

Extended Forward Implications and Dual Recurrence Relations to
Identify Sequentially Untestable Faults*

Manan Syal (msyal@vt.edu)

Intel Corporation
Hillsboro, Oregon, US

Rajat Arora (raarora@cadence.com)
Cadence Design Systems
San Jose, California, US

Michael S. Hsiao (mhsiao@vt.edu)
Department of ECE, Virginia Tech

Blacksburg, Virginia, US

Abstract

In this paper, we make two major contributions: First, to
enhance Boolean learning, we propose a new class of logic
implications called extended forward implications. Using a novel
concept called implication-frontier, extended forward implications
efficiently capture those non-trivial relationships which previous
techniques failed to identify. Secondly, we introduce the concept of
dual recurrence relations in sequential circuits, and propose a new
theorem which uses this concept to quickly identify sequentially
untestable faults. Our tool based on the proposed extended forward
implications and the new theorem was applied to identify untestable
faults in benchmark circuits. Significantly more untestable faults
than reported by earlier techniques, low memory overhead and low
computational complexity are the noteworthy features of our tool.

1. Introduction

Logic implications capture the effect of asserting logic values
throughout a circuit. Over the past few decades, logic implications
have been successfully applied in several areas of electronic design
automation (EDA) including: test-pattern-generation [1-3], logic
and fault simulation [4], fault diagnosis [5], logic verification [6-8],
logic optimization [9-10], untestable fault identification [11-15],
etc. As a powerful implication engine can have a wide impact on
EDA applications and tools, much effort has been invested in
efficient computation of implications.

Schulz et al. were the first to improve the quality of implications
by computing indirect implications in SOCRATES [1]. To further
the application of these indirect implications, static learning was
extended to dynamic learning [16] [17]. Cox et al. introduced the
use of 16-valued algebra and reduction lists to determine node
assignments in [18]. A transitive closure procedure on implication
graph was proposed by Chakradhar et al. in [19]. A complete
implication engine based on recursive learning was proposed by
Kunz et al. [20] that can capture all pair-wise relations in a circuit.
However, to keep simulation time within reasonable limits, the
recursion depth is generally limited to low values. A graphical
representation to store implications was proposed by Zhao et al.
[21] and the concept of indirect implications based on transitivity of
implications, along with extended backward implications were used
to increase the number of implications learnt.

We propose an efficient technique to enhance Boolean learning
through static implications, and present a new class of indirect
implications which we refer to as extended forward implications.
We introduce a novel concept called “implication-frontier or I-
Frontier” and use it to efficiently identify those relationships (via
extended forward implications) which were missed by previous
techniques. While numerous applications can benefit from
implications, in this paper, we demonstrate the impact of extended
forward implications by applying them to identify untestable faults.
The significance of our new learning criterion is clearly presented
through the substantial leap achieved in the number of sequentially
untestable faults identified.

Untestable faults are faults for which there exists no test

sequence that can simultaneously excite the fault-effect and
propagate it to a primary output (PO). In combinational circuits,
untestable faults result only from redundant logic; in sequential
circuits, untestable faults may also result from unreachable states.
Automatic test pattern generators (ATPG) can spend exponential
amount of time targeting untestable faults (especially for sequential
circuits) before aborting or eventually identifying them as
untestable. Thus, the performance of fault-oriented tools such as
test-pattern-generators and fault-simulators can be enhanced if the
knowledge of untestable faults is available a priori. In addition, the
information about untestable faults can also benefit other
applications such as combinational equivalence checking [6], logic
optimization, etc.

Techniques used for untestable fault identification can broadly be
classified into fault-oriented methods based on ATPG [22-24], and
fault-independent techniques [11-15] based on conflict analysis. In
general, ATPG-based methods outperform fault-independent
methods for small circuits; however, the computational complexity
of branch-and-bound algorithms (ATPG) makes them impractical
for large sequential circuits. Conflict based analysis has thus been
researched and improved over the years. Iyer et al. introduced FIRE
[11] as a technique to identify untestable faults as faults that require
a conflict on a single line as a necessary condition for their
detection. FIRES [12] was introduced as an extension of FIRE to
identify untestable faults in sequential circuits without explicit
search. MUST [13] introduced by Peng et al. was built over the
framework of FIRES as a fault-oriented approach to identify
untestable faults. However, the memory requirement for MUST can
be exponential. Hsiao [14] presented a fault-independent technique
to identify untestable faults using multiple-node impossible value
combinations. Recently, the approach in [14] was improved by Syal
and Hsiao [15]. They also introduced the concept of recurrence
relations that aid in identifying sequentially untestable faults. While
recurrence relations are useful, we believe that their full potential
has not been explored in [15].

In addition to enhancing learning through extended forward
implications, in this paper we explore recurrence relations further.
We present a new concept called dual recurrence relations, and
propose a powerful theorem that uses this concept to bring about an
additional increase in sequentially untestable faults. Since
sequentially untestable faults form the performance bottleneck
(speed and fault-coverage) for test pattern generation, the impact of
identifying a large set of untestable faults can be significant. We
demonstrate the usefulness of our results in the context of the
performance gain provided by our tool to ATPG. Finally, as shown
through the experiments, low computational overhead makes our
tool scalable and practical.

The rest of the paper is organized in the following manner:
Section 2 discusses basic concepts about static implications and
single-line-conflict analysis. Section 3 presents extended forward
implications and in Section 4 we propose a new theorem that uses
dual recurrence relations to identify untestable faults. Section 5
illustrates experimental results, and section 6 concludes the paper.
 *supported in part by NSF grants 0196470, 0305881, 0417340, and an Intel grant

2. Preliminaries

In this section, we give an overview of static logic implications
[21] and single line conflict analysis [11].

2.1 Static Logic Implications

Logic implications identify the effect of asserting logic values
within a circuit. In the past, static logic implications have broadly
been classified into direct, indirect and extended backward
implications [21]. Direct implications for g = v (assigning logic v to
gate g) are logic relations that can be identified without circuit
simulation. Unlike direct implications, indirect and extended-
backward implications are non-trivial, require circuit simulation,
and identify implications on circuit elements which may not be
directly connected to g. In the discussion that follows, we use the
following terminology for implications [21]:

a) Impl[N,v,t]: Set of implications resulting from assigning logic
value v to gate N in time frame t.

b) [N,v,t] ���� [M,w,t1]: Assigning logic value v to N in time frame
t implies that M would be assigned value w in time frame t1.

To better understand the concept of direct, indirect and extended
backward implications, consider the following example:

Example 1: Consider the implications of {A = 1} in Figure 1. The
set {(B = 0), (C = 0)} forms the direct implications for {A=1}
(relationships learnt without circuit simulation). Next, {B = 0} and
{C = 0} together imply {D = 1}. Since {(B = 0), (C = 0)} ∈
Impl[A, 1, 0], [A, 1, 0] � [D, 1, 0]. This is an indirect implication
and can be learnt through logic simulation of the circuit under the
implications of {A = 1}.

