
Techniques to Reduce Data Volume and Application Time for Transition Test

Xiao Liu, Michael Hsiao , Sreejit Chakravarty* and Paul J Thadikaran*

The Bradley Dept. of Electrical and Computer Engineering, Virginia Tech.; and * Intel Corporationi

ABSTRACT
1

Scan based transition tests are added to improve the
detection of speed failures using scan tests. Empirical
data suggests that both data volume and application
time, for transition test, will increase dramatically.
Techniques to address the above problem, for a class
of transition tests called “enhanced transition tests”, are
proposed.

The first technique, which combines the ATE repeat
capability and the notion of transition test chains,
reduces test data volume by 46.5%, when compared
with transition tests computed by a commercial
transition test ATPG tool. The test application time
could increase or decrease. To address the test time
issue Exchange Scan, a new DFT technique, is
proposed. Exchange scan reduces both data volume
and application time by 46.5%. These techniques rely
on the use of hold scan cells and highlights the
effectiveness of hold-scan design to address test time
and test data volume issues.

1. INTRODUCTION
Higher clock rate, shrinking geometries, increasing
metal density, etc. is resulting in defects that cause
speed failures. The stuck-at fault model [6] does
not model speed related failures very well.
Researchers have proposed a variety of fault
models for speed failures, viz.: transition fault[7] ,
path delay fault[8] and segment delay fault[9] . Of
these, transition fault is the most practical and
commercial tools are available for computing such
tests. Scan based transition tests are added to the
scan test suite to enhance the capability of scan
based tests to detect speed failures. Work on
generating scan based transition tests to improve
the detection of speed failures in microprocessors
[17] [18] [19] [20] [21] as well as ASICS[16] have
been reported and/or proposed.
A transition fault at node X assumes a large delay
at X such that the transition at X will not reach the
latch or primary output within the clock period. In
the transition fault model, at each line in the circuit
two faults are possible: slow-to-rise and slow-to-fall.
Test pattern for a transition fault consists of a pair

1 Research of the first two authors was funded by a grant
from Intel Corporation

of vectors {V1, V2} where: V1 (initial vector) is
required to set the target node to an initial value
and V2 (final vector) is required to launch the
appropriate transition at the target node and also
propagate the fault effect to a primary output [7]
[10] [12] .
Transition tests can be applied in three different
ways: Broadside[11] , Skewed-Load[12] and
Enhanced-Scan[13] . In broadside, also called
functional justification, a vector is scanned in and
the functional clock pulsed to create the transition
and subsequently capture the response. For each
pattern one vector is stored in tester scan memory.
For skewed-load transition testing, an N bit vector
is loaded by shifting in the first N-1 bits, where N is
the scan chain length. The last shift clock is used to
launch the transition. This is followed by a quick
capture. One vector is stored per transition pattern
in tester scan memory. In enhanced-scan transition
testing two vectors (V1, V2) are stored in the tester
scan memory. First V1 is loaded into the scan chain
and applied to the circuit under test (CUT) to
initialize it. Next V2 is scanned in, followed by
applying it to the CUT and capturing the response
of the CUT. During loading of V2 it is assumed that
the initialization due to V1 is not destroyed.
Therefore, enhanced-scan transition testing
assumes hold-scan design [13] .

Among the three kinds of transition tests, broadside
suffers from poor fault coverage [11] . Since there is no
dependency between the two vectors in enhanced
scans it, in general, gives better coverage than
skewed-load transition test. Skewed-load transition
tests also lead to larger test data volume. Compared to
stuck-at tests, the increase in the number of vectors
required for enhanced scan to get complete coverage
is about 4X (Table 1). This data, collected using a
commercial ATPG tool, shows the number of stuck-at
vectors and the number of enhanced scan transition
patterns. Each transition pattern consists of two
vectors. On the other hand, data volume for skewed-
load transition test for an ASIC shows an increase of
5.9X[16] . A drawback of enhanced-scan testing is that
it requires hold-scan scan-cells. However, in
microprocessors and other high performance circuits
that use custom design, the circuit is not fully decoded.
Hold scan cells are used to prevent contention during
scan shift to prevent burnout. Furthermore, if hold-scan

cells are used, failing parts in which only the scan logic
failed can often be retrieved; thus addressing, to some
extent, the yield loss associated with scan DFT. This
paper considers only enhanced-scan transition tests.

No published work exists to address the explosion in
data and application time for transition tests. We
propose novel techniques to reduce the transition test
data volume and test application time. Our optimization
techniques consider optimization across test patterns
for transition tests. The first technique, described in
Section 3, uses the ATE repeat option and requires the
use of transition test chains, rather than transition test
patterns. We describe the notion of transition test
chains and present a novel algorithm for computing
such chains. Results show an average data volume
reduction of 46.5%, when compared with the
conventional enhanced transition test data volume
computed by COM, a commercial ATPG tool.

The above technique does not necessarily decrease
test application time. To reduce test application time a
new DFT technique called exchange-scan, described
in Section 4, is proposed. Combining exchange scan
with transition test chains reduces both test application
time and test data volume by 46.5%, when compared
with a conventional transition test set computed by
COM.

A number of ideas on reducing test data volume and
test application time for single cycle scan-tests have
been presented in the literature[2] [4] [5] [3] [23] [22] .
These work assume that between 5-10% of the bits are
fully specified. Unspecified bits are filled to detect the
easy to detect faults. Different codes to compress the
information in the tester and decompressing them on
chip [2] [5] [23] or using partitioning and applying
similar patterns to the different partitions [3] [22] have
been proposed. The techniques proposed here
complements the work on compressing individual
vectors. The technique of Section 3 can be used with
all the stuck-at test compression technique described in
the literature, like [2] [4] [22] [23] [3] [5] , except for the
technique in [2] that uses the ATE repeat option to fill
unspecified bits. The technique in Section 4 does not
require the use of ATE repeat and can be used in
conjunction with all published techniques for
compressing stuck-at vectors. It is unique in that it
decreases test application time by reducing the number
of scan loads. Section 5 presents a summary of all the
experimental results. Data shows that the proposed
technique improves both test data volume and test
application time by 46.5% over COM, a commercial
transition ATPG tool. Finally, Section 6 summarizes the
paper.

