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Abstract 

In this paper, we make two major contributions: First, to 
enhance Boolean learning, we propose a new class of logic 
implications called extended forward implications. Using a novel 
concept called implication-frontier, extended forward implications 
efficiently capture those non-trivial relationships which previous 
techniques failed to identify. Secondly, we introduce the concept of 
dual recurrence relations in sequential circuits, and propose a new 
theorem which uses this concept to quickly identify sequentially 
untestable faults. Our tool based on the proposed extended forward 
implications and the new theorem was applied to identify untestable 
faults in benchmark circuits. Significantly more untestable faults 
than reported by earlier techniques, low memory overhead and low 
computational complexity are the noteworthy features of our tool.  
 
1. Introduction 
 

Logic implications capture the effect of asserting logic values 
throughout a circuit. Over the past few decades, logic implications 
have been successfully applied in several areas of electronic design 
automation (EDA) including: test-pattern-generation [1-3], logic 
and fault simulation [4], fault diagnosis [5], logic verification [6-8], 
logic optimization [9-10], untestable fault identification [11-15], 
etc.  As a powerful implication engine can have a wide impact on 
EDA applications and tools, much effort has been invested in 
efficient computation of implications.   

Schulz et al. were the first to improve the quality of implications 
by computing indirect implications in SOCRATES [1].  To further 
the application of these indirect implications, static learning was 
extended to dynamic learning [16] [17].  Cox et al. introduced the 
use of 16-valued algebra and reduction lists to determine node 
assignments in [18]. A transitive closure procedure on implication 
graph was proposed by Chakradhar et al. in [19]. A complete 
implication engine based on recursive learning was proposed by 
Kunz et al. [20] that can capture all pair-wise relations in a circuit. 
However, to keep simulation time within reasonable limits, the 
recursion depth is generally limited to low values. A graphical 
representation to store implications was proposed by Zhao et al. 
[21] and the concept of indirect implications based on transitivity of 
implications, along with extended backward implications were used 
to increase the number of implications learnt.   

We propose an efficient technique to enhance Boolean learning 
through static implications, and present a new class of indirect 
implications which we refer to as extended forward implications. 
We introduce a novel concept called “implication-frontier or I-
Frontier” and use it to efficiently identify those relationships (via 
extended forward implications) which were missed by previous 
techniques. While numerous applications can benefit from 
implications, in this paper, we demonstrate the impact of extended 
forward implications by applying them to identify untestable faults. 
The significance of our new learning criterion is clearly presented 
through the substantial leap achieved in the number of sequentially 
untestable faults identified.  

 

 
Untestable faults are faults for which there exists no test 

sequence that can simultaneously excite the fault-effect and 
propagate it to a primary output (PO). In combinational circuits, 
untestable faults result only from redundant logic; in sequential 
circuits, untestable faults may also result from unreachable states. 
Automatic test pattern generators (ATPG) can spend exponential 
amount of time targeting untestable faults (especially for sequential 
circuits) before aborting or eventually identifying them as 
untestable. Thus, the performance of fault-oriented tools such as 
test-pattern-generators and fault-simulators can be enhanced if the 
knowledge of untestable faults is available a priori. In addition, the 
information about untestable faults can also benefit other 
applications such as combinational equivalence checking [6], logic 
optimization, etc.  

Techniques used for untestable fault identification can broadly be 
classified into fault-oriented methods based on ATPG [22-24], and 
fault-independent techniques [11-15] based on conflict analysis. In 
general, ATPG-based methods outperform fault-independent 
methods for small circuits; however, the computational complexity 
of branch-and-bound algorithms (ATPG) makes them impractical 
for large sequential circuits. Conflict based analysis has thus been 
researched and improved over the years. Iyer et al. introduced FIRE 
[11] as a technique to identify untestable faults as faults that require 
a conflict on a single line as a necessary condition for their 
detection. FIRES [12] was introduced as an extension of FIRE to 
identify untestable faults in sequential circuits without explicit 
search. MUST [13] introduced by Peng et al. was built over the 
framework of FIRES as a fault-oriented approach to identify 
untestable faults. However, the memory requirement for MUST can 
be exponential. Hsiao [14] presented a fault-independent technique 
to identify untestable faults using multiple-node impossible value 
combinations. Recently, the approach in [14] was improved by Syal 
and Hsiao [15]. They also introduced the concept of recurrence 
relations that aid in identifying sequentially untestable faults. While 
recurrence relations are useful, we believe that their full potential 
has not been explored in [15].  

In addition to enhancing learning through extended forward 
implications, in this paper we explore recurrence relations further. 
We present a new concept called dual recurrence relations, and 
propose a powerful theorem that uses this concept to bring about an 
additional increase in sequentially untestable faults. Since 
sequentially untestable faults form the performance bottleneck 
(speed and fault-coverage) for test pattern generation, the impact of 
identifying a large set of untestable faults can be significant. We 
demonstrate the usefulness of our results in the context of the 
performance gain provided by our tool to ATPG. Finally, as shown 
through the experiments, low computational overhead makes our 
tool scalable and practical. 

The rest of the paper is organized in the following manner: 
Section 2 discusses basic concepts about static implications and 
single-line-conflict analysis. Section 3 presents extended forward 
implications and in Section 4 we propose a new theorem that uses 
dual recurrence relations to identify untestable faults. Section 5 
illustrates experimental results, and section 6 concludes the paper. 
 *supported in part by NSF grants 0196470, 0305881, 0417340, and an Intel grant 



        

2. Preliminaries 
 

In this section, we give an overview of static logic implications 
[21] and single line conflict analysis [11].  
 

2.1 Static Logic Implications 
 

Logic implications identify the effect of asserting logic values 
within a circuit. In the past, static logic implications have broadly 
been classified into direct, indirect and extended backward 
implications [21]. Direct implications for g = v (assigning logic v to 
gate g) are logic relations that can be identified without circuit 
simulation. Unlike direct implications, indirect and extended-
backward implications are non-trivial, require circuit simulation, 
and identify implications on circuit elements which may not be 
directly connected to g. In the discussion that follows, we use the 
following terminology for implications [21]: 
 

a)  Impl[N,v,t]: Set of implications resulting from assigning logic 
value v to gate N in time frame t. 

b)  [N,v,t] ���� [M,w,t1]: Assigning logic value v to N in time frame 
t implies that M would be assigned value w in time frame t1.  