Finally, since {A = 1} is currently unjustified, it forms a candidate
for the application of extended backward implications. Extended
backward implications are obtained by simulating {A = 1} together
with each of its unspecified inputs. Applying extended backward
implications on {A = 1}, we learn that [A, 1, 0] � [G, 0, 0]. Thus,
the set Impl[A, 1, 0] is {(A=1), (B = 0), (C = 0), (D = 1), (G = 0)}.�

We store these implications as a graph [21] because this
graphical representation can efficiently be applied to enumerate
sequential implications without suffering from memory explosion.

2.2 Single Line Conflict Analysis

The underlying concept behind single line conflict analysis [11]
is the following: faults that require a conflict on a single line as a
necessary condition for their detection are untestable. In this
analysis, for every gate g (or stem s), two sets are computed:

Set0: Set of faults untestable with g = 0.
Set1: Set of faults untestable with g = 1.

The faults in Set0 (Set1) require the assignment of g = 1 (g = 0) as
a necessary condition for detection. The set of untestable faults then
is the intersection of the two sets. For better understanding, consider
Example 2.

Example 2: In the following discussion, assume that g/v denotes
the fault ‘g stuck at v’. Consider stem x2 in the circuit shown in
Figure 2. The set of faults that become untestable (unexcitable and
unobservable) when x2 = 0 are: Set0: {x2/0, x2”/0, x2’/0}.
Similarly, the set of faults that would become untestable when x2=1
are: Set1: {x2/1, x2”/1, x2’/1, y1/1, y2/1, x1/0, x1/1, x2’/0, x2’’/0, y1/0}.
The faults in the intersection of Set0 and Set1, i.e. {x2’/0, x2’’/0}
would be untestable according to single-line-conflict analysis (these
faults require conflicting assignments on x2 for their detection). �

As observed from the example above, untestable faults are
identified via identification of unexcitable (y1/1, y2/1 etc. are
unexcitable when x2 = 1) and unobservable nets (x2’/0 and x2’/1 etc.
are unobservable when x2 = 1). It should also be noted that the
implications of x2 = 0 and x2 = 1 are used to enumerate unexcitable
and unobservable nets. For sequential circuits, we implement
unobservable net identification by the approach indicated in [25] to
rule out false positives due to fault-reconvergence across multiple
time-frames (false positives refers to declaring a net as
unobservable, when it is actually observable).

3. Enhancing Implications

For single-line conflict analysis (and also for other conflict based
approaches [13-15]), unexcitable/unobservable nets due to a
particular logic assignment {g = v} are enumerated using
implications of {g = v}. Therefore, increasing the set of logic
implications would enable identification of potentially more
unexcitable and unobservable nets due to a given assignment,
translating to an increased number of untestable faults identified.

In this section, we propose a new technique to improve Boolean
learning. This results in a new class of implications, termed as
extended forward implications. Before explaining extended forward
implications, we define a new concept called implication frontier (I-
Frontier), and provide a motivating example.

Definition 1: Implication Frontier (I-Frontier)
The I-Frontier of a logic assignment g = v is the set of gates that are
currently unspecified but each gate in the set has one or more inputs
implied by g = v. If gik represents the kth input of an n-input gate gi,
then I-Frontier can be represented as:
I-Frontier[g=v]: {gi | gi ∉Impl[g,v,0], ∃gik ∈ Impl[g,v,0], 1� k� n} �

The motivation behind extended-forward implications can be
understood through the following example:

Example 3: A = 1 in Figure 3 does not imply any assignments (by
direct, indirect and extended backward implications). Thus, Impl[A,
1, 0] = {(A, 1, 0)} (reflexive property).

The I-Frontier of A = 1 consists of two gates: gate C and gate G.
Each of these gates has one specified input (gate A), and one
unspecified input (gate B). Let us focus on gate C. If we set gate B

x1
x2

x2’

x2”
y1 y2

Figure 2: Illustration of single-line-conflict analysis

1 1 0

0

0

A

C

B

D G

E

F

Indirect Implication
Extended Backward Implication

Figure 1: Circuit fragment to illustrate implications

A=1

E

C

D

H

G

Figure 3: Motivation for extended forward implications

B

F

to logic 0 (the unspecified input of gate C), and simulate the circuit
with Impl[A,1,0]∪ Impl[B,0,0], a set (R0) of new logic assignments
can be learnt: {(C = 0), (G = 1), (H = 0)}.
Next, if we set B = 1, and again simulate the circuit, another set
(R1) of new assignments can be learnt: {(C = 1), (D = 1), (E = 1), (F
= 1), (G = 0), (H = 0)}.
Now, {Impl[A,1,0] ∪ Impl[B,0,0]} implies R0 while {Impl[A,1,0]
∪ Impl[B,1,0]} implies R1. Thus, R0 ∩ R1 ∈ {(Impl[A,1,0] ∪
Impl[B,0, 0]) ∩ (Impl[A,1,0] ∪ Impl[B,1,0])}.
Or, R0 ∩ R1 ∈ {Impl[A,1,0] ∪ (Impl[B,0,0] ∩ Impl[B,1,0])}, since
Impl[B,0,0] ∩ Impl[B,1,0] = φ, R0 ∩ R1 ∈ Impl[A,1,0].
Finally, because R0 ∩ R1 = (H = 0), we can learn that [A,1,0] � [H,
0, 0]. By setting the unspecified input of C (a gate in the I-
Frontier[A=1]) to both logic values, we were able to identify a new
logic implication which was missed by all of direct, indirect and
extended backward implications. �

The main idea behind extended forward implications is to learn
new relations using the I-Frontier for an assignment {g = v}. Now
we formally define extended forward implications (EF for short):

Definition 2: Extended Forward (EF) Implications
If gi ∈ I-Frontier[g = v], then:

a) If gik is the only input of gi that is currently unspecified,
 R0 = logic_simulate(Impl[g, v, 0] ∪ Impl[gik, 0, 0])
 R1 = logic_simulate(Impl[g, v, 0] ∪ Impl[gik, 1, 0])

b) If gi has more than one unspecified input,
 R0 = logic_simulate(Impl[g, v, 0] ∪ Impl[gi, 0, 0])
 R1 = logic_simulate(Impl[g, v, 0] ∪ Impl[gi, 1, 0])

EF{g = v} = R0 ∩ R1; Impl[g, v, 0] ∪= EF{g = v}. �

The motivation behind extended-forward (EF) implications is to
push the envelope of implications for {g = v} beyond the I-Frontier.
For case (a) above, the attempt to go beyond the I-Frontier is
performed by trying both logic values for the unspecified input of gi
{gik = 0 and gik = 1} and taking an intersection of the set of new
logic assignments for each logic value. For case (b) more than one
inputs of gi are unspecified: it would be too expensive
(computationally) to try the complete value combinations for all
unspecified inputs. Instead, both logic values for the gate output {gi
= 0 and gi = 1} are simulated. Since the underlying concept behind
extended forward implication tries to extend implications beyond
the point forward implications reach (bounded by the I-Frontier),
hence the name.