2. ATE MODEL

Figure 1 is an abstraction of the tester model we use.
ATE storage consists of scan and control memory.
Scan memory is divided into several channels. Each
channel consists of three bits. For each clock cycle of
the scan shift operation, the scan memory contains the
bit to be scanned in, the expected response bit from the
circuit under test (CUT) and an indication of whether
this bit of the response is to be masked or not. Figure
2(a) shows the data stored for a single scan channel for
the test set {V1, V2, V3, V4, V5, V6, V7, V8, V9, V10}, with
Rj being the expected response for Vj. The control
memory controls the shift and the comparison
operation. The scan memory depth required is (N+1)*S
bits, for a test set of size N and scan length S.

The enhanced scan transition test set of Table 2
consists of 6 patterns. Each pattern consists of a pair of
vectors and the expected response to the final vector.
The first pattern in our example consists of the pair (V1,
V2) and the response R2 to V2. Storage of the test
data in the scan memory is shown in Figure 2(b).
Storage depth required is N*2*S + N*S bits. The control
sequence for this test set shown in Table 3 is very
repetitive and stored in the tester control memory. Row
1 states that V1 is scanned in and applied to the CUT.
Row 2 states that V2 is scanned in, applied to the CUT
and the response R2 captured. Row 3 states that the
first vector of the next vector pair, i.e. V2, is scanned in
while the response R2 of the previous test pattern is
scanned out and compared with the expected
response. Once the scan operation is complete the
new vector is applied to the CUT. The rest of the entries
can be similarly interpreted.

3. ATE REPEAT AND TRANSITION TEST CHAINS

There is considerable redundancy in the information
stored in the tester. In Figure 2(b), V2, V3 are used
several times in the test sequence. Ideally, one copy of
the information should suffice. However, storing one
copy of a vector and reusing it in any random order
requires the ATE to index into random locations in the
scan memory, which is currently not available. Limited
reuse of the information stored however is possible. In
Figure 2(b), two copies of V2 are stored in consecutive
locations in the scan memory. It is possible to store just
one copy of V2 and scan in V2 as often as possible
during consecutive scan cycles. Similarly, we can
replace two copies of V3 in locations 4, 5, from the left
of the scan memory in Figure 2(b), with just one copy of
V3. Further reduction of the number of copies of V3 is
not possible. Thus, we store the sequence < V1, V2*,
V3*, V4, V3, V5, V1, V3> and repeatedly scan in vectors
marked *. Information about vectors that needs to be
scanned multiple times is stored in control memory.
Thus, 8 instead of 10 vectors need to be stored.

In the above example, the scan storage requirement
was reduced at a price. Since vectors that are scanned
in repeatedly do not form a regular pattern the control
memory requirement increases drastically. To avoid
such an increase in control memory we impose a
restriction that, except for the first and last vector stored
in the scan memory, every vector is scanned in exactly
twice. In Figure 2[c], the sequence < V1, V2, V3, V4, V1,
V3, V5> is stored. A vector, for example V3, can be
stored multiple times. Assume that all but the first and
last vectors are scanned in twice. The set of transition
test patterns applied is {(V1, V2,), (V2, V3), (V3, V4), (V4,
V1), (V1, V3,), (V3, V5)}. This set includes all test patterns
of Figure 2(a) as well as (V4, V1). Thus, by storing 7,
instead of 10, vectors all transition tests can be applied.
For this example, not only is control memory
requirement lower but the number of vectors stored
was also reduced. Sequences in which all but the first
and last vectors are scanned in twice are defined to be
transition test chains.

Computing transition test chain is different from
computing a set of transition test patterns as is
conventionally done. A novel ATPG algorithm, called
weighted transition graph algorithm, to compute
such chains is discussed next.

WEIGHTED TRANSITION GRAPH ALGORITHM

The algorithm constructs transition test chains from a
given stuck-at test set. Instead of computing a set of
vector-pairs and chaining them together, as suggested
in the above example, the problem is mapped into a
graph traversal problem. The algorithm uses weighted
transition-pattern graph, a weighted directed graph. It
contains a node for each vector in the stuck-at test set.
A directed edge from node Vi to Vj denotes the
transition test pattern (Vi, Vj) and its weight indicates the
number of transition faults detected by (Vi, Vj). The
graph construction procedure is discussed next.
Assume the stuck-at test set T={T1…TN} is given.

1. Perform transition fault simulation using the stuck-
at test set implied transition test set {(T1, T2), (T2,
T3)… (TN-1, TN)} to compute undet, the set of
undetected transition faults.

2. Deduce the subset U of stuck-at faults implied by
undet as follows. If X slow-to-rise or slow-to-fall
fault∈ undet, then both X stuck-at-0 and stuck-at-1
are in U.

3. Perform stuck-at fault simulation, without fault
dropping, using the stuck-at test set T on the stuck-
at faults in U. For each stuck-at fault f in U, record
the vectors in T that excite f and the vectors that
detect f. Also, for each vector, the faults excited
and detected by it are recorded.

4. The weighted directed graph contains a node
corresponding to each stuck-at tests in T. The
directed edge, from Vi to Vj, is inserted if the
corresponding test pattern (Ti, Tj) detects at least
one transition fault in undet. The weight of (Ti,Tj) is
the number of transition faults in undet detected by
(Ti,Tj). These are deduced from the dictionaries
computed in 3.

As an example, consider a circuit with 5 gates (10
stuck-at faults) and a stuck-at test set consisting of 4
vectors V1, V2, V3, and V4. The excitation and
detection dictionary obtained by simulation without fault
dropping are as shown in Table 5. Assuming the test
set order to be [V1, V2, V3, V4], only 3 transition faults
(slow-to-fall at c, e and slow-to-rise at c) are detected.
Table 5 implies: (V1, V3) detects a slow-to-fall; (V3, V1)
detects a slow-to-rise; (V1, V4) detects d slow-to-fall;
(V4, V2) detects d slow-to-rise; (V4, V1) detects a slow-
to-rise, b slow-to-fall; and (V2, V4) detects b slow-to-
rise, e slow-to-rise and d slow-to-fall. This results in the
transition-pattern graph of Figure 6(a).

