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Abstract: The paper presents a novel technique for 
generating effective vectors for delay defects. The test set 
achieves high path delay fault coverage to capture small-
distributed delay defects and high transition fault 
coverage to capture gross delay defects. Furthermore, 
non-robust paths for ATPG are filtered (selected) 
carefully so that there is a minimum overlap with the 
already tested robust paths. A relationship between path 
delay fault model and transition fault model has been 
observed which helps us reduce the number of non-robust 
paths considered for test generation. To generate tests for 
robust and non-robust paths, a deterministic ATPG 
engine is developed. Clustering of paths has been done in 
order to improve the test set quality. Implications were 
used to identify the untestable paths. Finally an 
incremental propagation based ATPG is used for 
transition faults. Results for ISCAS’85 and full-scan 
ISCAS’89 benchmark circuits show that the filtered non-
robust path set can be reduced to 40% smaller than the 
conventional path set without losing delay defect 
coverage. Clustering reduces vector size in average by 
about 40%. 
 
1. INTRODUCTION 
  Increasing performance requirements motivated testing 
for the correct temporal behavior, commonly known as 
delay testing [1]. Delay defects can be modeled in a 
number of different ways, among which the most common 
are the path delay fault (PDF) model [2] and the transition 
fault model [3,4]. Test patterns for transition faults and 
PDFs consist of a pair of vectors {V1, V2} where V1 is 
required to initialize the target node and V2 is required to 
launch the appropriate transition at the target node and 
propagate it to an observation point, such as a primary 
output (PO). In PDF, cumulative effect of gate delays 
along the path is considered whereas in the transition fault, 
every transition (both 1→ 0 and 0→1) models excessive 
delay on a single node in the circuit.  In addition, a 
transition fault can be modeled as 2 stuck-at faults, making 
test generation simpler. 
  The test that delivers a rising (falling) transition to a node 
and sensitizes a path from that node to an observation point 
will detect a slow-to-rise (slow-to-fall) transition fault at 
that node. That same test may detect a path delay fault 
associated with the particular route into and out of the node 
in question.  Conversely, a PDF test may also detect some 
transition faults.  Nevertheless, a complete transition test 
set may not detect all critical paths; likewise, a test set that 
exercises longest paths may not detect all transition faults.  

Because the transition fault model is for capturing gross 
defects, while the PDF model is for detecting small defects, 
in order to achieve high delay defect coverage we require 
both high path and transition fault coverage. 
   Since there can potentially be a large number of paths in 
a circuit, we need to have ways to classify them and reduce 
the effective number of paths to be tested. PDFs can be 
broadly classified in two ways [5]:  robust PDF and non-
robust (NR) PDF. A nine-value-based ATPG for both 
robust and NR tests is presented in [6]. DYNAMITE [7] 
and RESIST [8] give a more in depth analysis of PDFs and 
uses deterministic approaches for ATPG. FSIMGEO [9] is 
a simulation based ATPG engine for PDFs, but this misses 
the delay faults on the less critical paths. To overcome this, 
segment delay faults were considered and studied in [10]. 
In this the authors study the technique of covering delay 
defects on untestable critical paths by robustly testing their 
longest possible segments that are not covered by any of 
the testable critical path.  The disadvantage of this scheme 
is that there are a large number of untestable critical paths 
and generating NR tests for all can be futile. A different 
approach for the selection of critical paths has been 
presented in [11]. Here the authors try to generate a longest 
path passing through each gate. But since the longest path 
passing through a gate may actually be one of the shortest 
paths in the whole circuit, this technique does not 
guarantee a proper coverage of the critical paths if only 
these paths are considered. A statistical based approach is 
presented in [12-13] where critical paths are selected based 
on the statistical properties of the already detected paths.  
  Obtaining high PDF coverage may require testing of a 
large number of paths, many of which overlap with one 
another. To improve the delay test sets, in this paper we 
make an attempt to generate tests such that they not only 
have high robust path coverage for the critical paths, but 
the test set is also capable of detecting other delay fault 
models (such as transition faults) that were missed by the 
critical path analysis.  
  Since the number of paths can be very large for practical 
circuits, we try to generate tests for a filtered path set. The 
idea behind this filtered set is to reduce the number of NR 
paths to be considered for test generation without losing 
PDF coverage. Hence, instead of selecting NR paths based 
on their lengths, we discard all NR paths that significantly 
overlap with previously tested robust paths. This concept 
can be understood by considering Figure 1. It shows a 
circuit model with 2 paths originating from 2 PIs and 
ending at 2 different PO. Let path P1 (PI1-PO1) be longer 
than P2 (PI2-PO2) and let us assume that P1 is robustly 
testable whereas P2 is robustly untestable. The overlap of 
P1 and P2 is Lover. We know that since we can test P1 
robustly, the region of overlap is also tested robustly. If 
Lover is greater than some preset threshold, then the delay 