Now we provide important characteristics of EF implications and
I-Frontier through the following Lemmas. As explained later, these
characteristics are used in making EF implications efficient.

Lemma 1: If Impl[g1, v, 0] ⊇ Impl[g2, w, 0], I-Frontier{g1 = v} ⊇
I-Frontier {g2 = w}.
Proof: By contradiction, assume that Impl[g1, v, 0] ⊇ Impl[g2, w,
0] and I-Frontier{g1 = v} ⊂ I-Frontier {g2 = w}. Thus, there exists
at-least one gate gi, such that gi ∈ I-Frontier{g2 = w} and gi ∉ I-
Frontier{g1 = v}. By definition of I-Frontier, there must exist at-
least one input gik of gi such that gik ∈ Impl[g2, w, 0] and gik ∉
Impl[g1, v, 0]. However, this would violate our initial assumption
that Impl[g1, v, 0] ⊇ Impl[g2, w, 0]; which proves the Lemma. �

Lemma 2: If Impl[g1,v,0] ⊇ Impl[g2,w,0], EF{g1 = v}⊇EF{g2 = w}.
Proof: Given Impl[g1,v,0] ⊇ Impl[g2,w,0]. Consider Definition 2: to
enumerate EF{g1 = v} and EF{g2 = w}, I-Frontier{g1 = v} and I-
Frontier{g2 = w} are used. For each gate gi in these I-Frontiers, R0
and R1 are created and intersected. Thus, the number of EF
implications learnt is directly proportional to the size of the I-
Frontier, and the size of R0 and R1 for each gate in the I-Frontier.
From Lemma 1, since Impl[g1, v, 0] ⊇ Impl[g2, w, 0], I-Frontier{g1

= v} ⊇ I-Frontier {g2 = w}. Also, since R0 and R1 are proportional
to Impl[g1, v, 0] and Impl[g2,w, 0], it follows that R0 and R1 with
{g1 = v} will be a superset of the corresponding sets for {g2 = w}.
Thus, EF{g1 = v} ⊇ EF{g2 = w}. �

While learning additional Boolean relationships through EF
implications can be useful, this learning should not come at the cost
of high computational overhead. Observe from equations (1) and (2)
that the computation of EF{g = v} involves two passes of logic
simulation corresponding to each gate in the I-Frontier of {g = v}.
Although EF implications can significantly increase the number of
implications learnt, the cost associated with logic simulation can
potentially become prohibitive as circuit size grows. The time spent
in logic simulation is worthwhile if all the gates in the I-Frontier
result in new EF implications. However, we observed that a large
subset of gates in the I-Frontier do not result in identification of
new implications, but still account logic simulation time. Therefore,
techniques that can quickly identify and prune out such ‘useless’
gates from the I-Frontier is desirable. In the following discussion,
we describe two efficient techniques for this purpose.

3.1 EF Pruning Techniques

A. Pruning Based on I-Frontier: First, we present an important
characteristic of I-Frontiers through Lemma 3. This characteristic
can prove vital not only in improving the efficiency of learning EF
implications, but also accelerate any other Boolean learning
technique based on simulation (e.g. extended backward learning).

Lemma 3: If [I-Frontier{g1 = v} ∩ I-Frontier{g2 = w}] = ∅,
simulating {Impl[g1, v, 0] ∪ Impl[g2, w, 0]} would not result in the
identification of any new value assignments.

Proof: We prove this Lemma by contradiction. Without loss of
generality, consider a sequential circuit with only two-input gates
and flip-flops. Refer to Figure 4 for the following discussion.

Statement of contradiction: By contradiction assume [I-Frontier{g1
= v} ∩ I-Frontier{g2 = w}] = ∅, but a set of new logic assignments,
S, is obtained on simulating Impl[g1, v, 0] ∪ Impl[g2, w, 0].

Let, gi ∈ S (i.e. {gi = vi} ∈ S is learnt through simulating {Impl[g1,
v, 0] ∪ Impl[g2, w, 0]}). Note that if {gi = vi} ∈ S, {gi = vi} ∉
{Impl[g1, v, 0] ∪ Impl[g2, w,0]}, and vice versa.

Step 1: Since gi ∈ S, either {gi = 1} ∈ S or {gi = 0}∈ S. For ease of
understanding, let gi be AND gate as shown in Figure 4, and have
two gates gi1 and gi2 as its inputs.

Case A: Assume {gi = 1} ∈ S. Now, {gi = 1} can be learnt
through the simulation of {Impl[g1, v, 0] ∪ Impl[g2, w, 0]}, if:

I. gi1 = 1 and gi2 = 1 are specified prior to logic simulation;
OR

II. gi1 = 1 and gi2 = 1 are learnt during logic simulation.

Consider part I. Both gi1 = 1 and gi2 = 1 can be specified prior
to logic simulation only if one of these conditions is true:

1. {(gi1 = 1), (gi2 = 1)} ∈ Impl[g1, v, 0]
2. {(gi1 = 1), (gi2 = 1)} ∈ Impl[g2, w, 0]
3. (gi1 = 1) ∈ Impl[g1, v, 0] and (gi2 = 1) ∈ Impl[g2, w, 0]
4. (gi1 = 1) ∈ Impl[g2, w, 0] and (gi2 = 1) ∈ Impl[g1, v, 0]

If either condition (1) or (2) were true, then (gi = 1) ∈
{Impl[g1, v, 0] ∪ Impl[g2, w, 0]} (by indirect implications).
Since {gi = 1} ∈ S, conditions (1) and (2) are not possible. If
either condition (3) or (4) were true, then by Definition 1, gi ∈
[I-Frontier{g1 = v} ∩ I-Frontier{g2 = w}]. This conflicts the
assumption that [I-Frontier{g1 = v} ∩ I-Frontier{g2 = w}] = ∅.

Thus, part I cannot be true if {gi = 1} ∈ S. As a result, both gi1
= 1 and gi2 = 1 must also be learnt during logic simulation.

---- (1)

---- (2)

Case B: Assume that {gi = 0} ∈ S. {gi = 0} can be learnt through

the simulation of {Impl[g1, v, 0] ∪ Impl[g2, w, 0]}, if:
I. gi1 = 0 or gi2 = 0 is specified prior to logic simulation;
 OR
II. gi1 = 0 or gi2 = 0 is learnt during logic simulation.