Theorem 1: Faults detected by pattern (Vi, Vj) and
faults detected by pattern (Vj, Vk) are mutually
exclusive.

Proof: We prove this by contradiction. Without loss of
generality, consider fault f slow-to-fall is detected by (Vi,
Vj). Thus, Vi excites f s-a-0 (sets f to 1) and Vj detects f
s-a-1. Assume (Vj,Vk) also detects f slow-to-fall. Then,
Vj must set line f to 1, which is a contradiction.

An Euler trail in the transition-pattern graph traverses all
edges in the graph exactly once. It is tempting to think
that converting the graph to a Eulerian graph, by
inserting the minimum number of edges, and
computing an Euler trail would give us the minimum
test. This leads to a sub-optimal solution. Traversing
edge (Vi,Vj) is equivalent to selecting test (Vi,Vj). Once
edge (Vi,Vj) is traversed, i.e test (Vi,Vj) is selected, it
detects a number of transition faults. This alters the
weights on other edges and removes some of the
edges. Per Theorem 1 edges whose weights do not
change are those starting from Vj. To improve the
solution, edge weights are updated after traversing an
edge. A preliminary version of the algorithm is outlined
in Figure 4 where P is the transition test chain
computed by the algorithm from the given stuck-at test
set T. For the example in Figure 6(a) the updated
graph, after traversing the heaviest-weight test chain
(V2, V4, V3), is shown in Figure 6(b). Note that in
addition to removing (V2, V4) and (V4, V3) edge (V1,
V4) is also removed because the selected chain
detects d slow-to-fall. All 7 undetected faults in Table 5
are detected with the test chain {V2, V4, V1, V3, V4,
V2}.

Several optimizations were applied to the generic
version of the algorithm to improve the results. Instead
of considering one edge at a time we use Theorem 1 to
inspect edges of length 3. This reduces the amount of
simulation required and a transition test chain is
generated by incrementally concatenating the vector-
chains of length 3. While this solution is better than
simply concatenating vector pairs for each of the
remaining undetected transition faults, it still may not be
optimal. When chain length increases beyond 3, the
difference between the actual number of transition
faults detected by the chain and the sum of edge
weights in the chain determines whether it is worthwhile
to use longer chains. Using longer chains reduces the
number of graph updates (hence the runtime of the
algorithm), but increases the size of the final solution.
Experimental results in Section 5 suggest that chain
lengths of 3, 4 give the best results.

Expanding on the essential test definition for stuck-at
fault from [1] , we define an essential vector for
transition faults to be any test vector that
excites/detects at least one transition fault that is not
excited/detected by any other test vector in the test set.
All essential vectors must occur in the transition test
chain at least once. We include essential vectors early
in the chaining process. The transition test chain
generation process is divided into two phases by
constructing two weighted transition pattern graphs.

A. Identify all essential vectors, generate the
transition-pattern graph using only essential
vectors and construct the test chains only with the
essential vectors in the graph. Append that to the
initial transition test chain P in the generic version
of the weighted transition graph algorithm.

B. Reduce the number of faults by dropping faults
detected in Step A. Generate the transition-pattern
graph using the remaining faults and extend the
partial transition test chain from Step A as
described in Step 3 of the generic weighted
transition graph algorithm.

The number of edges in the second step of the
modified algorithm is significantly reduced, because
most of the edges incident on the essential vectors
have been traversed in the previous step and thus
removed.

During the test pattern generation procedure, some
faults detected by the earlier test vectors may be
detected by test patterns generated later. Therefore,
vectors added early in our transition test set might
become redundant. To identify such redundant patterns
we do reverse-order pair-wise compaction. After {(U1,
U2, U3), (U4, U5, U6), … , (Un-2, Un-1, Un)} are generated,
they are appended to the original stuck-at test set in

that order. The test patterns (Un-1, Un), (Un-2, Un-1),…
(U1, U2) are simulated in the reverse order in which it
was generated. If neither (Ui-1, Ui), (Ui, Ui+1) detects any
additional fault then Ui is redundant and eliminated.
Note that eliminating gives rise to new transition test
pairs unlike s@ tests. We therefore follow this by doing
a forward-order pair-wise compaction step to further
reduce the size of the test chain length.

Additional enhancements using ideas for compacting
patterns for transition faults can be used. They include
a dynamic compaction technique [15] and a static
compaction technique [14] .

4. EXCHANGE SCAN

In Section 3 we saw that using transition test chains
and ATE repeat can reduce data storage. Data
presented in Section 5 will show the reduction to be
about 46.5%. However, test application time can either
decrease or increase drastically. To reduce test
application time, while still retaining the improvement in
data storage, a new DFT technique is proposed. To
reduce the number of scan loads it does not use the
ATE repeat option. A vector can be scanned in once,
and using very little overhead, reused. Reducing scan
in operations reduces test application time. The net
result is a reduction in both the data storage
requirement and the test application time.

The block diagram of a hold-scan system is shown in
Figure 5. The scan cells, which consist of two parts:
System Flop and Shadow MSFF, are chained together
to form two related registers: SYSTEM REGISTER and
SHADOW REGISTER. During normal operation, the
SYSTEM REGISTER is in use. For scan testing
operations SCAN_SHIFT, SCAN_LOAD and
SCAN_STORE are supported. Assume the scan cell
implementation of Figure 3(a). For SCAN_SHIFT, the
A_CLK and B_CLK are pulsed so that data passes
from SI to SOUT. For SCAN_STORE, the STORE
signal is pulsed to transfer the data from SOUT to Q.
The content of SHADOW REGISTER is transferred to
SYSTEM REGISTER. In SCAN_LOAD the content of
SYSTEM REGISTER is transferred to SHADOW
REGISTER. Pulsing LOAD transfers data from Q to
AOUT. Pulsing BCLK transfers data from AL to BL..

