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ABSTRACT
1 

Scan based transition tests are added to improve the 
detection of speed failures using scan tests. Empirical 
data suggests that both data volume and application 
time, for transition test, will increase dramatically. 
Techniques to address the above problem, for a class 
of transition tests called “enhanced transition tests”, are 
proposed.  

The first technique, which combines the ATE repeat 
capability and the notion of transition test chains, 
reduces test data volume by 46.5%, when compared 
with transition tests computed by a commercial 
transition test ATPG tool. The test application time 
could increase or decrease. To address the test time 
issue Exchange Scan, a new DFT technique, is 
proposed. Exchange scan reduces both data volume 
and application time by 46.5%. These techniques rely 
on the use of hold scan cells and highlights the 
effectiveness of hold-scan design to address test time 
and test data volume issues. 

1. INTRODUCTION 
Higher clock rate, shrinking geometries, increasing 
metal density, etc. is resulting in defects that cause 
speed failures. The stuck-at fault model [6]  does 
not model speed related failures very well. 
Researchers have proposed a variety of fault 
models for speed failures, viz.: transition fault[7] , 
path delay fault[8] and segment delay fault[9] . Of 
these, transition fault is the most practical and 
commercial tools are available for computing such 
tests. Scan based transition tests are added to the 
scan test suite to enhance the capability of scan 
based tests to detect speed failures. Work on 
generating scan based transition tests to improve 
the detection of speed failures in microprocessors 
[17] [18] [19] [20] [21]  as well as ASICS[16]  have 
been reported and/or proposed.  
A transition fault at node X assumes a large delay 
at X such that the transition at X will not reach the 
latch or primary output within the clock period. In 
the transition fault model, at each line in the circuit 
two faults are possible: slow-to-rise and slow-to-fall. 
Test pattern for a transition fault consists of a pair 
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of vectors {V1, V2} where: V1 (initial vector) is 
required to set the target node to an initial value 
and V2 (final vector) is required to launch the 
appropriate transition at the target node and also 
propagate the fault effect to a primary output [7] 
[10] [12] . 
Transition tests can be applied in three different 
ways: Broadside[11] , Skewed-Load[12]  and 
Enhanced-Scan[13] . In broadside, also called 
functional justification, a vector is scanned in and 
the functional clock pulsed to create the transition 
and subsequently capture the response. For each 
pattern one vector is stored in tester scan memory. 
For skewed-load transition testing, an N bit vector 
is loaded by shifting in the first N-1 bits, where N is 
the scan chain length. The last shift clock is used to 
launch the transition. This is followed by a quick 
capture. One vector is stored per transition pattern 
in tester scan memory. In enhanced-scan transition 
testing two vectors (V1, V2) are stored in the tester 
scan memory. First V1 is loaded into the scan chain 
and applied to the circuit under test (CUT) to 
initialize it. Next V2 is scanned in, followed by 
applying it to the CUT and capturing the response 
of the CUT. During loading of V2 it is assumed that 
the initialization due to V1 is not destroyed. 
Therefore, enhanced-scan transition testing 
assumes hold-scan design [13] .  

Among the three kinds of transition tests, broadside 
suffers from poor fault coverage [11] . Since there is no 
dependency between the two vectors in enhanced 
scans it, in general, gives better coverage than 
skewed-load transition test. Skewed-load transition 
tests also lead to larger test data volume. Compared to 
stuck-at tests, the increase in the number of vectors 
required for enhanced scan to get complete coverage 
is about 4X (Table 1). This data, collected using a 
commercial ATPG tool, shows the number of stuck-at 
vectors and the number of enhanced scan transition 
patterns. Each transition pattern consists of two 
vectors. On the other hand, data volume for skewed-
load transition test for an ASIC shows an increase of 
5.9X[16] . A drawback of enhanced-scan testing is that 
it requires hold-scan scan-cells. However, in 
microprocessors and other high performance circuits 
that use custom design, the circuit is not fully decoded. 
Hold scan cells are used to prevent contention during 
scan shift to prevent burnout. Furthermore, if hold-scan 



 

cells are used, failing parts in which only the scan logic 
failed can often be retrieved; thus addressing, to some 
extent, the yield loss associated with scan DFT. This 
paper considers only enhanced-scan transition tests.   