 Again, consider Part-I. If either gi1 = 0 or gi2 = 0 is specified
prior to logic simulation, then {gi = 0} will also be specified
prior to simulation. But, by assumption, {gi = 0} ∈ S (learnt
after simulation). As a result, part I cannot be true. Thus, either
{gi1 = 0} or {gi2 = 0} must be learnt during logic simulation.

From Case A and Case B, if gi ∈∈∈∈ S, at least one gate at the input
of gi must also be learnt through simulation. That is, either gi1 ∈
S and/or gi2 ∈ S. Assume gi2 ∈ S.

Step 2: The arguments used for gi can also be applied for gi2. Given
[I-Frontier{g1 = v} ∩ I-Frontier{g2 = w}] = ∅, gi2 ∈ S is possible
only if there exists some gate gkj at the input of gate gi2 such that gkj
∈ S. Since, gi ∈ S is possible only if gi2 ∈ S, by transitivity, it
follows that gi ∈ S is possible only if gkj ∈ S.

Step 3: Applying this argument inductively, we would reach gate
gfinal in the input-cone of gi such that both inputs of gfinal are primary
inputs (say PI1 and PI2). Note that, as shown in Figure 4, gfinal may
be reached after passing through several gates, which may include
flip-flops. From induction, gi ∈ S is possible only if gfinal ∈ S.
From Step 1, if gfinal ∈ S either PI1 ∈ S or PI2 ∈ S. However, since
both PI1 and PI2 are primary inputs, new assignments on PI1 or PI2

cannot be learnt through simulation. That is, PI1 ∉ S and PI2 ∉ S.
As a result, gfinal ∉ S. Since gi ∈ S is possible only if gfinal ∈ S, gi ∉
S. Thus, if [I-Frontier{g1 = v} ∩ I-Frontier{g2 = w}] = ∅, no new
assignments can be identified by simulating {Impl[g1, v, 0] ∪
Impl[g2, w, 0]}. �

Let us understand how Lemma 3 can be used to compute EF
implications more efficiently. From equations (1) and (2) in the
previous section, the implications of g = v are combined with the
implications of gate gik in (1) and gi in (2), followed by simulation.

Proposition 1: Using Lemma 3, new EF implications would not be
learnt if:

a) For equations (1): [I-Frontier{g = v} ∩ I-Frontier{gik = 0}] = ∅ or
if [I-Frontier{g = v} ∩ I-Frontier{gik = 1}] = ∅;

b) For equations (2): [I-Frontier{g = v} ∩ I-Frontier{gi = 0}] = ∅ or
if [I-Frontier{g = v} ∩ I-Frontier{gi = 1}] = ∅

In either case, gi can be dropped from the I-Frontier of {g = v}
without loss of new EF implications. �

Consider the impact of Lemma 3: by performing a simple check
(intersection) on the I-Frontiers, Lemma 3 enables the identification
those gates which do not contribute to any new learning via EF

implications. By removing such gates from the I-Frontier, saving in
simulation cost is achieved. We observed that this pruning
technique reduced the execution time of learning implications by as
much as 30% - 40% for benchmark circuits.

Consider the following example for an illustration of Proposition 1.
Example 4: Figure 5 shows the combinational portion of a circuit
and the I-Frontiers of some nets of interest.

By direct, indirect and extended backward implications, Impl[A, 1,
0] = {(A=1), (c = 1), (d = 1)}. Assume that EF{A=1} need to be
enumerated. Candidates in the I-Frontier for {A=1} are {B, C, D}.
First consider candidate B. Since [I-Frontier{A=1} ∩ I-Frontier
{b=0}] = ∅, Proposition 1 allows us to drop gate B from I-
Frontier{A=1}. It can be verified that simulating Impl[A, 1, 0] ∪
Impl[b, 0, 0] would not result in any new logic assignments. Now,
consider candidates C and D. The unspecified input of gates C and
D is gate e. Since [I-Frontier{A=1} ∩ I-Frontier {e = 1}] � ∅ and
[I-Frontier{A=1} ∩ I-Frontier {e = 0}] � ∅, EF implication process
is performed for both candidates C and D. EF for candidates C and
D results in identification of new implications ({G = 1}, {I = 0}). �

B. Pruning Based on Value: In this heuristic, we use the
characteristics of EF implications described earlier. Specifically,
using Lemma 2, we propose the following Lemma to further prune
out those gates which do not contribute to identification of EF
implications.

Lemma 4: Assume that the value of gate gi is controlled to logic w
when one or more inputs gik = c. If:
(i) EF has been performed for all inputs gik = c, and
(ii) extended backward implications are performed for {gi = w};
Then: new EF implications would not be obtained for gi = w.

Proof: Without loss of generality, assume gi to be AND gate. Let
gik be the gate at kth input of gate gi. Thus, ∀k {gik = 0} � {gi = 0}
(gi is controlled to logic 0, when one or more inputs gik = 0). As a
result, ∀k Impl[gik, 0, 0] ⊇ Impl[gi, 0, 0]. From Lemma 2, ∀k EF{gik
= 0} ⊇ EF{gi = 0}.
Let us assume that gate gi has n gates gi1 - gin as inputs. Thus,
 [EF{gi1 = 0}] ⊇ [EF{gi = 0}] --------------- (a)
Intersecting EF{gi2 = 0} on both sides of equation (a),
 [EF{gi1 = 0} ∩ EF{gi2 = 0}] ⊇ [EF{gi = 0} ∩ EF{gi2 = 0}]-- (b)
Since EF{gi2 = 0} ⊇ EF{gi = 0} (note right side of eq. (b)),
 [EF{gi1 = 0} ∩ EF{gi2 = 0}] ⊇ [EF{gi = 0}] ---------- (c)
Performing this intersection operation for all inputs,
 [EF{gi1 = 0} ∩ EF{gi2 = 0} … ∩ EF{gin = 0}] ⊇ EF{gi = 0}--(d)
Assume that each term on the left-hand-side has been individually
evaluated (i.e. EF{gik=0} has been evaluated for all inputs). By
definition of extended backward implications, left side of equation
(d) can be identified by performing extended backward implications
on {gi = 0}. Thus, equation (d) implies that if EF{gik = 0} has been
performed for all inputs of gi, performing extended-backward
implications on {gi = 0} would be sufficient; new EF implications
would not be identified for {g = 0}. Similar reasoning applies to
other gates for which gik = c controls the output of gi to logic w (e.g.
if gi is OR gate, any input gik = 1 controls output of gi to logic 1). �

I-Frontier{A=1} = {B, C, D}
I-Frontier{e = 1} = {C, D}
I-Frontier{e = 0} = {D, F, G}
I-Frontier{b = 1} = {B}
I-Frontier{b = 0} = {E}

A

C

B

F

G
I

E H
a
b

c
d
e
f

Figure 5: Illustration of pruning based on I-Frontier

D

FF1

FF2

FFn

gi
gi1

gi2 gkj

gfinal
PI1
PI2

Figure 4: Illustration for Lemma 3

g1

g2

Consider the impact of Lemma 4: For any gate gi with n inputs
gi1-gin, once both conditions in Lemma 4 are satisfied, EF{gi = w}
can be completely avoided. By not performing EF{gi = w}, logic
simulation is avoided for all gates in the I-Frontier for {gi = w}.

