delay faults “, CAD of Integrated Circuits and Systems,
1991.

8. K. Fuchs, M. Pabst and T. Rossel, “RESIST: A recursive test

pattern generation algorithm for path delay faults considering
various test classes”, IEEE transactions on Computer-Aided
Design of Integrated Circuits and Systems, 1991.

9. S. Yihe and W. Qifa, “FSIMGEO: A Test Generation

Method for Path Delay Fault Test Using Fault Simulation
and Genetic Optimization”, ASIC/SOC Conference, 2001.

10. M.Sharma and J.H. Patel, “Testing of Critical Paths for

Delay Faults”, ITC, 2001.

11. M. Sharma, J.H. Patel, “Finding a small set of longest

testable paths that cover every gate”, Test Conference, 2002.
Proceedings. International, 2002.

12. J.J. Liou, L.C. Wang, K.T. Cheng, “On theoretical and

practical considerations of path selection for delay fault
testing”, Computer Aided Design, 2002. ICCAD 2002.

13. J.J. Liou, A. Krstic, L.C. Wang, K.T. Cheng “False-path-

aware statistical timing analysis and efficient path selection
for delay testing and timing validation”, Design Automation
Conference, 2002.

14. X. liu, M. S. Hsiao, S. Charravarty, P. J. Thadikaran, “Novel

ATPG Algorithms for Transition Faults”, Proceedings of the
IEEE European Test Workshop, May, 2002.

15. K. Heragu, J.H. Patel, V.D. Agrawal, “Fast Identification of

Untestable Delay Faults using Implications”, CAD 1997.

16. M. S. Hsiao, E. M. Rudnick, and J. H. Patel, “Application of

genetically-engineered finite-state-machine sequences to
sequential circuit ATPG”, IEEE Transactions on CAD of
Integrated Circuits and Systems, 1998.

17. E. M. Rudnick, J. H. Patel, G.S. Greenstein and T. M.

Niermann, “A Genetic Algorithm Framework for Test
Generation,” IEEE Transactions on CAD of Integrated
Circuits and Systems, 1997.

18. D.G. Saab, Y.G. Saab and J.A. Abraham, “CRIS: A test

cultivation program for sequential VLSI circuits”, CAD
1992.

19. M. S. Hsiao, "Maximizing impossibilities for Untestable

fault identification”, DATE, 2002.