 

To better understand the concept of direct, indirect and extended 
backward implications, consider the following example: 

Example 1: Consider the implications of {A = 1} in Figure 1. The 
set {(B = 0), (C = 0)} forms the direct implications for {A=1} 
(relationships learnt without circuit simulation). Next, {B = 0} and 
{C = 0} together imply {D = 1}. Since {(B = 0), (C = 0)} ∈ 
Impl[A, 1, 0],  [A, 1, 0] � [D, 1, 0]. This is an indirect implication 
and can be learnt through logic simulation of the circuit under the 
implications of {A = 1}. 

 
 
 
 

 
 
 
 
 
 
 
 
 
 

Finally, since {A = 1} is currently unjustified, it forms a candidate 
for the application of extended backward implications. Extended 
backward implications are obtained by simulating {A = 1} together 
with each of its unspecified inputs. Applying extended backward 
implications on {A = 1}, we learn that [A, 1, 0] � [G, 0, 0]. Thus, 
the set Impl[A, 1, 0] is {(A=1), (B = 0), (C = 0), (D = 1), (G = 0)}.�                                            
 

We store these implications as a graph [21] because this 
graphical representation can efficiently be applied to enumerate 
sequential implications without suffering from memory explosion. 
 

2.2 Single Line Conflict Analysis 
 

The underlying concept behind single line conflict analysis [11] 
is the following: faults that require a conflict on a single line as a 
necessary condition for their detection are untestable. In this 
analysis, for every gate g (or stem s), two sets are computed: 

 

Set0: Set of faults untestable with g = 0.  
Set1: Set of faults untestable with g = 1.  

The faults in Set0 (Set1) require the assignment of g = 1 (g = 0) as 
a necessary condition for detection. The set of untestable faults then 
is the intersection of the two sets. For better understanding, consider 
Example 2. 

 

 
 
 
 
 
 

Example 2: In the following discussion, assume that g/v denotes 
the fault ‘g stuck at v’. Consider stem x2 in the circuit shown in 
Figure 2. The set of faults that become untestable (unexcitable and 
unobservable) when x2 = 0 are: Set0: {x2/0, x2”/0, x2’/0}.  
Similarly, the set of faults that would become untestable when x2=1 
are:  Set1: {x2/1, x2”/1, x2’/1, y1/1, y2/1, x1/0, x1/1, x2’/0, x2’’/0, y1/0}. 
The faults in the intersection of Set0 and Set1, i.e. {x2’/0, x2’’/0} 
would be untestable according to single-line-conflict analysis (these 
faults require conflicting assignments on x2 for their detection).     �                  
                                  

As observed from the example above, untestable faults are 
identified via identification of unexcitable (y1/1, y2/1 etc. are 
unexcitable when x2 = 1) and unobservable nets (x2’/0 and x2’/1 etc. 
are unobservable when x2 = 1). It should also be noted that the 
implications of x2 = 0 and x2 = 1 are used to enumerate unexcitable 
and unobservable nets. For sequential circuits, we implement 
unobservable net identification by the approach indicated in [25] to 
rule out false positives due to fault-reconvergence across multiple 
time-frames (false positives refers to declaring a net as 
unobservable, when it is actually observable).  

 
3. Enhancing Implications 
 

For single-line conflict analysis (and also for other conflict based 
approaches [13-15]), unexcitable/unobservable nets due to a 
particular logic assignment {g = v} are enumerated using 
implications of {g = v}. Therefore, increasing the set of logic 
implications would enable identification of potentially more 
unexcitable and unobservable nets due to a given assignment, 
translating to an increased number of untestable faults identified.  

In this section, we propose a new technique to improve Boolean 
learning. This results in a new class of implications, termed as 
extended forward implications. Before explaining extended forward 
implications, we define a new concept called implication frontier (I-
Frontier), and provide a motivating example. 

 

Definition 1:  Implication Frontier (I-Frontier) 
The I-Frontier of a logic assignment g = v is the set of gates that are 
currently unspecified but each gate in the set has one or more inputs 
implied by g = v. If gik represents the kth input of an n-input gate gi, 
then I-Frontier can be represented as:    
I-Frontier[g=v]: {gi | gi ∉Impl[g,v,0], ∃gik ∈ Impl[g,v,0], 1� k� n}  � 

 

The motivation behind extended-forward implications can be 
understood through the following example: 

 

Example 3: A = 1 in Figure 3 does not imply any assignments (by 
direct, indirect and extended backward implications). Thus, Impl[A, 
1, 0] = {(A, 1, 0)} (reflexive property). 
 
 
 
 
 
 
 
 
 
 
 
 
 

The I-Frontier of A = 1 consists of two gates: gate C and gate G. 
Each of these gates has one specified input (gate A), and one 
unspecified input (gate B). Let us focus on gate C. If we set gate B 
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Figure 2: Illustration of single-line-conflict analysis  
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to logic 0 (the unspecified input of gate C), and simulate the circuit 
with Impl[A,1,0]∪ Impl[B,0,0], a set (R0) of new logic assignments 
can be learnt: {(C = 0), (G = 1), (H = 0)}.  
Next, if we set B = 1, and again simulate the circuit, another set 
(R1) of new assignments can be learnt: {(C = 1), (D = 1), (E = 1), (F 
= 1), (G = 0), (H = 0)}. 
Now, {Impl[A,1,0] ∪ Impl[B,0,0]} implies R0 while {Impl[A,1,0] 
∪ Impl[B,1,0]} implies R1. Thus, R0 ∩ R1 ∈ {(Impl[A,1,0] ∪ 
Impl[B,0, 0]) ∩ (Impl[A,1,0] ∪ Impl[B,1,0])}.  
Or, R0 ∩ R1 ∈ {Impl[A,1,0] ∪ (Impl[B,0,0] ∩ Impl[B,1,0])}, since 
Impl[B,0,0]  ∩  Impl[B,1,0] = φ, R0 ∩ R1 ∈ Impl[A,1,0]. 
Finally, because R0 ∩ R1 = (H = 0), we can learn that [A,1,0] � [H, 
0, 0]. By setting the unspecified input of C (a gate in the I-
Frontier[A=1]) to both logic values, we were able to identify a new 
logic implication which was missed by all of direct, indirect and 
extended backward implications.                                                     �                                  
 