For better understanding, consider the following example:

Example 5: Let us identify EF{A = 0} in Figure 6 using two
procedures: in procedure 1 we explicitly perform EF{A=0} using
Definition 2 and in procedure 2, we use Lemma 4.

Procedure 1: Since B is the only gate in the I-Frontier of {A=0},
EF{A=0} would be enumerated as:
 R0 = logic_simulate(Impl[A, 0, 0] ∪ Impl[c, 0, 0]);
 Or, R0 = {(B = 0), (C = 1), (D = 0)}
 R1 = logic_simulate(Impl[A, 0, 0] ∪ Impl[c, 1, 0])
 Or, R1 = {(B = 1), (D = 0)}
Thus, EF{A=0} = R0 ∩ R1 = {(D = 0)}.

Procedure 2: It can be verified that EF{a = 0} = EF{b = 0} = {(D =
0)}. Now, by performing extended backward implications on
{A=0}, we can directly learn the implication [A, 0, 0] � [D, 0, 0].
Unlike Procedure 1, Procedure 2 learns EF{A=0} without explicitly
performing logic simulation. Once EF{a=0} and EF{b=0} are
performed, by Lemma 4, only extended backward implications on
{A=0} are needed to identify EF{A=0} (eliminating the need for
additional logic simulations). �

This pruning technique based on value is more powerful than the

pruning based on I-Frontier and helped achieve an additional 10% -
15% reduction in execution time on top of the latter. These two
pruning techniques together make EF implications an efficient way
of improving the learning capabilities of our implication engine.
Shown below is complete algorithm for enumerating implications:

/*Implication Engine*/

 For all gate assignments in levelized order ({g = w}, w ∈ {0,1}),
 1. Perform Direct, Indirect and Extended Backward Implications
 2. If w is the non-controlling value for g (Pruning based on value)
 2.1. Identify I-Frontier for g = w
 2.2. Prune I-Frontier based on Proposition 1
 2.3. Perform EF implications using eqns (1) and (2)

4. Theorem for Sequentially Untestable Faults

Learning non-trivial Boolean relationships via EF implications
can prove instrumental only when these relationships are analyzed
and applied suitably. In this section, we propose a new Theorem
that efficiently utilizes the extra knowledge provided by EF
implications towards identifying untestable faults. This Theorem is
based on a new concept called dual recurrence relations. Dual
recurrence relations explore certain unique characteristics of
sequential implications to help derive conclusions about untestable
faults. Before discussing the new theorem, the following two terms
[15] need to be defined to facilitate better understanding of the
theorem.

Definition 3: The value assignment g = v is said to be unachievable
if there exists no input sequence that can set gate g to value v with
the initial state of all flip-flops being unknown or X. �

Definition 4: A recurrence relation exists for a gate g with value v
if [g, v, t] � [g, v, t-t1]. For t1 < 0, this relation is called a forward
recurrence relation, while for t 1 > 0, the relationship is called a
backward recurrence relation. �

Syal and Hsiao [15] used the following Lemma based on the
knowledge of recurrence relations to identify unachievable
assignments:
For a gate g, if
a) The backward recurrence relation exists for g = v, and
b) g = v is not a constant assignment;
Then the value assignment g = v is unachievable.

If condition (a) is true for a gate g (i.e. a backward recurrence
relation exists for {g = v}), logic simulation is performed in [15]
using random vectors (starting from unknown initial state) to
determine if condition (b) also holds true for g. Condition (b) is
declared true only if g = v’ is achieved during simulation (v’
represents the logical compliment of logic value v; {v, v’} ∈ {0,
1}). When g = v’ is achieved, conditions (a) and (b) evaluate to
true, and assignment g = v is declared as unachievable according to
the Lemma [15].

However, it is possible that during simulation (as employed in
[15]) gate g always remains un-initialized, i.e. g always remains X.
In such a scenario, the simulation based technique described in [15]
cannot make any decisions regarding the controllability of gate g. In
this paper we present a more powerful theorem than the Lemma in
[15] which would enable meaningful decisions to be made about the
controllability of a gate without performing random simulation.

We first define dual-recurrence relations and discuss Lemma 5
before stating the Theorem.

Definition 5: A dual recurrence relation exists for a gate g if a
backward recurrence relations exist for {g = v} and {g = v’} (i.e. [g,
v, t] � [g, v, t-t1] and [g, v’, t] � [g, v’, t-t1] for t1 > 0). �

Definition 6: If {g = v} is a constant assignment, {g = v} is true in
every time frame of the sequential circuit after circuit
synchronization. If the sequential machine powers up into an illegal
starting state that sets gate g to v’, the machine eventually goes into
a state that sets g = v after which g retains value v in all time frames.

Lemma 5: If a dual recurrence relation exists for a gate g, then
neither {g = v} nor {g = v’} is a constant assignment.
Proof: If a dual recurrence relation exists for gate g, then
[g, v, t] � [g, v, t-t1] ---------

 (a) AND
[g, v’, t] �[g, v’, t-t1] --------- (b)
Applying contrapositive law to (b), we obtain
[g, v, -t] � [g, v, t1-t] --------- (c)
Adding (2*t) to the time portion of equation (c),
[g, v, t] � [g, v, t+t1] ------- (d)
Equations (a) and (d) indicate that if the sequential machine enters a
state that sets {g = v}, the assignment {g = v} would appear
indefinitely at an interval of every t1 time frames. Thus, according
to Definition 6, it can be concluded that the assignment {g = v’}
cannot be constant. Using a similar argument, since the dual
recurrence relation exists on gate g, {g = v} cannot be constant. �

Theorem 1: If a dual recurrence relation exists for a gate g, then
both logic assignments {g = v} and {g = v’} are unachievable.

Proof: Since a dual relationship exists for gate g, [g, v, t] � [g, v, t-
t1] (with t1 > 0). Also, since {g = v} is not constant (Lemma 5), then
according to the Lemma presented in [15], {g = v} is unachievable.
Using a similar argument, {g = v’} is unachievable. �

 It should be noted that if a dual recurrence relation exists for gate
g, random logic simulation employed in [15] would return with {g
= X}. In such a scenario, the Lemma in [15] would not be able to
make any decision about the controllability characteristics of g.