The new operation SCAN_EXCHANGE, exchanges
contents of the SHADOW and SYSTEM registers,
without destroying either of them. Pulsing LOAD
transfers the contents of SL to AL. Pulsing STORE
transfers the contents of BL to SL. Pulsing B_CLK
transfers the content of AL to BL. The corresponding
timing diagram is shown in Figure 3(b). No additional
hardware or signal is needed to support the exchange
operation. It may require the global scan controller to

be modified slightly to realize the exchange operation.
The operation requires three clock cycles.

SCAN_EXCHANGE, for the transition test chain < V1,
V2, V3, V4 >, is used as follows. Test-pairs applied are:
{(V1, V2), (V2, V3), (V3, V4)}. The expected response
on application of V2 is R2, V3 is R3 and V4 is R4. The
sequence of operations, without exchange-scan, is
shown in the first column of Figure 7. Capture R2
implies that the response of the CUT on application of
V2 is latched on to the SYSTEM REGISTER. Scan In
V2, Scan Out R2 implies SCAN_SHIFT wherein V2 is
scanned in and the response of the CUT, from the
previous pattern, is scanned out and compared to R2.

The second column of Figure 7 shows the sequence of
operations using SCAN_EXCHANGE. Once V2 is
loaded into the SHADOW REGISTER, the subsequent
store and capture operations do not destroy the
contents of the SHADOW REGISTER. So, the
SCAN_LOAD operation that destroys the contents of
the SHADOW REGISTER is replaced by the
SCAN_EXCHANGE operation. It exchanges the
content of SHADOW REGISTER and SYSTEM
REGISTER. Thus the captured response is transferred
to SHADOW REGISTER and V2 is applied to the CUT
as the initial vector for the next test pair. We can
therefore skip the sequence of operations that scans
V2 and stores it. In addition, the SCAN_SHIFT of the
response from V2, i.e. R2, can now be merged with the
SCAN_SHIFT of the final vector of the next pattern V3.
The net effect of this is that we have replaced an entire
scan operation with a 3-cycle SCAN_EXCHANGE
operation. Considering that the SCAN_SHIFT
operation may be 1000 or more clock cycles this
overhead of the SCAN_EXCHANGE operation is
negligible and will be neglected from our calculations.
Note that transition test chains, but not ATE repeat
capability of the testers, is required to realize the gains
of the exchange scan operation. If the ATE Repeat
capability is available, each of the vectors that are
stored can be compressed, as discussed in [2] , and
the benefits of transition test chains can be realized
using exchange scan. Data presented in Section 5
show that both test data volume and test application
time decreases by 46.5%, compared to COM.

5. EXPERIMENTAL RESULTS

The weighted transition graph algorithm, with all the
optimizations described above, was implemented in C.
Experimental data are presented for ISCAS85 and full-
scan versions of ISCAS89 benchmarks, on a 1.7Ghz
Pentium 4 with 512 MB of memory, running the Linux
Operating System.

In Table 6 results on fullscan version of ISCAS89
circuits, with different chain lengths, are presented. For

each benchmark, the ideal (ID), given by the sum of the
edge weights, and actual (AC) faults detected by the
chains are shown. The difference between the ideal
(ID) and actual (AC) increases with the chain length.
For example, for circuit s5378, when the chain length is
2, the ideal and actual numbers of detected transition
faults are the same. Likewise, when the chain length is
increased to 3, they are still equal as explained by
Theorem 1. When we increase the chain length
beyond 3, the actual number of detected transition
faults start to differ, as some of the faults detected by
this last chain segment may be detected by the first 2
pairs.

Table 7 presents the results of the weighted transition-
graph algorithm with and without the essential vector
optimization. In Table 7, column 2 gives the number of
stuck-at vectors in the original STRATEGATE test set,
followed by the results for our algorithm without use of
essential vectors. The final four columns show the
results when essential vectors are used. For each
approach, the number of transition vectors produced is
shown first. Next, the number of compacted test
vectors and its transition fault coverage are shown.
Note that the compaction step achieves considerable
reduction without losing fault coverage. The transition
fault coverage achieved with or without essential
vectors are the same, as indicated in column 6 and
column 10 of the table; only the test set sizes are
different in the two approaches. In most cases, the use
of essential vectors yields smaller test sets. However,
because this is a greedy heuristic, optimality is not
guaranteed. The execution time with essential vectors
is also generally shorter due to the quick elimination of
a large number of faults detected by the essential
vectors.

5.1. RESULTS FOR ATE REPEAT

In Table 8 we compare our results with results using
COM, a commercial ATPG tool. We first tabulate the
data for the storage required (STORAGE). Both the
size of the stuck-at test set and the number of transition
test vectors for COM are presented. These were
generated using the dynamic compaction option of
COM. Thus, for C1908 we need to store a total of 526
vectors. WT_GR used the un-compacted stuck-at test
set generated using COM. The next two columns show
the transition test chain lengths obtained using the
proposed algorithm, with chain length 3 and 4
respectively. Thus, for C1908 we need to store 353
vectors or 346 vectors depending on the chain length
used. The storage improvement obtained using
transition test chains and the ATE repeat option is
shown in column 11. Chain length 3 was assumed.
Thus, for C1908, the storage improvement is calculated
as 100* (526 – 353)/(526). Note the substantial storage

reduction obtained in all cases. The average reduction
in scan memory requirement is 46.5%.

Columns 6 and 7 compare the transition fault coverage
obtained by weighted transition graph (WT_GR) and
COM. Note that there is no loss in fault coverage using
WT_GR. Columns 8, 9 and 10 compares the CPU time
required by COM and the two versions of our algorithm.
For most of the circuits, COM is much faster. The last
column shows changes in the test application time.
Recall that for a given transition test chain all but the
first and last vectors are scanned in twice. Therefore,
the test application time gain for C1908 is computed as
100*(526-2*353)/(526) = -34.22. This implies a 34.22%
increase in test application time if transition test chains
are used. However in a number of cases the test
application time actually decreases by a significant
amount. The average increase in test application time
is 6.9%.