due to the non-overlapping portion of P2 alone will not 
likely make P2 faulty (if the defects on the non-overlapping 
segment are small distributed delay defects). Hence, the 
likely fault that can make P2 faulty is a large delay present 
in the non-overlapping section. By making sure that the test 
set covers the transition faults associated with these gates, 
we can discard many paths like P2, reducing the total 
number of paths needed to be considered for test 
generation.  Due to this observation, a high-quality delay 
test set should achieve a high Transition Fault Coverage 
(TFC) to cover those NR paths that the test strategy did not 
specifically target. 
 

 
Fig. 1. A circuit model with 2 paths 

 
  A general relationship between paths can be deduced 
from the Venn diagram of Figure 2. Out of the total 
possible P paths in the circuit, region R1 (right rectangle) 
represents the robust paths in the circuit, while Region R5 
(left rectangle) represents the robustly untestable paths. R6 
represents the untestable NR paths.  R6 is a subset of R5 
because untestable NR paths are also robustly untestable. 
Region R4 represents the conventional M longest paths 
considered for ATPG. Note that this set contains some 
robust and some non-robust paths. Nevertheless, not all 
paths from R4 need to be tested, since many of them 
overlap with already tested robust paths, as explained 
earlier. Using our proposed filtering technique, we choose 
paths more intelligently.  Let us suppose that the region R2 
contains the set of NR paths that do not overlap with the 
tested robust paths. Then, region R3 (overlapping between 
R2 and R4) contains paths which are both long and do not 
overlap with an already tested robust path. Thus, while 
selecting NR paths for test generation, we want to select 

paths from R3, rather than all of NR paths in R4.  If the test 
set can accommodate more patterns, we can choose 
additional paths from R2. Results show that there has been 

a reduction in the NR path set by as much as 40% for some 
circuits. 
  In the paper we also propose clustering of paths to reduce 
the test set size by considering multiple compatible paths 
together for test generation. Results show that clustering of 
paths reduces test set data by about 40%. Untestable paths 
are dropped in the initialization phase and reusable vector 
storage schemes [14] have been used to further reduce the 
test set size. 
  The rest of the paper is divided as follows. Section 2 gives 
the basic definitions and terminology used in the paper. 
Section 3 describes the delay testing algorithms along with 
the observation for NR path dropping. Optimization of 
vector sets using clustering is also described in Section 3. 
Section 4 presents the results for combinational and full-
scan ISCAS’85 and ISCAS’89 benchmark circuits. 
Conclusions are given in Section 5. 
 
 2. TERMINOLOGY 
  A scan based delay test [3, 4, 14], consists of two patterns 
<V1,V2>, applied on two successive clock pulses. The first 
pattern initializes the nodes along the path (and possibly 
also the off-path inputs) and the second pattern propagates 
the transition along that path to a PO. Since the patterns 
must be applied at the rated speed, at-speed testing is 
needed. For full scan circuits, both the vectors in the scan 
flip-flops must be ready for consecutive time frames to 
ensure at-speed testing. 
    A physical path P is an interconnection of gates from PI 
to PO. A rising (falling) path Pr (Pf) is defined as the path 
corresponding to a rising (falling) transition starting at the 
PI. The polarity of the transition for each gate on the path 
depends on the inversion parity along that path. Path 
Length is defined, as the number of gates in a given path P. 
Segment S is a contiguous section of a path P. A segment 
can start and end at any point in the given path P. 
   
2.1. DELAY FAULT MODELS 
  Given a combinational or a full scan circuit C, a delay 
defect may manifest as a lumped delay defect on a 
gate/signal or small-distributed delay over C due to process 
variations. The transition fault model is considered as a 
logical model and is a good candidate for modeling lumped 
delay defect. It considers a rising or a falling transition at 
the inputs and the outputs of logic gates. The vector pair 
<V1,V2> detects a transition fault, if it launches the 
transition at the fault site and V2 detects the corresponding 
stuck-at fault. 
  A vector pair <V1,V2> is said to be a non-robust path 
delay test for a path P, if it launches the transition at the 
beginning of P, and all off path inputs of P under V2 have a 
non-controlling value (NCV). 
   A vector pair <V1,V2> is said to be a robust path delay 
test for a path P if (a) it is a NR test for P and (b) whenever 
the on-path input of a gate G on P takes a NCV under V1, 
then all the side inputs of G should take NCV under V1 as 
well. 