No published work exists to address the explosion in 
data and application time for transition tests. We 
propose novel techniques to reduce the transition test 
data volume and test application time. Our optimization 
techniques consider optimization across test patterns 
for transition tests. The first technique, described in 
Section 3, uses the ATE repeat option and requires the 
use of transition test chains, rather than transition test 
patterns. We describe the notion of transition test 
chains and present a novel algorithm for computing 
such chains. Results show an average data volume 
reduction of 46.5%, when compared with the 
conventional enhanced transition test data volume 
computed by COM, a commercial ATPG tool.  

The above technique does not necessarily decrease 
test application time. To reduce test application time a 
new DFT technique called exchange-scan, described 
in Section 4, is proposed. Combining exchange scan 
with transition test chains reduces both test application 
time and test data volume by 46.5%, when compared 
with a conventional transition test set computed by 
COM. 

A number of ideas on reducing test data volume and 
test application time for single cycle scan-tests have 
been presented in the literature[2] [4] [5] [3] [23] [22] . 
These work assume that between 5-10% of the bits are 
fully specified. Unspecified bits are filled to detect the 
easy to detect faults. Different codes to compress the 
information in the tester and decompressing them on 
chip [2]  [5]  [23]  or using partitioning and applying 
similar patterns to the different partitions [3] [22] have 
been proposed. The techniques proposed here 
complements the work on compressing individual 
vectors. The technique of Section 3 can be used with 
all the stuck-at test compression technique described in 
the literature, like [2] [4] [22] [23] [3] [5] , except for the 
technique in [2] that uses the ATE repeat option to fill 
unspecified bits. The technique in Section 4 does not 
require the use of ATE repeat and can be used in 
conjunction with all published techniques for 
compressing stuck-at vectors. It is unique in that it 
decreases test application time by reducing the number 
of scan loads.  Section 5 presents a summary of all the 
experimental results. Data shows that the proposed 
technique improves both test data volume and test 
application time by 46.5% over COM, a commercial 
transition ATPG tool. Finally, Section 6 summarizes the 
paper. 

 

2. ATE MODEL 

Figure 1 is an abstraction of the tester model we use. 
ATE storage consists of scan and control memory. 
Scan memory is divided into several channels. Each 
channel consists of three bits. For each clock cycle of 
the scan shift operation, the scan memory contains the 
bit to be scanned in, the expected response bit from the 
circuit under test (CUT) and an indication of whether 
this bit of the response is to be masked or not. Figure 
2(a) shows the data stored for a single scan channel for 
the test set {V1, V2, V3, V4, V5, V6, V7, V8, V9, V10}, with 
Rj being the expected response for Vj. The control 
memory controls the shift and the comparison 
operation. The scan memory depth required is (N+1)*S 
bits, for a test set of size N and scan length S.  

The enhanced scan transition test set of Table 2 
consists of 6 patterns. Each pattern consists of a pair of 
vectors and the expected response to the final vector. 
The first pattern in our example consists of the pair (V1, 
V2) and the response R2 to V2. Storage of the test 
data in the scan memory is shown in Figure 2(b). 
Storage depth required is N*2*S + N*S bits. The control 
sequence for this test set shown in Table 3 is very 
repetitive and stored in the tester control memory. Row 
1 states that V1 is scanned in and applied to the CUT. 
Row 2 states that V2 is scanned in, applied to the CUT 
and the response R2 captured. Row 3 states that the 
first vector of the next vector pair, i.e. V2, is scanned in 
while the response R2 of the previous test pattern is 
scanned out and compared with the expected 
response. Once the scan operation is complete the 
new vector is applied to the CUT. The rest of the entries 
can be similarly interpreted. 

3. ATE REPEAT AND TRANSITION TEST CHAINS 

There is considerable redundancy in the information 
stored in the tester. In Figure 2(b), V2, V3 are used 
several times in the test sequence. Ideally, one copy of 
the information should suffice. However, storing one 
copy of a vector and reusing it in any random order 
requires the ATE to index into random locations in the 
scan memory, which is currently not available. Limited 
reuse of the information stored however is possible. In 
Figure 2(b), two copies of V2 are stored in consecutive 
locations in the scan memory. It is possible to store just 
one copy of V2 and scan in V2 as often as possible 
during consecutive scan cycles. Similarly, we can 
replace two copies of V3 in locations 4, 5, from the left 
of the scan memory in Figure 2(b), with just one copy of 
V3. Further reduction of the number of copies of V3 is 
not possible. Thus, we store the sequence < V1, V2*, 
V3*, V4, V3, V5, V1, V3> and repeatedly scan in vectors 
marked *. Information about vectors that needs to be 
scanned multiple times is stored in control memory. 
Thus, 8 instead of 10 vectors need to be stored. 