5.2 EXPERIMENTAL RESULTS FOR EXCHANGE SCAN

Benefits of using exchange scan, versus COM, are
tabulated in Table 4. Transition test chains were
computed using our heuristic with chain length set to 3.
The improvement in both test application time and test
data volume are the same and shown in column 4 of
Table 4. Thus, for C1908, the test application time
reduction is calculated as 100*(526 – 353)/(526) =
32.89%. We note that now there is a substantial
reduction in both the scan memory requirement and
the test application time, vis-à-vis COM. The average
reduction in test application time and data storage
requirement is 46.5%.

SUMMARY

We presented techniques to reduce test data volume
and test application time for transition faults. Results
from Table 4 and Table 8 are shown graphically in
Figure 8. For each circuit, the data storage requirement
and test application time are plotted for the
conventional ATE (COM), ATE repeat, and Exchange
scan. The first technique combines the ATE repeat
capability and the notion of transition test chains to
reduce the test data volume by 46.5%, when compared
with the conventional approach. The second technique
that replaces the ATE repeat option with Exchange
Scan improves both test data volume and test
application time by 46.5%.

REFERENCES
[1] I. Hamzaoglu and J. H. Patel “Compact Two-

pattern Test Generation for Combinational and Full
Scan Circuits,” Proceedings of the International
Test Conference, 1998.

[2] B. Keller, C. Barnhart, V. Brunkhorst, F. Distler, A.
Ferko, O. Farnsworth and B. Koenemann,

“OPMISR: The Foundation of Compressed ATPG
Vectors,” IEEE International Test Conference, pp.
748-757, 2001.

[3] I. Hamzaoglu and J. H. Patel, “Reducing test
application time for full scan embedded cores,” 29th
International Symposium on Fault-Tolerant
Computing, June 1999, pp. 260-267.

[4] B. Koeneman, “LFSR-Coded Test Patterns for
Scan Designs,” IEEE European Test Conference,
1991, pp. 237-242.

[5] A. Chandra and K. Chakrabarty, “Frequency
directed run length (FDR) codes with application to
system on a chip data compression,” IEEE VLSI
Test Symposium, 2001, pp. 42-47.

[6] R.D. Eldred ``Test Routing Based on Symbolic
Logical Statement'' Journal ACM, Vol.6 pp.33-36
Jan. 1959.

[7] J. A. Waicukauski, E. Lindbloom, B. K. Rosen, and
V. S. Iyengar. ``Transition Fault Simulation,’’ IEEE
Design & Test of Computers, 4:32-38, 1987.

[8] G.L. Smith ``Model for Delay Faults based upon
Paths,’’ IEEE International Test Conference, pp.
342-349, 1985.

[9] K. Heragu, J. H. Patel, and V. D. Agrawal,
``Segment delay faults: a new fault model,'' IEEE
VLSI Test Symposium, pp. 32-39, 1996.

[10] M. L.Bushnell and V. D. Agrawal, Essentials of
Electronic Testing for Digital, Memory, and Mixed-
Signal VLSI Circuits, Kluwer Academic Publishers,
Boston, 2000.

[11] J. Savir and S. Patil ``On Broad-Side Delay Test,''
IEEE VLSI Test Symposium, pp.284-290, 1994.

[12] J. Savir and S. Patil ``Scan-Based Transition Test,’’
IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, Vol. 12, No.8,
1993.

[13] B. Dervisoglu and G. Stong `` Design for Testability:
Using Scanpath Techniques for Path-Delay Test
and Measurement',' Proceedings of International
Test Conference, pp.365-374, 1991.

[14] I. Pomeranz and S. M. Reddy ``Static Compaction
for Two-Pattern Test Sets,’’ IEEE Asian Test
Symposium, pp.222-228, 1995.

[15] L. N. Reddy, I. Pomeranz and S. M. Reddy
``COMPACTEST-II: a method to generate compact
two-pattern test sets for combinational logic
circuits,'' IEEE/ACM International Conference on
Computer-Aided Design, pp.568-574, 1992.

[16] F. F. Hsu, K. M. Butler and J. H. Patel, ``A Case
Study of the Illinois Scan Architecture,’’ IEEE
International Test Conference, 2001, pp. 538-547.

[17] N. N. Tendulkar, R. F. Molyneaux, C. Pyron and R.
Raina, “At-speed Scan Based Testing on
MPC7400 Microprocessor,” IEEE VLSI Test
Symposium, pp. 3-8, 2000.

[18] K. McCauley, “Scan is Good Enough for Stuck
Faults, Why Not AC Scan for Delay Faults?” Panel
position paper, IEEE International Test Conference,
2001, pp. 1172.

[19] R. Raina, “AC-Scan: Microprocessors are ready
But where is the Infrastructure?” Panel position
paper, IEEE International Test Conference, 2001,
pp. 1173.

[20] S. Patil, “AC-Scan: Microprocessors are ready But
where is the Infrastructure?” Panel position paper,
IEEE International Test Conference, 2001, pp.
1174.

[21] N. Tendulkar, R. Raina, R. Woltenburg, X. Lin, B.
Swanson and G. Aldrich, `̀Novel Techniques for
Achieving High At-Speed Transition Fault
Coverage for Motorola's Microprocessors Based
on PowerPC Instruction Set Architecture,’’ IEEE
VLSI Test Symposium, 2002, to appear.

[22] K-J. Lee, J-J. Chen and C-H Huang, “Using a
single input to support multiple scan chains,”
IEEE/ACM International Conference on Computer-
Aided Design, 1998, pp. 74-78.

[23] D. Das and N. A. Touba, “Reducing test data
volume using external/LBIST hybrid test patterns,”
IEEE International Test Conference, 2000, pp. 115-
122.