Fig. 2. Relationship between robust and non-robust 
paths 
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Consider the circuit in Figure 3. The rising path P1= PI-1-
2-3-4-5-PO has a path length LP1 = 7. P1 is robustly 
testable as shown in the figure. Now consider another path 
P2 = PI-1-2-3-6-5-PO which also has LP2 = 7. To robustly 
test P2, the off-path input of gate 6 must be a steady one, 
which is not possible in this case. Hence P2 is robustly 
untestable.  
 
2.2. DELAY TEST SET SIZE 
  As mentioned earlier, a scan based delay test needs two 
vectors for testing a given transition. Hence, any given test 
set V having n test patterns can be represented as:  
V={(v11,v12),(v21,v22),……(vi1,vi2),……(vn1,vn2)}. 
 Vector Reusable Test Set (VRTS)[14] is a special form of 
vector storage in which a test set T having m elements can 
be represented as: 
T={(v11,v12),(v12,v22),……(v(i-1)2,vi2), …… (v(m-1)2,0vm2)}   
where m<n. Thus, instead of storing 2n vectors for test set 
V, we only need to store m vectors. Since this method 
reuses the vector space, it is called VRTS.  
 
3. DELAY TEST METHOD 
  Since a circuit can potentially have a large number of 
paths, we want to select a small number of paths for ATPG 
and still want to have a high quality test set. A robustly 
tested path detects small-distributed delays along the path, 
and hence NR path that overlap significantly with this path 
may become futile to test. By considering the transition 
fault model along with the PDF model, we can compute a 
measure for selecting NR paths for ATPG. The two fault 
models can be related to each other by the following 
observation. 
Observation 1: By making sure that a test set has high 
transition fault coverage, many of the NR paths that 
overlap largely with already tested robust paths need not be 
tested. 
  We will explain the observation with the following 
example: Using Figure 1, consider the case when a large 
portion of a NR path (e.g. P2) overlaps significantly with 
an already robustly tested path (e.g. P1). One of the 
following two scenarios can occur: 
 
1) The non-overlapping portion of P2 has a small delay 
(according to distributed delay model): Since LP1≥LP2, and 
P1 is already tested robustly, this small delay alone is not 
likely to make P2 faulty. Hence we don’t need to consider 
P2 separately for ATPG, similar to those less critical or 
shorter paths that we do not consider (region P-R1-R2-R4-
R6 of Figure 2). 
2) The non-overlapping portion of P2 has a large (lumped) 
delay: This large delay can always be tested by using the 

transition fault model at the nodes of the non-overlapping 
portion of P2. ٱ 
 
  Thus, in order to have high quality delay test, we need to 
have high robust path coverage, high NR path coverage 
and high transition fault coverage. To achieve this 
efficiently, we have designed a 3-phase ATPG. All 3 
phases are described in the following sub-sections. 
 
3.1. ROBUST TEST GENERATION PHASE 
  The first step towards the test generation for robust paths 
is to enumerate the robustly testable paths for which tests 
are to be generated. We use an implication-based technique 
similar to [15] for the removal of all the untestable robust 
paths. This implication-based technique can be best 
understood by a simple example. Consider the circuit of 
Figure 3. To robustly test the path Pr

 = PI-1-2-3-6-5-PO, 
there is a transition from a non-controlling (NCV) to a 
controlling value (CV) at the input of gate 6. Hence, the 
off-path inputs of gate 6 should have a steady NCV for 
both V1 and V2, which imply a constant ‘0’ at the output of 
gate 2. This is a conflict and hence Pr is robustly 
untestable. This implication-based analysis identifies a 
large number of untestable robust paths for most of the 
circuits. 
  After removing paths that are robustly untestable, we 
want to generate tests for the N longest paths. The 
algorithm used for doing this is as follows: 
 
robust_ATPG(){ 
  For all paths P not detected { 
    essential_values(P,val0,val1);  
    Generate vector Vi (values in val0 need to be satisfied) 
  //only need to do logic simulation 
   If Vi generated { 
    Generate vector Vi+1 (values in val1 needs to be 

satisfied)  //only need to do logic simulation 
      If Vi+1 generated { 
       Add Vi and Vi+1 to the test set T 
      Drop all path detected by vector pairs <Vi-1,Vi> and  