The main idea behind extended forward implications is to learn 
new relations using the I-Frontier for an assignment {g = v}. Now 
we formally define extended forward implications (EF for short): 
 

Definition 2: Extended Forward (EF) Implications 
If gi ∈ I-Frontier[g = v], then: 
 

a) If gik is the only input of gi that is currently unspecified, 
    R0 =   logic_simulate(Impl[g, v, 0] ∪ Impl[gik, 0, 0]) 
    R1 =   logic_simulate(Impl[g, v, 0] ∪ Impl[gik, 1, 0])  
 

b) If gi has more than one unspecified input, 
     R0 = logic_simulate(Impl[g, v, 0] ∪ Impl[gi, 0, 0]) 
     R1 = logic_simulate(Impl[g, v, 0] ∪ Impl[gi, 1, 0])  
 

EF{g = v} = R0 ∩ R1; Impl[g, v, 0] ∪= EF{g = v}.                    � 
 

The motivation behind extended-forward (EF) implications is to 
push the envelope of implications for {g = v} beyond the I-Frontier. 
For case (a) above, the attempt to go beyond the I-Frontier is 
performed by trying both logic values for the unspecified input of gi 
{gik = 0 and gik = 1} and taking an intersection of the set of new 
logic assignments for each logic value. For case (b) more than one 
inputs of gi are unspecified: it would be too expensive 
(computationally) to try the complete value combinations for all 
unspecified inputs. Instead, both logic values for the gate output {gi 
= 0 and gi = 1} are simulated. Since the underlying concept behind 
extended forward implication tries to extend implications beyond 
the point forward implications reach (bounded by the I-Frontier), 
hence the name.  

Now we provide important characteristics of EF implications and 
I-Frontier through the following Lemmas. As explained later, these 
characteristics are used in making EF implications efficient. 

 

Lemma 1: If Impl[g1, v, 0]  ⊇ Impl[g2, w, 0], I-Frontier{g1 = v} ⊇ 
I-Frontier {g2 = w}. 
Proof: By contradiction, assume that Impl[g1, v, 0]  ⊇ Impl[g2, w, 
0] and I-Frontier{g1 = v} ⊂ I-Frontier {g2 = w}. Thus, there exists 
at-least one gate gi, such that gi ∈ I-Frontier{g2 = w} and gi ∉ I-
Frontier{g1 = v}. By definition of I-Frontier, there must exist at-
least one input gik of gi such that gik ∈ Impl[g2, w, 0] and gik ∉ 
Impl[g1, v, 0]. However, this would violate our initial assumption 
that Impl[g1, v, 0] ⊇ Impl[g2, w, 0]; which proves the Lemma.       � 
 

Lemma 2: If Impl[g1,v,0] ⊇ Impl[g2,w,0], EF{g1 = v}⊇EF{g2 = w}.  
Proof: Given Impl[g1,v,0] ⊇ Impl[g2,w,0]. Consider Definition 2: to 
enumerate EF{g1 = v} and EF{g2 = w}, I-Frontier{g1 = v} and I-
Frontier{g2 = w} are used. For each gate gi in these I-Frontiers, R0 
and R1 are created and intersected. Thus, the number of EF 
implications learnt is directly proportional to the size of the I-
Frontier, and the size of R0 and R1 for each gate in the I-Frontier. 
From Lemma 1, since Impl[g1, v, 0]  ⊇ Impl[g2, w, 0], I-Frontier{g1 

= v} ⊇ I-Frontier {g2 = w}. Also, since R0 and R1 are proportional 
to Impl[g1, v, 0] and Impl[g2,w, 0],  it follows that R0 and R1 with 
{g1 = v} will be a superset of the corresponding sets for {g2 = w}. 
Thus, EF{g1 = v} ⊇ EF{g2 = w}.                                                      � 

 

While learning additional Boolean relationships through EF 
implications can be useful, this learning should not come at the cost 
of high computational overhead. Observe from equations (1) and (2) 
that the computation of EF{g = v} involves two passes of logic 
simulation corresponding to each gate in the I-Frontier of {g = v}. 
Although EF implications can significantly increase the number of 
implications learnt, the cost associated with logic simulation can 
potentially become prohibitive as circuit size grows. The time spent 
in logic simulation is worthwhile if all the gates in the I-Frontier 
result in new EF implications. However, we observed that a large 
subset of gates in the I-Frontier do not result in identification of 
new implications, but still account logic simulation time. Therefore, 
techniques that can quickly identify and prune out such ‘useless’ 
gates from the I-Frontier is desirable. In the following discussion, 
we describe two efficient techniques for this purpose.  
 

3.1 EF Pruning Techniques 
 

A. Pruning Based on I-Frontier: First, we present an important 
characteristic of I-Frontiers through Lemma 3. This characteristic 
can prove vital not only in improving the efficiency of learning EF 
implications, but also accelerate any other Boolean learning 
technique based on simulation (e.g. extended backward learning).   
 

Lemma 3: If [I-Frontier{g1 = v} ∩ I-Frontier{g2 = w}] = ∅, 
simulating {Impl[g1, v, 0]  ∪ Impl[g2, w, 0]} would not result in the 
identification of any new value assignments. 
 

Proof: We prove this Lemma by contradiction. Without loss of 
generality, consider a sequential circuit with only two-input gates 
and flip-flops. Refer to Figure 4 for the following discussion. 
 

Statement of contradiction: By contradiction assume [I-Frontier{g1 
= v} ∩ I-Frontier{g2 = w}] = ∅, but a set of new logic assignments, 
S, is obtained on simulating Impl[g1, v, 0]  ∪ Impl[g2, w, 0].   
 