Table 1

Name s@ Test Trans Test Expansion

C1908 129 263 4.07

C2670 116 198 3.41

C3540 179 366 4.09

C5315 124 248 4

C6288 36 90 5

C7552 237 378 3.19
S5378 266 490 3.68

S9234 410 837 4.08

S13207 485 1002 4.13

S15850 464 924 3.98

S35932 75 137 3.65

S38417 1017 1927 3.79

S38584 727 1361 3.74

Table 2

Vector1 Vector2 Response
V1 V2 R2
V2 V3 R3
V3 V4 R4
V3 V5 R5
V1 V3 R3
V4 V3 R3

Table 3

(i) Shift In V1**; (ii) Apply;
(i) Shift In V2**; (ii) Apply; (iii) Capture;

(i) Shift In V2, Shift Out and Compare R2; (ii) Apply;
(i) Shift In V3; (ii) Apply; (iii) Capture;

(i) Shift In V3, (ii) Shift Out and Compare R3; (iii) Apply;
(i) Shift In V4; (ii) Apply; (iii) Capture;

(i) Shift In V3, Shift Out and Compare R4; (ii) Apply;
(i) Shift In V5; (ii) Apply; (iii) Capture;

(i) Shift In V1, Shift Out and Compare R5; (ii)Apply;
(i) Shift In V3; (ii) Apply; (iii)Capture;

(i) Shift In V4, Shift Out and Compare R3; (ii) Apply;
(i) Shift In V3; (ii) Apply; (iii) Capture;

(i) Shift Out and Compare R3;

Table 4

CIRCUIT STORAGE IMPROVEMENT

 COM WT_GR DATA, APP TIME

C1908 526 353 32.89

C2670 396 185 53.28

C3540 732 410 43.99

C5315 496 310 37.50

C6288 180 130 27.77

C7552 756 428 43.38

S5378 980 455 53.57

S9234 1674 644 61.53

S13207 2004 681 66.02

S15850 1848 729 60.55

S35932 274 224 18.29

S38417 3854 1555 59.65

Table 5

Vector Excited
Faults

Detected
Faults

V1 a-s-0,b-s-1,
c-s-1,d-s-0,e-s-0

a-s-0, b-s-1

V2 b-s-1,c-s-0,
d-s-0,e-s-1

c-s-0,d-s-0,
e-s-1

V3 a-s-1,c-s--1 a-s-1,c-s-1
V4 a-s-1,b-s-0,

d-s-1,e-s-0
b-s-0,d-s-1,

e-s-0

Figure 1. Tester Memory Model

Figure 2. ATE Storage Model

Figure 3. Hold Scan cell and Exchange scan timing

Figure 4. Generic Weighted Transition Graph
Algorithm

Figure 5. Block diagram of Hold-Scan System

Figure 6. Example Weighted Transition-Pattern
Graph

Channel 1

Channel 2

Channel N

SCAN MEMORY

CONTROL MEMORY RESPONSE
COMPARATOR

CUT

TESTER

Channel 1

Channel 2

Channel N

SCAN MEMORY

CONTROL MEMORY RESPONSE
COMPARATOR

CUT

TESTER

V1 V2

R1

M U

V3 V4

R2 R3

U U

V5 V6

R4 R5

U U

V7 V8

R6 R7

U U

V9 V10

R8 R9 R10

U U U

U: Selective bit masking; M: All bits are masked

(a) Stuck-at Vectors

V1 V2

R1

M U

V3 V4

R2 R3

U U

V5 V6

R4 R5

U U

V7 V8

R6 R7

U U

V9 V10

R8 R9 R10

U U U

V1 V2

R1

M U

V3 V4

R2 R3

U U

V5 V6

R4 R5

U U

V7 V8

R6 R7

U U

V9 V10

R8 R9 R10

U U U

U: Selective bit masking; M: All bits are masked

V1 V2

R2

M M

V2 V3

R3

U M

V3 V4

R4

U M

V3 V5

R5

U M

V1 V3

R3

U M U

V1 V2

R2

M M

V2 V3

R3

U M

V3 V4

R4

U M

V3 V5

R5

U M

V1 V3

R3

U M U

(b) Enhanced Transition Tests

V1 V2 V3 V4 V1 V3 V5

R2 R3 R4 R1 R3 R5

(c) ATE Repeat

V1 V2

R1

M U

V3 V4

R2 R3

U U

V5 V6

R4 R5

U U

V7 V8

R6 R7

U U

V9 V10

R8 R9 R10

U U U

U: Selective bit masking; M: All bits are masked

(a) Stuck-at Vectors

V1 V2

R1

M U

V3 V4

R2 R3

U U

V5 V6

R4 R5

U U

V7 V8

R6 R7

U U

V9 V10

R8 R9 R10

U U U

V1 V2

R1

M U

V3 V4

R2 R3

U U

V5 V6

R4 R5

U U

V7 V8

R6 R7

U U

V9 V10

R8 R9 R10

U U U

U: Selective bit masking; M: All bits are masked

V1 V2

R1

M U

V3 V4

R2 R3

U U

V5 V6

R4 R5

U U

V7 V8

R6 R7

U U

V9 V10

R8 R9 R10

U U U

V1 V2

R1

M U

V3 V4

R2 R3

U U

V5 V6

R4 R5

U U

V7 V8

R6 R7

U U

V9 V10

R8 R9 R10

U U U

U: Selective bit masking; M: All bits are masked

(a) Stuck-at Vectors

V1 V2

R1

M U

V3 V4

R2 R3

U U

V5 V6

R4 R5

U U

V7 V8

R6 R7

U U

V9 V10

R8 R9 R10

U U U

V1 V2

R1

M U

V3 V4

R2 R3

U U

V5 V6

R4 R5

U U

V7 V8

R6 R7

U U

V9 V10

R8 R9 R10

U U U

U: Selective bit masking; M: All bits are masked

V1 V2

R2

M M

V2 V3

R3

U M

V3 V4

R4

U M

V3 V5

R5

U M

V1 V3

R3

U M U

V1 V2

R2

M M

V2 V3

R3

U M

V3 V4

R4

U M

V3 V5

R5

U M

V1 V3

R3

U M U

(b) Enhanced Transition Tests

V1 V2 V3 V4 V1 V3 V5

R2 R3 R4 R1 R3 R5

(c) ATE Repeat

V1 V2

R2

M M

V2 V3

R3

U M

V3 V4

R4

U M

V3 V5

R5

U M

V1 V3

R3

U M U

V1 V2

R2

M M

V2 V3

R3

U M

V3 V4

R4

U M

V3 V5

R5

U M

V1 V3

R3

U M U

(b) Enhanced Transition Tests

V1 V2 V3 V4 V1 V3 V5

R2 R3 R4 R1 R3 R5

(c) ATE Repeat

GENERIC WEIGHTED TRANSITON GRAPH
ALGORITHM
Compute the transition-pattern graph;
Initialize P to T = {T1…TN};
WHILE ((transition fault coverage < 100%) &&