<Vi,Vi+1> } 
  }} 
 
The function essential_values() analyzes a given path P 
and finds the values needed by V1 and V2 on all the gates 
of P and stores them in vectors val0 and val1, respectively. 
It also finds the essential off-path values under V2. For 
example, in Figure 3 for path Pr

 = PI-1-2-3-4-5-PO values 
in val0 = gate1=1, gate2=1, gate3=1, gate4=1, gate5=1, and 
val1 = gate1=0, gate2=0, gate3=0, gate4=0, gate5=0. val1 
also contains nodes corresponding to side input of gate2 to 
be logic 1 and the side input of gate4 to be logic 1 as well. 
Since the function needs to satisfy the values in val0 and 
val1, only 3-valued logic simulation is needed. A vector 
pair is produced for P if Vi and Vi+1 satisfy all the values in 
val0 and val1 corresponding to P respectively. All other 
paths detected by <Vi-1,Vi> and <Vi,Vi+1> are then 
dropped. The final test set produced after considering all N 
paths is called TR. 
 

Fig. 3. A sample circuit 



3.2. NON-ROBUST TEST GENERATION PHASE 
  An implication-based approach similar to that used to 
enumerate robust paths is used to first drop all the paths 
that cannot be tested non-robustly. However, this 
implication based technique poses restrictions on the 
values required by V2 only. After dropping the identified 
untestable NR paths, we further remove additional NR 
paths that satisfy the following two conditions according to 
observation 1:  
 
1) The NR path PNR overlaps with an already detected 
robust path PR with an amount greater than a preset 
threshold ∆NR. The overlapping section should be 
contiguous. 
2) L(PR) ≥ L(PNR). 
 
After dropping paths based on above criteria, we can drop 
a large number of NR paths. But the number of paths 
dropped depends on the number of robust paths detected. 
Higher robust path coverage generally translates to more 
NR paths dropped.  We also drop additional paths that are 
incidentally detected by the robust test set TR generated in 
Section 3.1. 
  Once we have the set of filtered NR paths, we generate 
test for the longest M paths (if the number of paths is still 
large). The algorithm for NR path ATPG is similar to that 
of robust path ATPG used in Section 3.1, except that NR 
condition is enforced. Hence for V1, the ATPG needs to 
satisfy only the conditions at the PI. The final test set 
produced after the end of this function is called TR+NR. 
 
3.3. TRANSITION FAULT ATPG 
  The test set produced so far may not have high transition 
fault coverage (TFC) since we did not target some NR 
paths (by observation 1) that overlap with an already 
detected robust path. The dropped NR paths can still cause 
a delay fault if a large delay defect is present on the nodes 
of the path that can be captured by using the transition fault 
model.  
Genetic Algorithm (GA) is used for the transition fault 
ATPG. The advantages of GA over conventional 
deterministic approach are: (1) multiple transition faults 
can be easily targeted simultaneously, and (2) without 
backtracking, vectors can be produced in a reasonably 
shorter time. GA has been used before for stuck-at faults 
[16-18]. Calculation of fitness function through multiple 
fault simulation is a bottleneck in the efficiency of GA’s. 
We developed an ATPG called Incremental Propagation 
Based ATPG, which circumvents the problem of fault 
simulation required for the calculation of fitness function. 
The algorithm is divided into three phases. Instead of 
generating tests that will guarantee the detection of some 
faults, we generate tests incrementally.  
All the transition faults detected by the test set TR+NR are 
dropped initially and the TFC achieved by TR+NR is defined 
as TFCphase 0.The three phases are described as follows. 
 
Phase I: In this phase of the ATPG, we generate test 
patterns that will only launch the targeted transitions. We 
try to maximize the launch coverage L1 in this phase and 

add all the vectors produced to the test set. Hence at the 
end of the first phase we have a set T0={v1, v2, v3……vN }, 
where vectors v1 to vN are stored in the VRTS fashion. Now 
a Transition Fault Simulation is performed using this 
vector set and all the detected faults are dropped. Therefore 
now we have N vectors, which have launch coverage of L1 
and transition fault coverage of TFCphase I. For most of the 
circuits L1 is near to 100%. For every transition fault f that 
is launched, we keep track of the vector number in a 
vec_num database, which launched f. This information is 
later used in phase III. The importance of phase I come 
from the fact that a large number of transition faults are 
easy to detect and we want to drop all the easy faults as 
soon as possible so as to save execution time. Moreover the 
database vec_num produced in this phase helps reduce the 
time to regenerate V1 for faults that are hard to detect in the 
later phases. 
 