 

In the above example, the scan storage requirement 
was reduced at a price. Since vectors that are scanned 
in repeatedly do not form a regular pattern the control 
memory requirement increases drastically. To avoid 
such an increase in control memory we impose a 
restriction that, except for the first and last vector stored 
in the scan memory, every vector is scanned in exactly 
twice. In Figure 2[c], the sequence < V1, V2, V3, V4, V1, 
V3, V5> is stored. A vector, for example V3, can be 
stored multiple times. Assume that all but the first and 
last vectors are scanned in twice. The set of transition 
test patterns applied is {(V1, V2,), (V2, V3),  (V3, V4), (V4, 
V1), (V1, V3,), (V3, V5)}. This set includes all test patterns 
of Figure 2(a) as well as (V4, V1). Thus, by storing 7, 
instead of 10, vectors all transition tests can be applied. 
For this example, not only is control memory 
requirement lower but the number of vectors stored 
was also reduced. Sequences in which all but the first 
and last vectors are scanned in twice are defined to be 
transition test chains. 

Computing transition test chain is different from 
computing a set of transition test patterns as is 
conventionally done. A novel ATPG algorithm, called 
weighted transition graph algorithm, to compute 
such chains is discussed next. 

WEIGHTED TRANSITION GRAPH ALGORITHM 

The algorithm constructs transition test chains from a 
given stuck-at test set. Instead of computing a set of 
vector-pairs and chaining them together, as suggested 
in the above example, the problem is mapped into a 
graph traversal problem. The algorithm uses weighted 
transition-pattern graph, a weighted directed graph. It 
contains a node for each vector in the stuck-at test set. 
A directed edge from node Vi to Vj denotes the 
transition test pattern (Vi, Vj) and its weight indicates the 
number of transition faults detected by (Vi, Vj). The 
graph construction procedure is discussed next. 
Assume the stuck-at test set T={T1…TN} is given.    

1. Perform transition fault simulation using the stuck-
at test set implied transition test set {(T1, T2), (T2, 
T3)… (TN-1, TN)} to compute undet, the set of 
undetected transition faults. 

2. Deduce the subset U of stuck-at faults implied by 
undet as follows. If X slow-to-rise or slow-to-fall 
fault∈ undet, then both X stuck-at-0 and stuck-at-1 
are in U. 

3. Perform stuck-at fault simulation, without fault 
dropping, using the stuck-at test set T on the stuck-
at faults in U. For each stuck-at fault f in U, record 
the vectors in T that excite f and the vectors that 
detect f. Also, for each vector, the faults excited 
and detected by it are recorded. 

4. The weighted directed graph contains a node 
corresponding to each stuck-at tests in T. The 
directed edge, from Vi to Vj, is inserted if the 
corresponding test pattern (Ti, Tj) detects at least 
one transition fault in undet. The weight of (Ti,Tj) is 
the number of transition faults in undet detected by 
(Ti,Tj). These are deduced from the dictionaries 
computed in 3. 

As an example, consider a circuit with 5 gates (10 
stuck-at faults) and a stuck-at test set consisting of 4 
vectors V1, V2, V3, and V4. The excitation and 
detection dictionary obtained by simulation without fault 
dropping are as shown in Table 5. Assuming the test 
set order to be [V1, V2, V3, V4], only 3 transition faults 
(slow-to-fall at c, e and slow-to-rise at c) are detected. 
Table 5 implies: (V1, V3) detects a slow-to-fall; (V3, V1) 
detects a slow-to-rise; (V1, V4) detects d slow-to-fall; 
(V4, V2) detects d slow-to-rise; (V4, V1) detects a slow-
to-rise, b slow-to-fall; and (V2, V4) detects b slow-to-
rise, e slow-to-rise and d slow-to-fall. This results in the 
transition-pattern graph of Figure 6(a). 