(iteration number < MAX))
BEGIN

Identify an edge (Vi, Vj) with the largest
weight;

Append vectors Vi, Vj to P;
For all edges starting from Vj

BEGIN
Look for edge (Vj, Vk) having the

largest weight;
Append vectors Vj and Vk to the

original stuck-at test set;
END
Update the weighted transition graph and

the faultlist;
END

STORE

Shadow
MSFF

System
Flop

SI

LOAD

A_CLK

DATA

CLK

SO

O

B_CLK

STORE

Shadow
MSFF

System
Flop

SI

LOAD

A_CLK

DATA

CLK

SO

O

B_CLK

SHADOW
REGISTER

SYSTEM
REGISTER

Shadow
MSFF

SI

LOAD

A_CLK

STORE

DATA CLK

SO

O

B_CLK

Shadow
MSFF

SI

LOAD

A_CLK

STORE

DATA CLK

SO

O

B_CLK

System
Flop

System
Flop

SHADOW
REGISTER

SYSTEM
REGISTER

Shadow
MSFF

SI

LOAD

A_CLK

STORE

DATA CLK

SO

O

B_CLK

Shadow
MSFF

SI

LOAD

A_CLK

STORE

DATA CLK

SO

O

B_CLK

System
Flop

System
Flop

STORE

Shadow
MSFF

System
Flop

SI

LOAD

A_CLK

DATA

CLK

SO

O

B_CLK

STORE

Shadow
MSFF

System
Flop

SI

LOAD

A_CLK

DATA

CLK

SO

O

B_CLK

SHADOW
REGISTER

SYSTEM
REGISTER

Shadow
MSFF

SI

LOAD

A_CLK

STORE

DATA CLK

SO

O

B_CLK

Shadow
MSFF

SI

LOAD

A_CLK

STORE

DATA CLK

SO

O

B_CLK

System
Flop

System
Flop

SHADOW
REGISTER

SYSTEM
REGISTER

Shadow
MSFF

SI

LOAD

A_CLK

STORE

DATA CLK

SO

O

B_CLK

Shadow
MSFF

SI

LOAD

A_CLK

STORE

DATA CLK

SO

O

B_CLK

System
Flop

System
Flop

V1

V3 V4

V2

1 1
1

1 3
2

(a)

V1

V3

1

V4

V2

1

(b)

V1

V3 V4

V2

1 1
1

1 3
2

(a)

V1

V3 V4

V2

1 1
1

1 3
2

(a)

V1

V3

1

V4

V2

1

(b)

V1

V3

1

V4

V2

1

(b)

STORE
SL/FF

Q
DATA

CLK

LOAD
SI

A_CLK
B_CLK

AL
BL

SOUTAOUT

STORE
SL/FF

Q
DATA

CLK

LOAD
SI

A_CLK
B_CLK

AL
BL

SOUTAOUT

LOAD

CLK = 0

Q

AOUT

D1

D1

SOUT D1

S1

S1

S1

STORE

B_CLK

LOAD

CLK = 0

Q

AOUT

D1

D1

SOUT D1

S1

S1

S1

STORE

B_CLK

STORE
SL/FF

Q
DATA

CLK

LOAD
SI

A_CLK
B_CLK

AL
BL

SOUTAOUT

STORE
SL/FF

Q
DATA

CLK

LOAD
SI

A_CLK
B_CLK

AL
BL

SOUTAOUT

LOAD

CLK = 0

Q

AOUT

D1

D1

SOUT D1

S1

S1

S1

STORE

B_CLK

LOAD

CLK = 0

Q

AOUT

D1

D1

SOUT D1

S1

S1

S1

STORE

B_CLK

S1

STORE

B_CLK

Figure 7

Figure 8

 WITHOUT EXCHANGEWITHOUT EXCHANGE WITH EXCHANGEWITH EXCHANGE

Scan In V1Scan In V1 Scan In V1Scan In V1
Store V1Store V1 Store V1Store V1

Scan In V2Scan In V2 Scan In V2Scan In V2
Store V2Store V2 Store V2Store V2

Capture R2Capture R2 Capture R2Capture R2
Load R2Load R2 Exchange (R2, V2)Exchange (R2, V2)

Scan In V2, Scan Out R2Scan In V2, Scan Out R2 Scan In V3, Scan Out R2Scan In V3, Scan Out R2

Store V2Store V2 Store V3Store V3
Scan In V3Scan In V3 Capture R3Capture R3
Store V3Store V3 Exchange (R3, V3)Exchange (R3, V3)

Capture R3Capture R3 Scan In V4, Scan Out R3Scan In V4, Scan Out R3

Load R3Load R3 Store V4Store V4
Scan In V3, Scan Out R3Scan In V3, Scan Out R3 Capture R4Capture R4

Exchange (R4, V4)Exchange (R4, V4)Store V3Store V3
Scan In V4Scan In V4 Scan In V5, Scan Out R4Scan In V5, Scan Out R4
Store V4Store V4

Capture R4Capture R4
Scan In V4, Scan Out R4Scan In V4, Scan Out R4

WITHOUT EXCHANGEWITHOUT EXCHANGEWITHOUT EXCHANGEWITHOUT EXCHANGE WITH EXCHANGEWITH EXCHANGEWITH EXCHANGEWITH EXCHANGE

Scan In V1Scan In V1Scan In V1Scan In V1 Scan In V1Scan In V1Scan In V1Scan In V1
Store V1Store V1Store V1Store V1 Store V1Store V1Store V1Store V1

Scan In V2Scan In V2Scan In V2Scan In V2 Scan In V2Scan In V2Scan In V2Scan In V2
Store V2Store V2Store V2Store V2 Store V2Store V2Store V2Store V2

Capture R2Capture R2Capture R2Capture R2 Capture R2Capture R2Capture R2Capture R2
Load R2Load R2Load R2Load R2 Exchange (R2, V2)Exchange (R2, V2)Exchange (R2, V2)Exchange (R2, V2)