Phase II: In the second phase, we generate VRTS such 
that the first vector excites as many undetected faults F as 
possible and the corresponding next vector excites as many 
opposite of F as possible and also propagates them to k 
levels ahead from the fault site; where k is the iteration 
number within phase II. Note here that the second vector 
need not propagate the fault to a primary output. Hence 
after the end of first iteration within phase II, we have 
another test set T1={vN+1, vN+2, vN+3…vN+m}. Transition 
fault simulation is again performed on T1 and the detected 
faults are dropped. 
  After the end of k iterations (k in worst case can be equal 
to maximum number of levels in the circuit) we have k test 
sets. These can be appended together to get the test set T = 
{(T1, T2, T3,…, …, Tk)}.Thus the TFC of  phase II is : 
 
TFCphase II = ∑( TFC(Ti)) + Φ 
 
And Φ = TFC(VT1

α1, VT2
1 ) + TFC(VT2

α2 , VT3
1 ) + ..... + 

TFC (VT(k-1)
α(k-1) , VTk

1 )  
 
Where αi is the number of vector in test set Ti and the VTi

x 

represents vector number X of test set Ti. The term Φ 
accounts for the TFC for the vectors that are at the 
boundary of the two VRTS, Ti and Ti+1.  
 
Phase III: This phase targets the remaining hard-to-detect 
transition faults and is a fault dependent phase. Unlike the 
other two phases it adds a vector pair for each detected 
fault. In this phase every undetected transition fault is 
considered separately and a test is generated for it. Fitness 
of an individual is defined as the number of fault events 
produced. Once a vector pair <V1,V2> is generated for a 
transition fault f , we drop all the other undetected faults 
that might be detected by <V1,V2>. From the vec_num 
database generated in phase I, it is easy to find the vectors 
that launch the transition. We don’t have to waste effort in 
regenerating vector V1. Hence, if a transition fault F has a 
database entry in vec_num, then we only need to generate 
V2. The TFC at the end of this phase is given by TFCphase III. 
Hence, after the end of all three phases the final TFC is: 
     



Fig. 5. Clustering helps in NR path filtering

  TFC = TFCphase 0 + TFCphase I  + TFCphase II  + TFCphase III. 
And the final test set is called TR+NR+TF. 
 
3.4. CLUSTERING OF PATHS TO REDUCE TEST SET SIZE 
  It follows from Section 3.1 and 3.2 that tests are generated 
for each path separately and 2 vectors are added for each 
path detected. Although additional paths detected by an 
added vector pair are dropped, using an optimization called 
clustering, we can further reduce the vector space. All the 
paths are clustered based on their compatibility with each 
other. Then, instead of considering one path at a time, we 
consider a whole cluster at a time. Two paths are clustered 
if none of the values in val0 and val1 of both the paths 
contradict each other.  It is to be noted that 2 paths need not 
overlap each other for being compatible. In order to limit 
the compatible path space, we only combine a path Pi with 
Pj such that j ≤ i, where the initial ordering of paths can be 
arbitrary. In our case the initial ordering of paths was the 
same as the order in which paths are generated. Moreover, 
cluster size was limited to 50 for each path due to memory 
limitations. 
  Once clustering is done based on path compatibility, we 
generate test for a whole group. The algorithm targets the 
first path in the cluster. Once it is detected, we try to fill the 
remaining don’t care values of the produced vector such 
that another paths in the cluster also gets detected. It is a 
form of compaction with the exception that vectors are 
modified dynamically based on the clustered paths. The 
concept of clustering can be best understood by the 
following example. 