Theorem 1: Faults detected by pattern (Vi, Vj) and 
faults detected by pattern (Vj, Vk) are mutually 
exclusive. 

Proof: We prove this by contradiction. Without loss of 
generality, consider fault f slow-to-fall is detected by (Vi, 
Vj). Thus, Vi excites f s-a-0 (sets f to 1) and Vj detects f 
s-a-1.  Assume (Vj,Vk) also detects f slow-to-fall. Then, 
Vj must set line f to 1, which is a contradiction. 

An Euler trail in the transition-pattern graph traverses all 
edges in the graph exactly once. It is tempting to think 
that converting the graph to a Eulerian graph, by 
inserting the minimum number of edges, and 
computing an Euler trail would give us the minimum 
test. This leads to a sub-optimal solution. Traversing 
edge (Vi,Vj) is equivalent to selecting test (Vi,Vj). Once 
edge (Vi,Vj) is traversed, i.e test (Vi,Vj) is selected, it 
detects a number of transition faults. This alters the 
weights on other edges and removes some of the 
edges. Per Theorem 1 edges whose weights do not 
change are those starting from Vj.  To improve the 
solution, edge weights are updated after traversing an 
edge. A preliminary version of the algorithm is outlined 
in Figure 4 where P is the transition test chain 
computed by the algorithm from the given stuck-at test 
set T. For the example in Figure 6(a) the updated 
graph, after traversing the heaviest-weight test chain 
(V2, V4, V3), is shown in Figure 6(b). Note that in 
addition to removing (V2, V4) and (V4, V3) edge (V1, 
V4) is also removed because the selected chain 
detects d slow-to-fall. All 7 undetected faults in Table 5 
are detected with the test chain {V2, V4, V1, V3, V4, 
V2}. 



 

Several optimizations were applied to the generic 
version of the algorithm to improve the results. Instead 
of considering one edge at a time we use Theorem 1 to 
inspect edges of length 3. This reduces the amount of 
simulation required and a transition test chain is 
generated by incrementally concatenating the vector-
chains of length 3. While this solution is better than 
simply concatenating vector pairs for each of the 
remaining undetected transition faults, it still may not be 
optimal. When chain length increases beyond 3, the 
difference between the actual number of transition 
faults detected by the chain and the sum of edge 
weights in the chain determines whether it is worthwhile 
to use longer chains. Using longer chains reduces the 
number of graph updates (hence the runtime of the 
algorithm), but increases the size of the final solution. 
Experimental results in Section 5 suggest that chain 
lengths of 3, 4 give the best results. 

Expanding on the essential test definition for stuck-at 
fault from [1] , we define an essential vector for 
transition faults to be any test vector that 
excites/detects at least one transition fault that is not 
excited/detected by any other test vector in the test set. 
All essential vectors must occur in the transition test 
chain at least once. We include essential vectors early 
in the chaining process. The transition test chain 
generation process is divided into two phases by 
constructing two weighted transition pattern graphs. 

A. Identify all essential vectors, generate the 
transition-pattern graph using only essential 
vectors and construct the test chains only with the 
essential vectors in the graph. Append that to the 
initial transition test chain P in the generic version 
of the weighted transition graph algorithm.   

B. Reduce the number of faults by dropping faults 
detected in Step A. Generate the transition-pattern 
graph using the remaining faults and extend the 
partial transition test chain from Step A as 
described in Step 3 of the generic weighted 
transition graph algorithm.   

The number of edges in the second step of the 
modified algorithm is significantly reduced, because 
most of the edges incident on the essential vectors 
have been traversed in the previous step and thus 
removed. 

During the test pattern generation procedure, some 
faults detected by the earlier test vectors may be 
detected by test patterns generated later. Therefore, 
vectors added early in our transition test set might 
become redundant. To identify such redundant patterns 
we do reverse-order pair-wise compaction. After {(U1, 
U2, U3), (U4, U5, U6), … , (Un-2, Un-1, Un)} are generated, 
they are appended to the original stuck-at test set in 

that order. The test patterns  (Un-1, Un ), (Un-2, Un-1),… 
(U1, U2) are simulated in the reverse order in which it 
was generated. If neither (Ui-1, Ui ), (Ui, Ui+1) detects any 
additional fault then Ui is redundant and eliminated. 
Note that eliminating gives rise to new transition test 
pairs unlike s@ tests. We therefore follow this by doing 
a forward-order pair-wise compaction step to further 
reduce the size of the test chain length.  