Let, gi ∈ S (i.e. {gi = vi} ∈ S is learnt through simulating {Impl[g1, 
v, 0]  ∪ Impl[g2, w, 0]}). Note that if {gi = vi} ∈ S, {gi = vi} ∉ 
{Impl[g1, v, 0]  ∪ Impl[g2, w,0]}, and vice versa. 
 

Step 1: Since gi ∈ S, either {gi = 1} ∈ S or {gi = 0}∈ S. For ease of 
understanding, let gi be AND gate as shown in Figure 4, and have 
two gates gi1 and gi2 as its inputs.  
 

Case A: Assume {gi = 1} ∈ S. Now, {gi = 1} can be learnt 
through the simulation of {Impl[g1, v, 0]  ∪ Impl[g2, w, 0]}, if: 

I. gi1 = 1 and gi2 = 1 are specified prior to logic simulation; 
OR 

II.  gi1 = 1 and gi2 = 1 are learnt during logic simulation.  
 

Consider part I. Both gi1 = 1 and gi2 = 1 can be specified prior 
to logic simulation only if one of these conditions is true: 

1.  {(gi1 = 1), (gi2 = 1)} ∈ Impl[g1, v, 0] 
2.  {(gi1 = 1), (gi2 = 1)} ∈ Impl[g2, w, 0] 
3.  (gi1 = 1) ∈ Impl[g1, v, 0] and (gi2 = 1) ∈ Impl[g2, w, 0] 
4.  (gi1 = 1) ∈ Impl[g2, w, 0] and (gi2 = 1) ∈ Impl[g1, v, 0]  

 

If either condition (1) or (2) were true, then (gi = 1) ∈ 
{Impl[g1, v, 0] ∪ Impl[g2, w, 0]} (by indirect implications). 
Since {gi = 1} ∈ S, conditions (1) and (2) are not possible. If 
either condition (3) or (4) were true, then by Definition 1, gi ∈ 
[I-Frontier{g1 = v} ∩ I-Frontier{g2 = w}]. This conflicts the 
assumption that [I-Frontier{g1 = v} ∩ I-Frontier{g2 = w}] = ∅.  
 

Thus, part I cannot be true if {gi = 1} ∈ S. As a result, both gi1 
= 1 and gi2 = 1 must also be learnt during logic simulation. 

----  (1) 

----  (2) 



        

  
 
 
 
 
 
 
 
 
 

 
 
 
 
 
Case B: Assume that {gi = 0} ∈ S. {gi = 0} can be learnt through 

the simulation of {Impl[g1, v, 0]  ∪ Impl[g2, w, 0]}, if: 
I. gi1 = 0 or gi2 = 0 is specified prior to logic simulation;  
   OR 
II.  gi1 = 0 or gi2 = 0 is learnt during logic simulation.  

     

    Again, consider Part-I. If either gi1 = 0 or gi2 = 0 is specified 
prior to logic simulation, then {gi = 0} will also be specified 
prior to simulation. But, by assumption, {gi = 0} ∈ S (learnt 
after simulation). As a result, part I cannot be true. Thus, either 
{gi1 = 0} or {gi2 = 0} must be learnt during logic simulation. 

 

From Case A and Case B, if gi ∈∈∈∈ S, at least one gate at the input 
of gi must also be learnt through simulation. That is, either gi1 ∈ 
S and/or gi2 ∈ S. Assume gi2 ∈ S. 
 

Step 2: The arguments used for gi can also be applied for gi2. Given 
[I-Frontier{g1 = v} ∩ I-Frontier{g2 = w}] = ∅, gi2 ∈ S is possible 
only if there exists some gate gkj at the input of gate gi2 such that gkj 
∈ S. Since, gi ∈ S is possible only if gi2 ∈ S, by transitivity, it 
follows that gi ∈ S is possible only if gkj ∈ S. 
 

Step 3: Applying this argument inductively, we would reach gate 
gfinal in the input-cone of gi such that both inputs of gfinal are primary 
inputs (say PI1 and PI2). Note that, as shown in Figure 4, gfinal may 
be reached after passing through several gates, which may include 
flip-flops. From induction, gi ∈ S is possible only if gfinal ∈ S.  
From Step 1, if gfinal ∈ S either PI1 ∈ S or PI2 ∈ S. However, since 
both PI1 and PI2 are primary inputs, new assignments on PI1 or PI2 

cannot be learnt through simulation. That is, PI1 ∉ S and PI2 ∉ S. 
As a result, gfinal ∉ S. Since gi ∈ S is possible only if gfinal ∈ S, gi ∉ 
S. Thus, if [I-Frontier{g1 = v} ∩ I-Frontier{g2 = w}] = ∅, no new 
assignments can be identified by simulating {Impl[g1, v, 0]  ∪ 
Impl[g2, w, 0]}.                                                                                 � 
 

Let us understand how Lemma 3 can be used to compute EF 
implications more efficiently. From equations (1) and (2) in the 
previous section, the implications of g = v are combined with the 
implications of gate gik in (1) and gi in (2), followed by simulation.  
 
Proposition 1: Using Lemma 3, new EF implications would not be 
learnt if: 
 

a) For equations (1): [I-Frontier{g = v} ∩ I-Frontier{gik = 0}] = ∅ or 
if [I-Frontier{g = v} ∩ I-Frontier{gik = 1}] = ∅;  

b) For equations (2): [I-Frontier{g = v} ∩ I-Frontier{gi = 0}] = ∅ or 
if [I-Frontier{g = v} ∩ I-Frontier{gi = 1}] = ∅  

 

In either case, gi can be dropped from the I-Frontier of {g = v} 
without loss of new EF implications.                                       � 
 

Consider the impact of Lemma 3: by performing a simple check 
(intersection) on the I-Frontiers, Lemma 3 enables the identification 
those gates which do not contribute to any new learning via EF 

implications. By removing such gates from the I-Frontier, saving in 
simulation cost is achieved. We observed that this pruning 
technique reduced the execution time of learning implications by as 
much as 30% - 40% for benchmark circuits.  
 

Consider the following example for an illustration of Proposition 1. 
Example 4: Figure 5 shows the combinational portion of a circuit 
and the I-Frontiers of some nets of interest. 
 