Fig. 4. A Sample Circuit 
 

Consider the circuit of Figure 4. Let paths P1, P2, P3 and P4 
be defined as: P1

r=1-7-9-14; P2
f=4-6-11-13-17-19; P3

f=2-8-
9-12-15-16-18; P4

f=2-8-10-12-15-16-18. 
Without clustering, we will require 8 vectors to detect all 
the 4 paths. But with clustering the compatibility relations 
(С) are as follows: 
P1С (P1, P3); P2С (P2, P3, P4); P3С (P1, P2, P3); P4С (P2, P4). 
Hence the cluster of paths will be as follows: 
Group 1: P1, P3; Group 2: P2, P3; Group 3: P3; Group 4: 
P4; 
Note that group 2 does not contain P4 since P3 is not 
compatible with P4. Suppose a test <V1, V2> is generated 
for group 1, which detected both path P1 and P3. Hence the 
final test set will be reduced to only 6 vectors. Thus 
clustering can help reduce number of vectors. 
Since each vector pair using clustering detects more paths, 
the filtered path set may be further reduced. Consider a 
vector pair detecting 2 robust paths P1 and P2 that share at-
least a small common segment and a NR path overlaps 

them as shown in Figure 5. Let segment SL1 of length L1 be 
the overlap of NR path with P1 and segment SL2 with length 
L2 be the overlap of NR path with P2. Further assume that 
L1 and L2 are both less than ∆NR but L1+L2 > ∆NR.  If the 
segments SL1 and SL2 are contiguous, we can drop the NR 
path and further enhance the definition of observation 1 
made in Section 3. Thus clustering not only reduced the 
test set volume, but can also improve the process of 
filtering NR paths. 

  
4. RESULTS 
This section presents the results for combinational and full 
scan sequential ISCAS’85 and ISCAS’89 benchmark 
circuits. The programs were written using C++ and 
experiments were conducted on a 1.7GHz, Pentium 4, 
running the Linux operating system. For the calculation of 
static implications, an implication engine presented in [19] 
was used. Table 1 presents the analysis on robust and NR 
paths. The second column shows the total number of paths 
present in each circuit. The paths include both rising and 
falling paths. Since the implication engine is not complete, 
we cannot conclude the detectability about the paths that 
were not detected as untestable. Column 3 gives the 
untestable NR paths (PUNR) and column 4 reports the 
number of untestable robust paths (PUR).   

 
Table 1. Untestable Robust and Non-robust paths 

Ckt # of paths P Untestable 
NRP(PUNR) 

Untestable 
RP(PUR) 

C880 17284 163 326 
C2670 1359920 1190899 1322192 
C5315 2682610 2026131 2205279 
S641 3488 1079 1280 
S1196 6196 1289 1976 
S1238 7118 2725 2793 
S1423 89452 41102 52923 
S1488 1924 0 0 
S5378 27084 3645 3645 
S9234 489708 419108 446665 
S38584 2161446 1646624 1926898 
S35932 394282 334713 355494 
S38417 2783158 1469251 1795854 

 



Table 2. ATPG results for robust paths 
Without Clustering Clustering 

Circuit 
# 

Paths 
(N) #Det #Vec TC(s) #Det #Vec TS(s) 

C880 5000 4728* 5756 5.83 4728* 3190 29.27 
C1355 5000 337 674 101.1 337 674 785.1 
C2670 5000 3742 3744 73.99 3742 3484 242.81 
C5315 5000 14* 24 10.85 14* 14 77.37 
C7552 5000 34* 68 15.67 34* 68 166.67 
S641 2208 2096* 1328 1.09 2096* 818 5.67 

S1196 4220 3710* 2404 2.02 3710* 1766 11.26 
S1423 5000 4822* 3934 10.64 4822* 3136 57.01 
S1238 4325 3665* 2392 2.33 3665* 1832 10.1 
S5378 5000 4048* 4186 11.24 4048* 2560 54.44 
S9234 5000 3085 4458 337.36 3085 2394 5416.7 
S35932 5000 4851* 2512 39.6 4851* 1914 130.44 
S38417 5000 3638 5266 20895.23 3638 4536 66685.3

          * Rest all of the paths were proven to be untestable by the ATPG.
 