Additional enhancements using ideas for compacting 
patterns for transition faults can be used. They include 
a dynamic compaction technique [15] and a static 
compaction technique [14] . 

4. EXCHANGE SCAN 

In Section 3 we saw that using transition test chains 
and ATE repeat can reduce data storage. Data 
presented in Section 5 will show the reduction to be 
about 46.5%. However, test application time can either 
decrease or increase drastically. To reduce test 
application time, while still retaining the improvement in 
data storage, a new DFT technique is proposed. To 
reduce the number of scan loads it does not use the 
ATE repeat option. A vector can be scanned in once, 
and using very little overhead, reused. Reducing scan 
in operations reduces test application time. The net 
result is a reduction in both the data storage 
requirement and the test application time. 

The block diagram of a hold-scan system is shown in 
Figure 5. The scan cells, which consist of two parts: 
System Flop and Shadow MSFF, are chained together 
to form two related registers: SYSTEM REGISTER and 
SHADOW REGISTER. During normal operation, the 
SYSTEM REGISTER is in use. For scan testing 
operations SCAN_SHIFT, SCAN_LOAD and 
SCAN_STORE are supported. Assume the scan cell 
implementation of Figure 3(a). For SCAN_SHIFT, the 
A_CLK and B_CLK are pulsed so that data passes 
from SI to SOUT. For SCAN_STORE, the STORE 
signal is pulsed to transfer the data from SOUT to Q. 
The content of SHADOW REGISTER is transferred to 
SYSTEM REGISTER. In SCAN_LOAD the content of 
SYSTEM REGISTER is transferred to SHADOW 
REGISTER. Pulsing LOAD transfers data from Q to 
AOUT. Pulsing BCLK transfers data from AL to BL.. 

The new operation SCAN_EXCHANGE, exchanges 
contents of the SHADOW and SYSTEM registers, 
without destroying either of them. Pulsing LOAD 
transfers the contents of SL to AL. Pulsing STORE 
transfers the contents of BL to SL. Pulsing B_CLK 
transfers the content of AL to BL. The corresponding 
timing diagram is shown in Figure 3(b). No additional 
hardware or signal is needed to support the exchange 
operation. It may require the global scan controller to 



 

be modified slightly to realize the exchange operation. 
The operation requires three clock cycles. 

SCAN_EXCHANGE, for the transition test chain < V1, 
V2, V3, V4 >, is used as follows. Test-pairs applied are: 
{(V1, V2), (V2, V3), (V3, V4)}. The expected response 
on application of V2 is R2, V3 is R3 and V4 is R4. The 
sequence of operations, without exchange-scan, is 
shown in the first column of Figure 7. Capture R2 
implies that the response of the CUT on application of 
V2 is latched on to the SYSTEM REGISTER. Scan In 
V2, Scan Out R2 implies SCAN_SHIFT wherein V2 is 
scanned in and the response of the CUT, from the 
previous pattern, is scanned out and compared to R2. 

The second column of Figure 7 shows the sequence of 
operations using SCAN_EXCHANGE.  Once V2 is 
loaded into the SHADOW REGISTER, the subsequent 
store and capture operations do not destroy the 
contents of the SHADOW REGISTER. So, the 
SCAN_LOAD operation that destroys the contents of 
the SHADOW REGISTER is replaced by the 
SCAN_EXCHANGE operation. It exchanges the 
content of SHADOW REGISTER and SYSTEM 
REGISTER. Thus the captured response is transferred 
to SHADOW REGISTER and V2 is applied to the CUT 
as the initial vector for the next test pair. We can 
therefore skip the sequence of operations that scans 
V2 and stores it. In addition, the SCAN_SHIFT of the 
response from V2, i.e. R2, can now be merged with the 
SCAN_SHIFT of the final vector of the next pattern V3. 
The net effect of this is that we have replaced an entire 
scan operation with a 3-cycle SCAN_EXCHANGE 
operation. Considering that the SCAN_SHIFT 
operation may be 1000 or more clock cycles this 
overhead of the SCAN_EXCHANGE operation is 
negligible and will be neglected from our calculations. 
Note that transition test chains, but not ATE repeat 
capability of the testers, is required to realize the gains 
of the exchange scan operation. If the ATE Repeat 
capability is available, each of the vectors that are 
stored can be compressed, as discussed in [2] , and 
the benefits of transition test chains can be realized 
using exchange scan. Data presented in Section 5 
show that both test data volume and test application 
time decreases by 46.5%, compared to COM. 