 
 
 
 
 
 
 
 
 
 

By direct, indirect and extended backward implications, Impl[A, 1, 
0] = {(A=1), (c = 1), (d = 1)}. Assume that EF{A=1} need to be 
enumerated. Candidates in the I-Frontier for {A=1} are {B, C, D}. 
First consider candidate B. Since [I-Frontier{A=1} ∩ I-Frontier 
{b=0}] = ∅, Proposition 1 allows us to drop gate B from I-
Frontier{A=1}. It can be verified that simulating Impl[A, 1, 0] ∪ 
Impl[b, 0, 0] would not result in any new logic assignments. Now, 
consider candidates C and D. The unspecified input of gates C and 
D is gate e. Since [I-Frontier{A=1} ∩ I-Frontier {e = 1}] � ∅ and 
[I-Frontier{A=1} ∩ I-Frontier {e = 0}] � ∅, EF implication process 
is performed for both candidates C and D. EF for candidates C and 
D results in identification of new implications ({G = 1}, {I = 0}).  � 
 

B. Pruning Based on Value: In this heuristic, we use the 
characteristics of EF implications described earlier. Specifically, 
using Lemma 2, we propose the following Lemma to further prune 
out those gates which do not contribute to identification of EF 
implications. 
 

Lemma 4: Assume that the value of gate gi is controlled to logic w 
when one or more inputs gik = c. If:  
(i) EF has been performed for all inputs gik = c, and  
(ii) extended backward implications are performed for {gi = w}; 
Then: new EF implications would not be obtained for gi = w.  
 

Proof: Without loss of generality, assume gi to be AND gate. Let 
gik be the gate at kth input of gate gi. Thus, ∀k {gik = 0} � {gi = 0} 
(gi is controlled to logic 0, when one or more inputs gik = 0). As a 
result, ∀k Impl[gik, 0, 0] ⊇ Impl[gi, 0, 0]. From Lemma 2, ∀k EF{gik 
= 0}  ⊇ EF{gi  = 0}.  
Let us assume that gate gi has n gates gi1 - gin as inputs. Thus, 
    [EF{gi1 = 0}] ⊇ [EF{gi  = 0}] --------------- (a) 
Intersecting EF{gi2 = 0} on both sides of equation (a), 
    [EF{gi1 = 0} ∩ EF{gi2 = 0}] ⊇ [EF{gi  = 0} ∩ EF{gi2 = 0}]-- (b) 
Since EF{gi2 = 0} ⊇ EF{gi  = 0} (note right side of eq. (b)), 
    [EF{gi1 = 0} ∩ EF{gi2 = 0}] ⊇ [EF{gi  = 0}] ---------- (c) 
Performing this intersection operation for all inputs,  
    [EF{gi1 = 0} ∩ EF{gi2 = 0} … ∩ EF{gin = 0}] ⊇ EF{gi  = 0}--(d) 
Assume that each term on the left-hand-side has been individually 
evaluated (i.e. EF{gik=0} has been evaluated for all inputs). By 
definition of extended backward implications, left side of equation 
(d) can be identified by performing extended backward implications 
on {gi = 0}. Thus, equation (d) implies that if EF{gik = 0} has been 
performed for all inputs of gi, performing extended-backward 
implications on {gi = 0} would be sufficient; new EF implications 
would not be identified for {g = 0}. Similar reasoning applies to 
other gates for which gik = c controls the output of gi to logic w (e.g. 
if gi is OR gate, any input gik = 1 controls output of gi to logic 1).   �    

I-Frontier{A=1} = {B, C, D} 
I-Frontier{e = 1} = {C, D} 
I-Frontier{e = 0} = {D, F, G} 
I-Frontier{b = 1} = {B} 
I-Frontier{b = 0} = {E} 
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Figure 5: Illustration of pruning based on I-Frontier 
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Consider the impact of Lemma 4: For any gate gi with n inputs 
gi1-gin, once both conditions in Lemma 4 are satisfied, EF{gi = w} 
can be completely avoided. By not performing EF{gi = w}, logic 
simulation is avoided for all gates in the I-Frontier for {gi = w}.   
 

For better understanding, consider the following example: 
 

Example 5: Let us identify EF{A = 0} in Figure 6 using two 
procedures: in procedure 1 we explicitly perform EF{A=0} using 
Definition 2 and in procedure 2, we use Lemma 4. 
 

Procedure 1: Since B is the only gate in the I-Frontier of {A=0}, 
EF{A=0} would be enumerated as: 
      R0 =   logic_simulate(Impl[A, 0, 0] ∪ Impl[c, 0, 0]); 
      Or, R0 = {(B = 0), (C = 1), (D = 0)} 
      R1 =   logic_simulate(Impl[A, 0, 0] ∪ Impl[c, 1, 0]) 
      Or, R1 = {(B = 1), (D = 0)} 
Thus, EF{A=0} = R0 ∩ R1 = {(D = 0)}. 
 

Procedure 2: It can be verified that EF{a = 0} = EF{b = 0} = {(D = 
0)}. Now, by performing extended backward implications on 
{A=0}, we can directly learn the implication [A, 0, 0] � [D, 0, 0].  
Unlike Procedure 1, Procedure 2 learns EF{A=0} without explicitly 
performing logic simulation. Once EF{a=0} and EF{b=0} are 
performed, by Lemma 4, only extended backward implications on 
{A=0} are needed to identify EF{A=0} (eliminating the need for 
additional logic simulations).                                                            � 
 

 
 
 
 
 
       

 
 

 
 
This pruning technique based on value is more powerful than the 

pruning based on I-Frontier and helped achieve an additional 10% -
15% reduction in execution time on top of the latter. These two 
pruning techniques together make EF implications an efficient way 
of improving the learning capabilities of our implication engine. 
Shown below is complete algorithm for enumerating implications: 

 

/*Implication Engine*/ 
 

 For all gate assignments in levelized order ({g = w}, w ∈ {0,1}), 
   1. Perform Direct, Indirect and Extended Backward Implications 
   2. If w is the non-controlling value for g (Pruning based on value) 
      2.1. Identify I-Frontier for g = w 
      2.2. Prune I-Frontier based on Proposition 1  
      2.3. Perform EF implications using eqns (1) and (2)  
 
4. Theorem for Sequentially Untestable Faults 
 

Learning non-trivial Boolean relationships via EF implications 
can prove instrumental only when these relationships are analyzed 
and applied suitably. In this section, we propose a new Theorem 
that efficiently utilizes the extra knowledge provided by EF 
implications towards identifying untestable faults. This Theorem is 
based on a new concept called dual recurrence relations. Dual 
recurrence relations explore certain unique characteristics of 
sequential implications to help derive conclusions about untestable 
faults. Before discussing the new theorem, the following two terms 
[15] need to be defined to facilitate better understanding of the 
theorem. 