Table 3a. ATPG results for NR paths with and without filtering of NR paths 
Overlap=100% (No Filtering) Overlap=90% 

Circuit #NR 
paths 
(PNR) 

#Det/MNR # Vec 
(VNR) TNR(s) 

# NR Fil. 
Paths 
(PNRF)  

#Det/MNRF # Vec 
(VNRF) TNRF(s) 

C880 163 129/129 100 0.85 34 34/34 28 0.28 
C1355 5504 2752/4672 1896 23.3 5504 2752/4672 1896 23.3 
C2670 131293 44760/63448 3452 12675.1 131293 44760/63448 3452 12675.1 
C5315 179148 15101/39447 4500 846.95 179148 15101/39447 4500 846.95 
C7552 90442 3983/11030 3644 187.9 90442 3983/11030 3644 187.9 
S641 201 11/11 0 0.09 176 6/6 0 0.08 

S1196 147 6/12 0 0.14 146 6/12 0 0.14 
S1423 11821 939/939 512 9.22 9386 392/392 114 4.06 
S9234 27557 590/6736 22 6909.16 27557 590/6736 22 6909.16 
S5378 0 0 0 0.0 0 0 0 0.0 
S35932 20781 11888/12320 0 43.32 20781 11888/12320 0 43.31 

 
Table 3b. ATPG results for NR paths with and without filtering of NR paths 

Overlap=80% Overlap=70% 

Circuit # NR Fil. 
Paths 
(PNRF)  

#Det/MNRF # Vec 
VNRF TNRF (s) 

# NR Fil. 
Paths 
(PNRF)  

#Det/MNRF # Vec 
(VNRF) TNRF(s) 

C880 34 34/34 28 0.28 34 34/34 28 0.28 
C1355 5504 2752/4672 1896 23.3 5504 2752/4672 1896 23.3 
C2670 131247 44760/63448 3452 12675.1 126740 40792/59468 3426 11635.1 
C5315 179140 15095/39439 4500 962.11 178986 15033/39285 4482 839.72 
C7552 90442 3983/11030 3644 187.9 90379 3956/10967 3684 185.86 
S641 18 1 / 2 0 0.07 0 0 0 0.0 

S1196 130 3/9 0 0.14 92 0/1 0 0.14 
S1423 8544 286/286 90 3.01 7107 1175/1445 750 22.75 
S9234 27501 534/6680 22 6445.80 27286 350/6496 22 6869.85 
S5378 0 0 0 0.0 0 0 0 0.0 
S35932 17693 8944/9232 0 33.82 14763 6158/6302 0 28.88 

Since untestable NR paths ⊆ untestable robust paths, the 
number of robust paths (NR) needed to be considered for 
test generation is P-PUR and number of paths considered for 
NR path ATPG is PUR–PUNR. The results of Table 1 suggest 

that there are a large number of paths that cannot be tested 
robustly or non-robustly.  
  After filtering out untestable paths, we generate tests for 
longest N robust paths. Table 2 reports the results for 
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robust ATPG. Column 2 of Table 2 gives N for various 
circuits. The upper limit on N was chosen to be 5000. 
Fewer robust paths are chosen if there were not 5000 
robust paths in the circuit (e.g. S1196). Next, we report the 
results of the ATPG without and with clustering, 
respectively.  The effect of clustering can be seen by 
comparing the number of detected paths and the number of 
vectors generated. For all cases, the number of vectors 
generated using clustering is less than the number of 
vectors generated without clustering, without any loss in 
the path coverage. This is because a group of paths are 
considered together for ATPG rather than targeting 
individual paths. Figure 6 shows the percentage decrease in 
the number of vectors because of clustering. The average 
reduction of vector size is about 40%. Execution times for 
big circuits are about 4-5 times more with clustering but 
are still under limits.  The test set produced after robust 
path ATPG is called VRD. 

  Table 3a and 3b presents the ATPG result for NR paths. 
First, we filter out the NR paths that overlap with the tested 
robust paths.  Then, we select all paths that are at least 85% 
longer than the longest path in the filtered set. ∆NR (overlap 
threshold required to drop the path) was kept to be a path 
dependent quantity. Clustering was again used for this 
ATPG. Table 3 (a-b) shows results for the NR paths with 
and without filtering with varying values of ∆NR.  
Specifically, we report results for ∆NR of 100%, 90%, 80%, 
and 70%. The second column under NR path ATPG gives 
the number of NR paths detected/number of NR paths 
considered of ATPG (MNR). Note here that ∆NR = 100% 
means that no filtering has been done. 
  Paths in the set MNR are covered under region 4 with 
reference to Figure 2 and also MNR ⊆ PNR. In our 
experiments we choose PNR (# NR Paths) such that PNR ∩ 
NR = Ф. For most of the circuits the coverage is high at the 
cost of the addition of few extra vectors (VNR) to the 
already present vector set VRD.  
 The column PNRF under ‘NR filtered path ATPG’ 
represents the paths after filtering with varying values of 
∆NR. As ∆NR decreases from 90% to 70%, the number of 
paths (MNRF) goes on decreasing for almost all the circuits. 
This also results in the reduction of the number of vectors. 