5. EXPERIMENTAL RESULTS 

The weighted transition graph algorithm, with all the 
optimizations described above, was implemented in C. 
Experimental data are presented for ISCAS85 and full-
scan versions of ISCAS89 benchmarks, on a 1.7Ghz 
Pentium 4 with 512 MB of memory, running the Linux 
Operating System. 

In Table 6 results on fullscan version of ISCAS89 
circuits, with different chain lengths, are presented. For 

each benchmark, the ideal (ID), given by the sum of the 
edge weights, and actual (AC) faults detected by the 
chains are shown. The difference between the ideal 
(ID) and actual (AC) increases with the chain length.  
For example, for circuit s5378, when the chain length is 
2, the ideal and actual numbers of detected transition 
faults are the same.  Likewise, when the chain length is 
increased to 3, they are still equal as explained by 
Theorem 1.  When we increase the chain length 
beyond 3, the actual number of detected transition 
faults start to differ, as some of the faults detected by 
this last chain segment may be detected by the first 2 
pairs.  

Table 7 presents the results of the weighted transition-
graph algorithm with and without the essential vector 
optimization. In Table 7, column 2 gives the number of 
stuck-at vectors in the original STRATEGATE test set, 
followed by the results for our algorithm without use of 
essential vectors. The final four columns show the 
results when essential vectors are used. For each 
approach, the number of transition vectors produced is 
shown first. Next, the number of compacted test 
vectors and its transition fault coverage are shown. 
Note that the compaction step achieves considerable 
reduction without losing fault coverage. The transition 
fault coverage achieved with or without essential 
vectors are the same, as indicated in column 6 and 
column 10 of the table; only the test set sizes are 
different in the two approaches.  In most cases, the use 
of essential vectors yields smaller test sets. However, 
because this is a greedy heuristic, optimality is not 
guaranteed. The execution time with essential vectors 
is also generally shorter due to the quick elimination of 
a large number of faults detected by the essential 
vectors. 

5.1. RESULTS FOR ATE REPEAT 

In Table 8 we compare our results with results using 
COM, a commercial ATPG tool. We first tabulate the 
data for the storage required (STORAGE). Both the 
size of the stuck-at test set and the number of transition 
test vectors for COM are presented. These were 
generated using the dynamic compaction option of 
COM. Thus, for C1908 we need to store a total of 526 
vectors. WT_GR used the un-compacted stuck-at test 
set generated using COM. The next two columns show 
the transition test chain lengths obtained using the 
proposed algorithm, with chain length 3 and 4 
respectively. Thus, for C1908 we need to store 353 
vectors or 346 vectors depending on the chain length 
used. The storage improvement obtained using 
transition test chains and the ATE repeat option is 
shown in column 11. Chain length 3 was assumed. 
Thus, for C1908, the storage improvement is calculated 
as 100* (526 – 353)/(526). Note the substantial storage 



 

reduction obtained in all cases. The average reduction 
in scan memory requirement is 46.5%.  

Columns 6 and 7 compare the transition fault coverage 
obtained by weighted transition graph (WT_GR) and 
COM. Note that there is no loss in fault coverage using 
WT_GR. Columns 8, 9 and 10 compares the CPU time 
required by COM and the two versions of our algorithm. 
For most of the circuits, COM is much faster. The last 
column shows changes in the test application time. 
Recall that for a given transition test chain all but the 
first and last vectors are scanned in twice. Therefore, 
the test application time gain for C1908 is computed as 
100*(526-2*353)/(526) = -34.22. This implies a 34.22% 
increase in test application time if transition test chains 
are used. However in a number of cases the test 
application time actually decreases by a significant 
amount. The average increase in test application time 
is 6.9%. 