 

Definition 3: The value assignment g = v is said to be unachievable 
if there exists no input sequence that can set gate g to value v with 
the initial state of all flip-flops being unknown or X.                      � 
 

Definition 4: A recurrence relation exists for a gate g with value v 
if [g, v, t] � [g, v, t-t1]. For t1 < 0, this relation is called a forward 
recurrence relation, while for t 1 > 0, the relationship is called a 
backward recurrence relation.                                                          � 

Syal and Hsiao [15] used the following Lemma based on the 
knowledge of recurrence relations to identify unachievable 
assignments: 
For a gate g, if 
a)  The backward recurrence relation exists for g = v, and 
b)  g = v is not a constant assignment;  
Then the value assignment g = v is unachievable. 
 

If condition (a) is true for a gate g (i.e. a backward recurrence 
relation exists for {g = v}), logic simulation is performed in [15] 
using random vectors (starting from unknown initial state) to 
determine if condition (b) also holds true for g. Condition (b) is 
declared true only if g = v’ is achieved during simulation (v’ 
represents the logical compliment of logic value v; {v, v’} ∈ {0, 
1}). When g = v’ is achieved, conditions (a) and (b) evaluate to 
true, and assignment g = v is declared as unachievable according to 
the Lemma [15].  

However, it is possible that during simulation (as employed in 
[15]) gate g always remains un-initialized, i.e. g always remains X. 
In such a scenario, the simulation based technique described in [15] 
cannot make any decisions regarding the controllability of gate g. In 
this paper we present a more powerful theorem than the Lemma in 
[15] which would enable meaningful decisions to be made about the 
controllability of a gate without performing random simulation.  
 

We first define dual-recurrence relations and discuss Lemma 5 
before stating the Theorem.   

 

Definition 5: A dual recurrence relation exists for a gate g if a 
backward recurrence relations exist for {g = v} and {g = v’} (i.e. [g, 
v, t] � [g, v, t-t1] and [g, v’, t] � [g, v’, t-t1] for t1 > 0).                  � 
 

Definition 6: If {g = v} is a constant assignment, {g = v} is true in 
every time frame of the sequential circuit after circuit 
synchronization. If the sequential machine powers up into an illegal 
starting state that sets gate g to v’, the machine eventually goes into 
a state that sets g = v after which g retains value v in all time frames.  
 

Lemma 5: If a dual recurrence relation exists for a gate g, then 
neither {g = v} nor {g = v’} is a constant assignment. 
Proof: If a dual recurrence relation exists for gate g, then 
[g, v, t] � [g, v, t-t1] ---------

 (a) AND 
[g, v’, t] �[g, v’, t-t1] --------- (b)  
Applying contrapositive law to (b), we obtain 
[g, v, -t] � [g, v, t1-t] --------- (c) 
Adding (2*t) to the time portion of equation (c), 
[g, v, t] � [g, v, t+t1] ------- (d) 
Equations (a) and (d) indicate that if the sequential machine enters a 
state that sets {g = v}, the assignment {g = v} would appear 
indefinitely at an interval of every t1 time frames.  Thus, according 
to Definition 6, it can be concluded that the assignment {g = v’} 
cannot be constant. Using a similar argument, since the dual 
recurrence relation exists on gate g, {g = v} cannot be constant.   � 
 

Theorem 1: If a dual recurrence relation exists for a gate g, then 
both logic assignments {g = v} and {g = v’} are unachievable. 
 

Proof: Since a dual relationship exists for gate g, [g, v, t] � [g, v, t-
t1] (with t1 > 0). Also, since {g = v} is not constant (Lemma 5), then 
according to the Lemma presented in [15], {g = v} is unachievable. 
Using a similar argument, {g = v’} is unachievable.                        � 
 

  It should be noted that if a dual recurrence relation exists for gate 
g, random logic simulation employed in [15] would return with {g 
= X}. In such a scenario, the Lemma in [15] would not be able to 
make any decision about the controllability characteristics of g. 
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I-Frontier{A= 0} = {B} 
I-Frontier{a = 0} = {B} 
I-Frontier{b = 0} = {B} 
I-Frontier{c = 1} = {B, C} 
I-Frontier{c = 0} = {B} 

Figure 6: Illustration of pruning based on value 



        

However, Theorem 1 enables us to quickly learn that both logic 
assignments on gate g (g = v and g = v’) are unachievable. As 
shown in the results, this additional knowledge results in a 
significant increase in the number of untestable faults identified. 

 

Finally, we provide the following Lemma that applies Theorem 1 
towards identification of untestable faults. 

 

Lemma 6: If a dual recurrence relationship exists for gate g, all 
faults that require {g = v} or {g = v’} as a necessary condition for 
their detection would be untestable.       
 

Proof:  Since a dual recurrence relation exists for gate g, 
assignment g = v is unachievable. Thus, by the hypothesis on 
unachievable nets presented in [15], all faults that require 
assignment {g = v} as a necessary condition for their detection are 
untestable. Similar argument can be used for {g = v’}.           � 
 

Implementation of the Theorem: Implementation of Theorem 1 
does not add any memory overhead or significant overhead in terms 
of execution time (unlike Lemma in [15] which required random 
logic simulation). The algorithm for implementation of Theorem 1 
(on top of the Lemma proposed in [15]) is shown below: 
  

For all gates assignments (g = v) 
1.  Perform transitive closure on {g = v} to obtain Impl[g, v, 0] 
2. If [g, v, 0] � [g, v, -t1], and [g, v’, 0] � [g, v’, -t1], mark {g = 

v} and {g = v’} as unachievable and skip step-3; 
3. If [g, v, 0] � [g, v, -t1] 

a. Perform logic simulation using k random vectors (In our 
analysis, k = 10,000) 

b. If {g = v’} is achieved during simulation, mark {g = v} as 
unachievable (according to Lemma in [15]); 

 

Note that we also implement the Lemma proposed in [15] in our 
framework to estimate the increase in the number of untestable 
faults identified by Theorem 1 on top of Lemma in [15]. As we 
show in our results, the contribution of Theorem 1 is significant. 
 