A B

C

D

a
b

c

I-Frontier{A= 0} = {B}
I-Frontier{a = 0} = {B}
I-Frontier{b = 0} = {B}
I-Frontier{c = 1} = {B, C}
I-Frontier{c = 0} = {B}

Figure 6: Illustration of pruning based on value

However, Theorem 1 enables us to quickly learn that both logic
assignments on gate g (g = v and g = v’) are unachievable. As
shown in the results, this additional knowledge results in a
significant increase in the number of untestable faults identified.

Finally, we provide the following Lemma that applies Theorem 1
towards identification of untestable faults.

Lemma 6: If a dual recurrence relationship exists for gate g, all
faults that require {g = v} or {g = v’} as a necessary condition for
their detection would be untestable.

Proof: Since a dual recurrence relation exists for gate g,
assignment g = v is unachievable. Thus, by the hypothesis on
unachievable nets presented in [15], all faults that require
assignment {g = v} as a necessary condition for their detection are
untestable. Similar argument can be used for {g = v’}. �

Implementation of the Theorem: Implementation of Theorem 1
does not add any memory overhead or significant overhead in terms
of execution time (unlike Lemma in [15] which required random
logic simulation). The algorithm for implementation of Theorem 1
(on top of the Lemma proposed in [15]) is shown below:

For all gates assignments (g = v)
1. Perform transitive closure on {g = v} to obtain Impl[g, v, 0]
2. If [g, v, 0] � [g, v, -t1], and [g, v’, 0] � [g, v’, -t1], mark {g =

v} and {g = v’} as unachievable and skip step-3;
3. If [g, v, 0] � [g, v, -t1]

a. Perform logic simulation using k random vectors (In our
analysis, k = 10,000)

b. If {g = v’} is achieved during simulation, mark {g = v} as
unachievable (according to Lemma in [15]);

Note that we also implement the Lemma proposed in [15] in our
framework to estimate the increase in the number of untestable
faults identified by Theorem 1 on top of Lemma in [15]. As we
show in our results, the contribution of Theorem 1 is significant.

5. Experimental Results

The proposed techniques were implemented in C++ and
experiments were conducted on ISCAS ‘85 and ISCAS ‘89 circuits
on a 3.2 GHz, Pentium-4 workstation with 1 GB RAM, with Linux
as the operating system. Table 1 illustrates the experimental results
(# of untestable faults identified and execution times) obtained
using our techniques. All results reported in Table 1 are on the same
workstation for a fair comparison of execution times between our
results and those obtained from [15]. For each circuit listed in
Column 1, Columns 2 and 3 respectively report the # of untestable
faults identified (UNT) and the time taken by the techniques
proposed in [15]. Our engine implemented the techniques proposed
in [15] along with extended-forward implications, and Theorem 1.

Column 4 shows the # of untestable faults identified for each of
the circuits with only extended forward implications (no Theorem
1). It can be seen from Column 4 that for most of the circuits, the #
of untestable faults identified increased when extended forward
implications were incorporated into the framework. Column 5
shows the # of untestable faults identified only through the use of
Theorem 1. It is easy to observe that Theorem 1 cannot aid in the
identification of additional untestable faults for combinational
circuits because the theorem uses sequential recurrence relations to
identify untestable faults. For the larger sequential circuits (except
for s38417), Theorem 1 significantly increases the # of identified
untestable faults. For example, for s9234, s13207, s38584, Theorem
1 increased the # of identified untestable faults by multiples of
thousands. Finally, columns 6 and 7 report the # of untestable faults
identified and the time taken for analysis when both extended-
forward implications and Theorem 1 are applied in conjunction.

Key observations made from Table 1 are:
• Through the techniques proposed in this paper, we could identify

a lot of additional faults as untestable, with little overhead in
terms of execution time. As an example, for circuit s13207 we
could identify an additional 2915 untestable faults (over [15])
with an overhead of less than 120 seconds. Even for large circuits
such as s38584, we could additionally identify more than 3000
additional untestable faults with an additional overhead of about
600 seconds. An overhead of 600 seconds is insignificant
considering that deterministic sequential ATPGs would
potentially spend hours targeting untestable faults for such
designs.

• By enhancing Boolean learning through EF implications, we
were able to identify several critical recurrence relationships
which were missed earlier. Knowledge of these additional
recurrence relations in turn increases the number of untestable
faults considerably. As an example, for s13207, without EF
implications, we could identify 2833 faults as untestable using
Theorem 1 (Column 5). When EF implications were also used in
conjunction with Theorem 1, new recurrence relationships were
uncovered, which increased the number of untestable faults by
almost 1000 (Column 6) via Theorem 1. Similar results can be
observed for s9234, s15850, etc. These results illustrate the
significance of EF implications in learning critical and useful
sequential relationships which cannot otherwise be learnt.

Finally, even though there exist circuits for which the # of

identified untestable faults did not increase, the total # of
implications identified for each circuit increased by an average of
15-20% by using EF implications.

Table 2 compares our results with some of the previously
published work. Columns 2 and 3 report the # of untestable fault
identified by MUST [13] (a combination of fault-independent and
fault-oriented approaches) and the time taken for analysis, while
columns 4 and 5 report results for SFT or single-fault-theorem [23]
(based on ATPG). It can be seen that for some small sequential
circuits (such as s1238 and s386), ATPG-based techniques can
outperform our approach. This can be attributed to: a) complete

Results [15] EF + Thm. 1
Circuit Unt Time

EF
(Unt)

Thm.1
(Unt) Unt Time

c1908* 9 0.93 9 9 9 1.2
c2670 93 0.72 101 93 101 1.15
c3540* 137 5.8 137 137 137 7.5
c5315* 58 2.39 59 58 59 2.9
c6288* 34 1.8 34 34 34 2.0
c7552 66 6.76 67 66 67 15.1
s386 63 0.65 65 63 65 0.7
s400 10 0.22 10 10 10 0.25
s641 59 0.20 59 59 59 0.24
s713 101 0.21 101 101 101 0.29
s1238 25 4.5 28 25 28 5.12
s1423 14 0.96 14 14 14 1.07
s5378 882 15.6 884 882 884 20.25
s9234 434 142.0 438 3490 3602 211.9

s9234.1 371 99.1 382 371 389 134.3
s13207 897 127.2 937 2833 3812 242.1

s13207.1 453 232.1 457 885 889 425.9
s15850 835 394.3 838 4411 4636 454.2

s15850.1 951 192.6 954 1043 1045 257.1
s38417 511 787.2 511 511 511 1014.1
s38584 2283 2187.4 2308 5405 5616 2758.5

 Time values are specified in seconds
 *All redundant faults in these combinational circuits were identified

Table 1: Experimental Results

branch-and-bound nature of ATPG which may suit some small
designs; b) implications learnt in our engine, like most other fault-
independent techniques, do not represent the complete set of logic
relations (learning the complete set of implications is
computationally very expensive). However, for larger sequential
circuits, our technique outperforms both SFT and MUST by large
margins in terms of untestable faults.