5.2 EXPERIMENTAL RESULTS FOR EXCHANGE SCAN 

Benefits of using exchange scan, versus COM, are 
tabulated in Table 4. Transition test chains were 
computed using our heuristic with chain length set to 3. 
The improvement in both test application time and test 
data volume are the same and shown in column 4 of 
Table 4. Thus, for C1908, the test application time 
reduction is calculated as 100*(526 – 353)/(526) = 
32.89%. We note that now there is a substantial 
reduction in both the scan memory requirement and 
the test application time, vis-à-vis COM. The average 
reduction in test application time and data storage 
requirement is 46.5%. 

SUMMARY  

We presented techniques to reduce test data volume 
and test application time for transition faults. Results 
from Table 4 and Table 8 are shown graphically in 
Figure 8. For each circuit, the data storage requirement 
and test application time are plotted for the 
conventional ATE (COM), ATE repeat, and Exchange 
scan. The first technique combines the ATE repeat 
capability and the notion of transition test chains to 
reduce the test data volume by 46.5%, when compared 
with the conventional approach. The second technique 
that replaces the ATE repeat option with Exchange 
Scan improves both test data volume and test 
application time by 46.5%.  
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Table 1 

Name s@ Test Trans Test Expansion 

C1908 129 263 4.07 

C2670 116 198 3.41 

C3540 179 366 4.09 

C5315 124 248 4 

C6288 36 90 5 

C7552 237 378 3.19 
S5378 266 490 3.68 

S9234 410 837 4.08 

S13207 485 1002 4.13 

S15850 464 924 3.98 

S35932 75 137 3.65 

S38417 1017 1927 3.79 

S38584 727 1361 3.74 

 

 

 

Table 2 

Vector1 Vector2 Response 
V1 V2 R2 
V2 V3 R3 
V3 V4 R4 
V3 V5 R5 
V1 V3 R3 
V4 V3 R3 

 

 

Table 3 

(i) Shift In V1**; (ii) Apply; 
(i) Shift In V2**; (ii) Apply; (iii) Capture; 

(i) Shift In V2, Shift Out and Compare R2; (ii) Apply; 
(i) Shift In V3; (ii) Apply; (iii) Capture; 

(i) Shift In V3, (ii) Shift Out and Compare R3; (iii) Apply; 
(i) Shift In V4; (ii) Apply; (iii) Capture; 

(i) Shift In V3, Shift Out and Compare R4; (ii) Apply; 
(i) Shift In V5; (ii) Apply; (iii) Capture; 

(i) Shift In V1, Shift Out and Compare R5; (ii)Apply; 
(i) Shift In V3; (ii) Apply; (iii)Capture; 

(i) Shift In V4, Shift Out and Compare R3; (ii) Apply; 
(i) Shift In V3; (ii) Apply; (iii) Capture; 

(i) Shift Out and Compare R3; 

Table 4 

CIRCUIT STORAGE IMPROVEMENT 

  COM WT_GR DATA, APP TIME 

C1908 526 353 32.89 

C2670 396 185 53.28 

C3540 732 410 43.99 

C5315 496 310 37.50 

C6288 180 130 27.77 

C7552 756 428 43.38 

S5378 980 455 53.57 

S9234 1674 644 61.53 

S13207 2004 681 66.02 

S15850 1848 729 60.55 

S35932 274 224 18.29 

S38417 3854 1555 59.65 

Table 5 

Vector Excited  
Faults 

Detected  
Faults 

V1 a-s-0,b-s-1, 
c-s-1,d-s-0,e-s-0 

a-s-0, b-s-1 

V2 b-s-1,c-s-0, 
d-s-0,e-s-1 

c-s-0,d-s-0, 
e-s-1 

V3 a-s-1,c-s--1 a-s-1,c-s-1 
V4 a-s-1,b-s-0, 

d-s-1,e-s-0 
b-s-0,d-s-1, 

e-s-0 



 

 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Tester Memory Model 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. ATE Storage Model 

 

 

 

 
 
 
 
 
 
 
 
 
 

Figure 3. Hold Scan cell and Exchange scan timing 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Generic Weighted Transition Graph 
Algorithm 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Block diagram of Hold-Scan System 