Scan In V2, Scan Out R2Scan In V2, Scan Out R2Scan In V2, Scan Out R2Scan In V2, Scan Out R2 Scan In V3, Scan Out R2Scan In V3, Scan Out R2Scan In V3, Scan Out R2Scan In V3, Scan Out R2

Store V2Store V2Store V2Store V2 Store V3Store V3Store V3Store V3
Scan In V3Scan In V3Scan In V3Scan In V3 Capture R3Capture R3Capture R3Capture R3
Store V3Store V3Store V3Store V3 Exchange (R3, V3)Exchange (R3, V3)Exchange (R3, V3)Exchange (R3, V3)

Capture R3Capture R3Capture R3Capture R3 Scan In V4, Scan Out R3Scan In V4, Scan Out R3Scan In V4, Scan Out R3Scan In V4, Scan Out R3

Load R3Load R3Load R3Load R3 Store V4Store V4Store V4Store V4
Scan In V3, Scan Out R3Scan In V3, Scan Out R3Scan In V3, Scan Out R3Scan In V3, Scan Out R3 Capture R4Capture R4

Exchange (R4, V4)Exchange (R4, V4)
Capture R4Capture R4

Exchange (R4, V4)Exchange (R4, V4)Store V3Store V3Store V3Store V3
Scan In V4Scan In V4Scan In V4Scan In V4 Scan In V5, Scan Out R4Scan In V5, Scan Out R4Scan In V5, Scan Out R4Scan In V5, Scan Out R4
Store V4Store V4Store V4Store V4

Capture R4Capture R4Capture R4Capture R4
Scan In V4, Scan Out R4Scan In V4, Scan Out R4Scan In V4, Scan Out R4Scan In V4, Scan Out R4

SCAN STORAGE

0

50

100

150

C
19

08

C
26

70

C
35

40

C
53

15

C
62

88

C
75

52

S
53

78

S
92

34

S
13

20
7

S
15

85
0

S
35

93
2

S
38

41
7

COM ATE REPEAT EXCH_SCAN

APPLICATION TIME

0

50

100

150

200

C19
08

C26
70

C35
40

C53
15

C62
88

C75
52

S53
78

S92
34

S13
20

7

S15
85

0

S35
93

2

S38
41

7

SCAN STORAGE

0

50

100

150

C
19

08

C
26

70

C
35

40

C
53

15

C
62

88

C
75

52

S
53

78

S
92

34

S
13

20
7

S
15

85
0

S
35

93
2

S
38

41
7

COM ATE REPEAT EXCH_SCAN

APPLICATION TIME

0

50

100

150

200

C19
08

C26
70

C35
40

C53
15

C62
88

C75
52

S53
78

S92
34

S13
20

7

S15
85

0

S35
93

2

S38
41

7

Table 6

2 3 4 5 6 7 CIRCUIT
ID AC ID AC ID AC ID AC ID AC ID AC

S344 38 38 64 64 90 72 111 89 143 89 164 103
S382 24 24 43 43 63 44 75 56 92 61 111 61
S832 60 60 87 87 114 89 136 95 158 95 180 103

S1196 47 47 78 78 116 93 146 105 177 105 208 119
S1423 36 36 60 60 79 79 106 95 129 118 153 124
S5378 59 59 103 103 149 142 190 144 235 172 284 176

S35932 1072 1072 1175 1175 1270 1247 1382 1261 1475 1312 1564 1334
S38417 132 132 190 190 274 249 380 285 439 296 500 319

Table 7

Without essential vectors With essential vectors CIRCUIT S@
Set Tran.

Tests
Comp.
Tests

Time
(s)

TFC
(%)

Tran.
Tests

Comp.
Tests

Time
(s)

TFC
(%)

C1355 198 928 285 3.51 99.77 915 270 2.82 99.77
C1908 143 918 318 4.57 99.67 966 298 3.32 99.67
C3540 202 1222 515 25.43 96.27 1181 514 22.06 96.27
C5315 157 816 342 11.80 99.54 762 313 9.79 99.54
C6288 141 310 122 5.60 99.19 334 120 5.70 99.19
S344 31 135 63 0.37 100 207 64 0.37 100
S832 179 988 310 4.36 99.20 937 292 2.78 99.20

S1196 197 1004 362 5.24 99.97 1022 358 4.38 99.97
S1423 97 566 186 2.25 99.11 528 177 2.09 99.11
S5378 332 1672 722 35.73 98.40 1685 722 29.76 98.40

S35932 78 542 196 133.13 90.50 633 197 133.01 90.50
S38417 1207 5142 2682 1073.03 99.66 5208 2686 858.85 99.66

Table 8

CIRCUIT STORAGE TF COV CPU TIME IMPROVEMENTS

 COM WT_GR COM WT_GR COM WT_GR STORAGE APP TIME

 s@ TRAN 3 4 3 4

C1908 177 526 353 346 99.7 99.72 4.2 3.33 3.47 32.89 -34.22

C2670 167 396 185 184 78.6 79.26 4.3 9.25 9.99 53.28 6.57

C3540 247 732 410 419 82.9 87.62 6.8 19.45 20.11 43.99 -12.02

C5315 213 496 310 323 96.6 97.05 4.8 10.20 10.77 37.50 -25.00

C6288 47 180 130 118 99 98.54 3.6 3.72 3.62 27.77 -44.44

C7552 348 756 428 431 91 91.61 11 28.34 28.21 43.38 -13.23

S5378 391 980 455 464 86.6 87.51 5.3 37.66 37.76 53.57 7.14

S9234 630 1674 644 646 68.6 70.58 14.7 319.18 324.20 61.53 23.06

S13207 662 2004 681 679 80.5 82.29 27.4 292.89 295.30 66.02 32.06

S15850 641 1848 729 749 85 85.76 28 350.00 358.58 60.55 21.10

S35932 81 274 224 209 90 90.33 94.3 87.56 86.30 18.29 -63.50

S38417 1449 3854 1555 1547 89.9 91.19 116 1416.82 1406.83 59.65 19.30