To illustrate the impact of our contribution, we show the

performance of deterministic ATPG for the faults identified as
untestable by our tool. Any tool designed for untestable fault
identification can enhance the performance of ATPG if:

(a) Such a tool can identify those untestable faults which ATPG
fails to identify as untestable. In this case, performance gain to
ATPG will be in terms of increased effective fault coverage or
EFC (EFC = (#faults detected by ATPG)/ (#Total Faults –
#untestable faults));

(b) Such a tool can identify untestable faults faster than ATPG. In
this case, performance gain to ATPG will be in terms of
improved speed (by ignoring already known untestable faults).

We show the importance of our tool for ATPG with respect to
both these criteria. We use an in-house ATPG (based on PODEM
[26], using SCOAP [27] testability measures) to target only those
faults that are identified as untestable by our tool. For a fair
estimation of the performance of ATPG on untestable faults, we
perform ATPG in an incremental manner: each sequential circuit is
first unrolled into one time frame, and ATPG targets all faults
identified as untestable by our tool. Faults identified as untestable
by ATPG within one time frame are dropped for further
consideration. Next, the circuit is unrolled into two time frames, and
only those faults which were not identified as untestable by ATPG
in one time frame are now targeted. Again, faults identified as
untestable in two time-frames are dropped when the circuit is
unrolled into three time frames. Results in the context of ATPG’s
performance on untestable faults are shown in Table 3. Column 2 in
Table 3 shows the number of untestable faults fed to ATPG for
analysis. Note that ATPG is made to target only those faults which
we have already identified as untestable using our tool. Columns 3
and 4 show the number of untestable faults identified by ATPG in
one time frame, and the corresponding time taken. Next, Columns 5
and 6 show similar results when ATPG was performed on the two

time frame unrolled circuit, and Columns 7 and 8 show results for
three time frames. Finally, Columns 9 and 10 show the total number
of faults identified as untestable by ATPG over three-time frames
and the total time taken by ATPG to analyze untestable faults. Key
observations made from Table 3 are:

• For small circuits, such as s386 and s400, ATPG is also able to
identify all faults as untestable (shown in bold in Column 9). Not
only that, ATPG is also faster than our fault-independent tool.
This is a result of the small-search space that ATPG has to
explore for such circuits (these circuits have few inputs and few
flip-flops). Thus, the branch and bound nature of ATPG works
well for such small circuits.

• For medium sized circuits such as s641-s5378, ATPG is not able
to identify all faults as untestable. Our tool can identify several
untestable faults which ATPG either aborts or falsely detects in
the unrolled circuit (untestable faults get detected because flip-
flops are converted into primary inputs in unrolled circuits).
Moreover, ATPG may spend significantly more time than taken
by our tool to analyze these faults (e.g. s5378).

• For large circuits such as s9234-s38584, ATPG identifies a very
small fraction of faults as untestable. The number of untestable
faults identified by our tool are more than that identified as
untestable by ATPG by several factors (e.g. s9234, s15850 etc.).
Moreover, the amount of time spent by ATPG on untestable
faults is significantly more compared to the time spent by our
tool on these faults (e.g. s38584, s9234 etc).

• As the number of time frames is increased linearly, the search
space for ATPG grows exponentially. Thus, ATPG takes more
time to analyze untestable faults. Also, with an increase in time
frames, ATPG identifies fewer untestable faults (ATPG aborts on
most faults when the circuit is unrolled for 3 or more frames).

Experimental results show that our tool identifies those
untestable faults which ATPG fails to identify as untestable; also
for large circuits, ATPG spends exponential amount of time
targeting the faults identified as untestable by our tool. Thus, our
tool can benefit ATPG in both increasing the effective fault
coverage and in increasing the efficiency of ATPG through a priori
knowledge of untestable faults.

 6. Conclusion

In this paper we introduced a new class of implications called
extended forward implications (or EF implications). We also
introduced the concept of I-Frontier and used properties associated
with implications and I-Frontier to optimize the process for
identifying these EF implications. We proposed a new theorem
which utilizes recurrence relations of sequential implications to
determine controllability characteristics of nets in a circuit. With the
aid of the new theorem in conjunction with EF implications,
significantly more untestable faults were identified for many
circuits. These results can be of prime importance to many EDA
tools (ATPG, fault-simulators, etc.). We showed the significance of
our tool in terms of its impact on the performance of ATPG. Since
we were able to identify several untestable faults which are missed
by ATPG, our tool can benefit ATPG in terms of both coverage
calculations and speed.

7. References

[1] M. H. Schulz, E. Trischler, and T. M. Sarfert, “SOCRATES: A
highly efficient automatic test pattern generation system,” IEEE
Trans. Computer-Aided Design, vol. 7, Jan 1998, pp. 126–137.

[2] A. El-Maleh, M. Kassab and J. Rajski, “A fast sequential learning
technique for real circuits with application to enhancing ATPG
performance,” Proceedings of DAC, June 1998, pp. 625 – 631.

MUST[13] SFT [23] EF + Thm. 1

Circuit
UNT Time UNT Time UNT Time

c1908 8 8.7 - - 9 1.2
c2670 97 6.32 - - 101 1.15
c3540 127 37.4 - - 137 7.5
c5315 59 16.5 - - 59 2.9
c7552 62 24.4 - - 67 15.1
s386 - - 70 51.5 65 0.7
s400 9 5.36 10 1.7 10 0.25
s641 - - 0 8.0 59 0.24
s713 38 2.9 38 8.9 101 0.29

s1238 58 11.42 69 14.8 28 5.12
s1423 14 6.96 14 25.4 14 1.07
s5378 622 232 470 862.0 884 20.25
s9234 - - 524 4328.7 3602 211.9

s13207 1125 238 961 3237.2 3812 242.1
s15850 - - 448 4197.5 4636 454.2
s38417 189 972.9 391 6995.5 511 1014.1
s38584 - - 2142 9076.3 5616 2758.5

Time values are specified in seconds

Table 2: Comparison with other engines

 [3] P. Tafertshofer; A. Ganz and K. J. Antreich, “IGRAINE-an

Implication GRaph-bAsed engINE for fast implication,
justification, and propagation,” IEEE Transactions on CAD of
Integrated Circuits and Systems, August 2000 pp. 907 – 927