 

 

 

 

 

Figure 6. Example Weighted Transition-Pattern 
Graph 
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GENERIC WEIGHTED TRANSITON GRAPH 
ALGORITHM 
Compute the transition-pattern graph; 
Initialize P to T = {T1…TN}; 
WHILE ((transition fault coverage < 100%) &&  

(iteration number < MAX))  
BEGIN 

Identify an edge (Vi, Vj) with the largest  
weight; 

Append vectors Vi, Vj to P; 
For all edges starting from Vj  

BEGIN 
Look for edge (Vj, Vk) having the  

largest weight; 
Append vectors Vj and Vk to the  

original stuck-at test set; 
END 
Update the weighted transition graph and  

the faultlist; 
END 
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Figure 7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8 
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Table 6 

2 3 4 5 6 7 CIRCUIT 
ID AC ID AC ID AC ID AC ID AC ID AC 

S344 38 38 64 64 90 72 111 89 143 89 164 103 
S382 24 24 43 43 63 44 75 56 92 61 111 61 
S832 60 60 87 87 114 89 136 95 158 95 180 103 

S1196 47 47 78 78 116 93 146 105 177 105 208 119 
S1423 36 36 60 60 79 79 106 95 129 118 153 124 
S5378 59 59 103 103 149 142 190 144 235 172 284 176 

S35932 1072 1072 1175 1175 1270 1247 1382 1261 1475 1312 1564 1334 
S38417 132 132 190 190 274 249 380 285 439 296 500 319 

Table 7 

Without essential vectors With essential vectors CIRCUIT S@ 
Set Tran. 

Tests 
Comp. 
Tests 

Time 
(s) 

TFC 
(%) 

Tran. 
Tests 

Comp. 
Tests 

Time 
(s) 

TFC 
(%) 

C1355 198 928 285 3.51 99.77 915 270 2.82 99.77 
C1908 143 918 318 4.57 99.67 966 298 3.32 99.67 
C3540 202 1222 515 25.43 96.27 1181 514 22.06 96.27 
C5315 157 816 342 11.80 99.54 762 313 9.79 99.54 
C6288 141 310 122 5.60 99.19 334 120 5.70 99.19 
S344 31 135 63 0.37 100 207 64 0.37 100 
S832 179 988 310 4.36 99.20 937 292 2.78 99.20 

S1196 197 1004 362 5.24 99.97 1022 358 4.38 99.97 
S1423 97 566 186 2.25 99.11 528 177 2.09 99.11 
S5378 332 1672 722 35.73 98.40 1685 722 29.76 98.40 

S35932 78 542 196 133.13 90.50 633 197 133.01 90.50 
S38417 1207 5142 2682 1073.03 99.66 5208 2686 858.85 99.66 

Table 8 

CIRCUIT STORAGE TF COV CPU TIME IMPROVEMENTS 

  COM WT_GR COM WT_GR COM WT_GR STORAGE APP TIME 

   s@ TRAN  3 4       3 4     

C1908 177 526 353 346 99.7 99.72 4.2 3.33 3.47 32.89 -34.22 

C2670 167 396 185 184 78.6 79.26 4.3 9.25 9.99 53.28 6.57 

C3540 247 732 410 419 82.9 87.62 6.8 19.45 20.11 43.99 -12.02 

C5315 213 496 310 323 96.6 97.05 4.8 10.20 10.77 37.50 -25.00 

C6288 47 180 130 118 99 98.54 3.6 3.72 3.62 27.77 -44.44 

C7552 348 756 428 431 91 91.61 11 28.34 28.21 43.38 -13.23 

S5378 391 980 455 464 86.6 87.51 5.3 37.66 37.76 53.57 7.14 

S9234 630 1674 644 646 68.6 70.58 14.7 319.18 324.20 61.53 23.06 

S13207 662 2004 681 679 80.5 82.29 27.4 292.89 295.30 66.02 32.06 

S15850 641 1848 729 749 85 85.76 28 350.00 358.58 60.55 21.10 

S35932 81 274 224 209 90 90.33 94.3 87.56 86.30 18.29 -63.50 

S38417 1449 3854 1555 1547 89.9 91.19 116 1416.82 1406.83 59.65 19.30 

 
                                                 
 