5. Experimental Results 
 

The proposed techniques were implemented in C++ and 
experiments were conducted on ISCAS ‘85 and ISCAS ‘89 circuits 
on a 3.2 GHz, Pentium-4 workstation with 1 GB RAM, with Linux 
as the operating system.  Table 1 illustrates the experimental results 
(# of untestable faults identified and execution times) obtained 
using our techniques. All results reported in Table 1 are on the same 
workstation for a fair comparison of execution times between our 
results and those obtained from [15]. For each circuit listed in 
Column 1, Columns 2 and 3 respectively report the # of untestable 
faults identified (UNT) and the time taken by the techniques 
proposed in [15]. Our engine implemented the techniques proposed 
in [15] along with extended-forward implications, and Theorem 1.  

Column 4 shows the # of untestable faults identified for each of 
the circuits with only extended forward implications (no Theorem 
1). It can be seen from Column 4 that for most of the circuits, the # 
of untestable faults identified increased when extended forward 
implications were incorporated into the framework.  Column 5 
shows the # of untestable faults identified only through the use of 
Theorem 1. It is easy to observe that Theorem 1 cannot aid in the 
identification of additional untestable faults for combinational 
circuits because the theorem uses sequential recurrence relations to 
identify untestable faults. For the larger sequential circuits (except 
for s38417), Theorem 1 significantly increases the # of identified 
untestable faults. For example, for s9234, s13207, s38584, Theorem 
1 increased the # of identified untestable faults by multiples of 
thousands. Finally, columns 6 and 7 report the # of untestable faults 
identified and the time taken for analysis when both extended-
forward implications and Theorem 1 are applied in conjunction. 

Key observations made from Table 1 are: 
• Through the techniques proposed in this paper, we could identify 

a lot of additional faults as untestable, with little overhead in 
terms of execution time.  As an example, for circuit s13207 we 
could identify an additional 2915 untestable faults (over [15]) 
with an overhead of less than 120 seconds. Even for large circuits 
such as s38584, we could additionally identify more than 3000 
additional untestable faults with an additional overhead of about 
600 seconds. An overhead of 600 seconds is insignificant 
considering that deterministic sequential ATPGs would 
potentially spend hours targeting untestable faults for such 
designs.  

• By enhancing Boolean learning through EF implications, we 
were able to identify several critical recurrence relationships 
which were missed earlier. Knowledge of these additional 
recurrence relations in turn increases the number of untestable 
faults considerably. As an example, for s13207, without EF 
implications, we could identify 2833 faults as untestable using 
Theorem 1 (Column 5). When EF implications were also used in 
conjunction with Theorem 1, new recurrence relationships were 
uncovered, which increased the number of untestable faults by 
almost 1000 (Column 6) via Theorem 1. Similar results can be 
observed for s9234, s15850, etc. These results illustrate the 
significance of EF implications in learning critical and useful 
sequential relationships which cannot otherwise be learnt. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Finally, even though there exist circuits for which the # of 

identified untestable faults did not increase, the total # of 
implications identified for each circuit increased by an average of 
15-20% by using EF implications.  

Table 2 compares our results with some of the previously 
published work. Columns 2 and 3 report the # of untestable fault 
identified by MUST [13] (a combination of fault-independent and 
fault-oriented approaches) and the time taken for analysis, while 
columns 4 and 5 report results for SFT or single-fault-theorem [23] 
(based on ATPG). It can be seen that for some small sequential 
circuits (such as s1238 and s386), ATPG-based techniques can 
outperform our approach. This can be attributed to: a) complete 

Results [15] EF + Thm. 1  
Circuit Unt Time 

EF 
(Unt) 

Thm.1 
(Unt) Unt Time 

c1908* 9 0.93 9 9 9 1.2 
c2670 93 0.72 101 93 101 1.15 
c3540* 137 5.8 137 137 137 7.5 
c5315* 58 2.39 59 58 59 2.9 
c6288* 34 1.8 34 34 34 2.0 
c7552 66 6.76 67 66 67 15.1 
s386 63 0.65 65 63 65 0.7 
s400 10 0.22 10 10 10 0.25 
s641 59 0.20 59 59 59 0.24 
s713 101 0.21 101 101 101 0.29 
s1238 25 4.5 28 25 28 5.12 
s1423 14 0.96 14 14 14 1.07 
s5378 882 15.6 884 882 884 20.25 
s9234 434 142.0 438 3490 3602 211.9 

s9234.1 371 99.1 382 371 389 134.3 
s13207 897 127.2 937 2833 3812 242.1 

s13207.1 453 232.1 457 885 889 425.9 
s15850 835 394.3 838 4411 4636 454.2 

s15850.1 951 192.6 954 1043 1045 257.1 
s38417 511 787.2 511 511 511 1014.1 
s38584 2283 2187.4 2308 5405 5616 2758.5          

 Time values are specified in seconds 
        *All redundant faults in these combinational circuits were identified 

Table 1: Experimental Results 



        

branch-and-bound nature of ATPG which may suit some small 
designs; b) implications learnt in our engine, like most other fault-
independent techniques, do not represent the complete set of logic 
relations (learning the complete set of implications is 
computationally very expensive). However, for larger sequential 
circuits, our technique outperforms both SFT and MUST by large 
margins in terms of untestable faults.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
To illustrate the impact of our contribution, we show the 

performance of deterministic ATPG for the faults identified as 
untestable by our tool. Any tool designed for untestable fault 
identification can enhance the performance of ATPG if:  
 

(a) Such a tool can identify those untestable faults which ATPG 
fails to identify as untestable. In this case, performance gain to 
ATPG will be in terms of increased effective fault coverage or 
EFC (EFC = (#faults detected by ATPG)/ (#Total Faults – 
#untestable faults));  

(b) Such a tool can identify untestable faults faster than ATPG. In 
this case, performance gain to ATPG will be in terms of 
improved speed (by ignoring already known untestable faults).  