Hence we can infer that filtering at a correct threshold not 
only decreases the number of vectors but also increases the 
delay quality of the test set. Using a filtered set of paths 
enables us to detect a better path set, which is small and 
hence easy to detect. We can see that for some big circuits 
the reduction in path size (PNR-PNRF) is about 40%. Set 
MNRF ⊆ PNRF and is essentially region 3 of Figure 2.  
  The increase in the number of paths when the threshold is 
reduced to 70% in circuit S1423 and C7552 can be 
explained by the definition of MNRF. Since after filtering, 
the longest path remaining had a small length, set MNRF for 
∆NR = 70% is greater than set MNRF for ∆NR = 80%. 
  The percentage decrease in the number of filtered paths 
produced with (∆NR=70%) and without filtering 
(∆NR=100%) is plotted in Figure 7 for various circuits. For 
almost all the circuits there has been a reduction in the 
number of paths required for testing to achieve high delay 
coverage. We can also see that the number of vectors 
required are more with ∆NR=100% (no filtering) than 
∆NR=70% in almost all the cases and the execution times 
are always less with the help of filtering. This proves that 
the concept of filtering helps us reduce number of vectors 
with an increase in delay coverage. 

  Table 4 presents the results for the transition fault 
coverage achieved. The second column presents the TFC 
for the vector set generated so far (VRD+VNRF=70%).  We 
still need to perform transition fault ATPG for some 
circuits to account for the faults that VRD+VNRF=70% did not 
detect. For most of the circuits, the additional number of 
vectors (VTF) added to the previous test set (VRD+VNRF) are 
very few since a lot of transition faults are detected while 
generating tests for the robust paths. For cases such as 
s35932, we don’t need to add any additional vector. The 
incremental propagation based ATPG produces a high TFC 
for almost all the circuits in a reasonable amount of time. 
The last column presents the total number of vectors and 
total time taken to generate the whole vector set. The time 
is the sum of TD + TNRF + TTF and the total vectors 
produced is the sum of VRD+ VNRF + VTF.  These final test 
sets achieve high robust coverage for the 5000 longest 
robust paths, high non-robust coverage for the filtered NR 
paths that do not significantly overlap with tested robust 
paths, and high transition coverage. 



Table 4. TFC and the Total Test Set Size 
Transition Fault ATPG Final Test set  

Circuit 

TFC 
(%)  

VRD+
VNRF 

TFC 
(%) 

#Vec 
(VTF) TTF(s) #Vec 

(V‡)  T (s) †  

C880 98.69 100.0 22 4.16 3240 33.71 
C1355 97.14 99.76 160 22.88 2730 831.28 
C2670 82.9 87.83 296 317.0 7206 12194.9
C5315 99.1 99.54 22 45.79 4518 962.88 
C7552 93.08 96.14 1069 1200.0 4821 1552.53 
S641 100.0 100.0 0 0.0 818 5.67 

S1196 99.84 100.0 9 1.64 1775 13.04 
S1238 96.77 97.26 95 15.48 3231 72.49 
S1423 98.2 99.2 122 29.1 2704 61.95 
S9234 71.14 90.89 2705 3978.8 5122 10085.3 
S5378 93.4 98.23 434 196.1 2994 250.54 
S35932 90.5 90.5 0 0.0 1914 159.32 

T(s) † = TRD + TNRF + TTF; V‡ = VRD + VNRF + VTF. 
 
5. CONCLUSION 
  A high quality Delay Fault ATPG has been presented. 
Robust paths, non-robust paths and transition faults were 
considered for ATPG. Since the number of paths in circuits 
can be huge, measures are taken to select specific paths for 
ATPG. Selecting non-robust paths based on their lengths 
can be non-optimal and hence we drop non-robust paths 
that significantly overlap with an already-tested robust 
path, and the results show that the final test set is rich in all 
three aspect of delay testing. In other words, the obtained 
test sets capture both gross and distributed delay defects in 
the circuits. For transition fault ATPG, a special 
incremental propagation algorithm is proposed to reduce 
the vector space and generate a high TFC test vector. 
Clustering of paths has been shown to improve the fault 
coverage and also reduce the number of vectors by 40%. 
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