[4] S. Kajihara, K. K. Saluja and S. M. Reddy, “Enhanced 3-valued
logic/fault simulation for full scan circuits using implicit
logic values,” Proc. European Test Symposium, May 2004, pp.
108-113

[5] M. Enamul Amyeen, W. K. Fuch, I. Pomeranz, V. Boppana,
“Implication and evaluation techniques for proving fault
equivalence,” Proc. IEEE VTS, April 1999 pp. 201 – 207

[6] D. Paul, M. Chatterjee and Dhiraj K. Pradhan, “VERILAT:
Verification Using Logic Augmentation and Transformations,”
IEEE Trans. On CAD of Integrated Circuits and Systems, vol. 19,
no. 9, Sept. 2000

[7] J. Marques-Silva and T. Glass, “Combinational equivalence
checking using satisfiability and recursive learning,” Proc. Design,
Automation and Test in Europe Conf., March 1999, pp.145 – 149

[8] R. Arora, and M. S. Hsiao, “Enhancing SAT-based bounded
model checking using sequential logic implications,” Proc. Of
Intl’ conference on VLSI Design, Jan. 2004, pp. 784-787

[9] H. Ichihara, K. Kinoshita, “On acceleration of logic circuits
optimization using implication relations,” Proc. Asian Test
Symposium, Nov. 1997 pp. 222 - 227

[10] W. Kunz, D. Stoffel, and P. R. Menon, “Logic optimization and
equivalence checking by implication analysis,” IEEE Trans. On
CAD of Integrated Circuits and Systems, Volume: 16 , Issue: 3,
March 1997, pp.266 – 281

[11] M. A. Iyer and M. Abramovici, “FIRE: a fault independent
combinational redundancy algorithm,” IEEE Trans. VLSI, June
1996, pp. 295-301.

[12] M.A. Iyer, D.E. Long and M. Abramovici, "Identifying Sequential
Redundancies without Search," Proceedings of DAC, 1996, pp.
457-462

[13] Qiang Peng, M. Abramovici and J. Savir, “MUST: Multiple-Stem
Analysis for Identifying Sequentially Untestable Faults,” Int’l
Test Conference, 2000. pp. 839-846

[14] M. S. Hsiao, “Maximizing Impossibilities for Untestable Fault
Identification,” Proc. IEEE Design Automation and Test in
Europe Conf., March 2002, pp. 949-953

[15] M. Syal, M. S. Hsiao, “Untestable Fault Identification Using
Recurrence Relations and Impossible Value Assignments,” Proc.
Of Intl’ conference on VLSI Design, Jan. 2004, pp. 481-486

[16] M. H. Schulz and E. Auth, “Improved deterministic test pattern

generation with applications to redundancy identification,” IEEE
Trans. Computer-Aided Design., vol. 8, pp. 811–816, July 1989.

[17] W. Kunz and D. K. Pradhan, “Accelerated dynamic learning for
test pattern generation in combinational circuits,” IEEE Trans.
Computer-Aided Design, vol. 12, pp. 684–694, May 1993.

[18] J. Rajski and H. Kox, “A Method to Calculate Necessary
Assignments in ATPG,” Proc. Int’l. Test Conf. 1990, pp. 25-34

[19] S.T. Chakradhar and V. D. Agarawal, “A transitive closure
algorithm for test generation”, IEEE Transactions on CAD, 1993,
pp. 1015 - 1028

[20] W. Kunz and D. K. Pradhan, “Recursive Learning: A new
Implication Technique for Efficient Solutions to CAD problems-
test, verification, and optimization,” IEEE Trans. on CAD, pp.
1149-1158. Sept 1994,

[21] J. Zhao, J. A. Newquist and J. Patel, “A graph traversal based
framework for sequential logic implication with an application to
c-cycle redundancy identification,” Proc. VLSI Design Conf.,
2001, pp. 163-169.

[22] K.T. Cheng, “Redundancy Removal for Sequential Circuits
without Reset States,” IEEE Tran. On CAD, vol. 12, no. 1, Jan.
1993, pp 13-24

[23] V. D. Agrawal and S. T. Chakradhar, "Combinational ATPG
Theorems for Identifying Untestable Faults in Sequential
Circuits,” IEEE Trans. On CAD, vol. 14, no. 9, Sept. 1995, pp.
1155-1160.

[24] S. M. Reddy, Irith. Pomeranz, X. Lim and Nadir Z. Basturkmen,
“New procedures for identifying Undetectable and Redundant
Faults in Synchronous Sequential Circuits,” Proc. VLSI Test
Symposium, 1999. pp. 275 -281.

[25] M. Syal, M. S. Hsiao, “A Novel, Low-Cost Algorithm for
Sequentially Untestable Fault Identification,” Proc. IEEE Design
Automation and Test in Europe Conf., March 2003, pp. 316-321.

[26] P. Goel, “An Implicit Enumeration Algorithm to Generate Tests
for Combinational Logic Circuits,” IEEE Trans. on Computers,
vol. C-30, no. 3, March 1981, pp. 215-222.

[27] L. H. Goldstein, “Controllability/Observability Analysis of Digital
Circuits,” IEEE Trans. on Circuits and Systems, vol. CAS-26, no. 9,
Sept. 1979, pp. 685-693.

ATPG* (1-TF) ATPG* (2-TF) ATPG* (3-TF) Total (ATPG)

Circuit # UNT
Faults UNT Time UNT Time UNT Time UNT Time

s386 65 0 0.01s 65 0.08s - - 65 0.09s
 s400 10 6 0.01s 4 0.01s - - 10 0.02s
s641 59 0 0.02s 0 0.42s 0 1.6s 0 2.04s
s713 101 38 0.16s 0 0.45s 0 10.2s 38 10.81s
s1238 28 27 0.04s 0 0.01s 0 0.01s 27 0.06s
s5378 884 35 0.53s 286 3m45s 100 9m54s 421 13m39s
s9234 3602 396 3m25s 52 20m53s 3 50m13s 451 71m31s

s9234.1 389 311 2m38s 14 4m42s 0 7m18s 325 14m32s
s13207 3812 145 16.1s 776 1m1s 36 11m15s 957 12m32s

s13207.1 889 115 8.6s 241 14.4s 9 15m2s 365 15m25s
s15850 4636 375 1m5s 49 9m32s 4 72m2s 428 82m39s

s15850.1 1045 352 46s 37 1m42s 4 4m22s 393 6m50s
s38417 511 123 2m18s 43 7m20s 115 29m48s 281 39m26s
s38584 5616 1444 39s 300 61m31s 37 85m10s 1781 147m20s

Time values are specified in minutes and seconds (m: minutes, s: seconds)
*Number of backtracks used in ATPG: 100,000

Table 3: Performance of ATPG for Untestable Faults