 

We show the importance of our tool for ATPG with respect to 
both these criteria. We use an in-house ATPG (based on PODEM 
[26], using SCOAP [27] testability measures) to target only those 
faults that are identified as untestable by our tool. For a fair 
estimation of the performance of ATPG on untestable faults, we 
perform ATPG in an incremental manner: each sequential circuit is 
first unrolled into one time frame, and ATPG targets all faults 
identified as untestable by our tool. Faults identified as untestable 
by ATPG within one time frame are dropped for further 
consideration. Next, the circuit is unrolled into two time frames, and 
only those faults which were not identified as untestable by ATPG 
in one time frame are now targeted. Again, faults identified as 
untestable in two time-frames are dropped when the circuit is 
unrolled into three time frames. Results in the context of ATPG’s 
performance on untestable faults are shown in Table 3. Column 2 in 
Table 3 shows the number of untestable faults fed to ATPG for 
analysis. Note that ATPG is made to target only those faults which 
we have already identified as untestable using our tool. Columns 3 
and 4 show the number of untestable faults identified by ATPG in 
one time frame, and the corresponding time taken. Next, Columns 5 
and 6 show similar results when ATPG was performed on the two 

time frame unrolled circuit, and Columns 7 and 8 show results for 
three time frames. Finally, Columns 9 and 10 show the total number 
of faults identified as untestable by ATPG over three-time frames 
and the total time taken by ATPG to analyze untestable faults. Key 
observations made from Table 3 are: 

 

• For small circuits, such as s386 and s400, ATPG is also able to 
identify all faults as untestable (shown in bold in Column 9). Not 
only that, ATPG is also faster than our fault-independent tool. 
This is a result of the small-search space that ATPG has to 
explore for such circuits (these circuits have few inputs and few 
flip-flops). Thus, the branch and bound nature of ATPG works 
well for such small circuits. 

• For medium sized circuits such as s641-s5378, ATPG is not able 
to identify all faults as untestable. Our tool can identify several 
untestable faults which ATPG either aborts or falsely detects in 
the unrolled circuit (untestable faults get detected because flip-
flops are converted into primary inputs in unrolled circuits). 
Moreover, ATPG may spend significantly more time than taken 
by our tool to analyze these faults (e.g. s5378).  

• For large circuits such as s9234-s38584, ATPG identifies a very 
small fraction of faults as untestable. The number of untestable 
faults identified by our tool are more than that identified as 
untestable by ATPG by several factors (e.g. s9234, s15850 etc.). 
Moreover, the amount of time spent by ATPG on untestable 
faults is significantly more compared to the time spent by our 
tool on these faults (e.g. s38584, s9234 etc). 

• As the number of time frames is increased linearly, the search 
space for ATPG grows exponentially. Thus, ATPG takes more 
time to analyze untestable faults. Also, with an increase in time 
frames, ATPG identifies fewer untestable faults (ATPG aborts on 
most faults when the circuit is unrolled for 3 or more frames).  

 

Experimental results show that our tool identifies those 
untestable faults which ATPG fails to identify as untestable; also 
for large circuits, ATPG spends exponential amount of time 
targeting the faults identified as untestable by our tool. Thus, our 
tool can benefit ATPG in both increasing the effective fault 
coverage and in increasing the efficiency of ATPG through a priori 
knowledge of untestable faults. 
 
 6. Conclusion 
 

In this paper we introduced a new class of implications called 
extended forward implications (or EF implications). We also 
introduced the concept of I-Frontier and used properties associated 
with implications and I-Frontier to optimize the process for 
identifying these EF implications. We proposed a new theorem 
which utilizes recurrence relations of sequential implications to 
determine controllability characteristics of nets in a circuit. With the 
aid of the new theorem in conjunction with EF implications, 
significantly more untestable faults were identified for many 
circuits. These results can be of prime importance to many EDA 
tools (ATPG, fault-simulators, etc.). We showed the significance of 
our tool in terms of its impact on the performance of ATPG. Since 
we were able to identify several untestable faults which are missed 
by ATPG, our tool can benefit ATPG in terms of both coverage 
calculations and speed. 
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ATPG* (1-TF) ATPG* (2-TF) ATPG* (3-TF) Total (ATPG)  

Circuit  # UNT 
Faults UNT Time UNT Time UNT Time UNT Time 

s386 65 0 0.01s 65 0.08s - - 65 0.09s 
 s400 10 6 0.01s 4 0.01s - - 10 0.02s 
s641 59 0 0.02s 0 0.42s 0 1.6s 0 2.04s 
s713 101 38 0.16s 0 0.45s 0 10.2s 38 10.81s 
s1238 28 27 0.04s 0 0.01s 0 0.01s 27 0.06s 
s5378 884 35 0.53s 286 3m45s 100 9m54s 421 13m39s 
s9234 3602 396 3m25s 52 20m53s 3 50m13s 451 71m31s 

s9234.1 389 311 2m38s 14 4m42s 0 7m18s 325 14m32s 
s13207 3812 145 16.1s 776 1m1s 36 11m15s 957 12m32s 

s13207.1 889 115 8.6s 241 14.4s 9 15m2s 365 15m25s 
s15850 4636 375 1m5s 49 9m32s 4 72m2s 428 82m39s 

s15850.1 1045 352 46s 37 1m42s 4 4m22s 393 6m50s 
s38417 511 123 2m18s 43 7m20s 115 29m48s 281 39m26s 
s38584 5616 1444 39s 300 61m31s 37 85m10s 1781 147m20s 

 

Time values are specified in minutes and seconds (m: minutes, s: seconds)  
*Number of backtracks used in ATPG: 100,000 

Table 3: Performance of ATPG for Untestable Faults 


