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Abstract
We present a new method of built-in-self-test (BIST) for sequential cir-

cuits and system-on-a-chip (SOC) using characteristic faults and circuit-
specific spectral information in the form of one or more Hadamard coef-
ficients. The Hadamard coefficients are extracted from the test sequences
for a small set of characteristic faults of the circuit. By extracting a few
characteristic faults from the circuit, we show that detection of these char-
acteristic faults is sufficient in detecting a vast majority of the remaining
faults in the circuit. The small number of characteristic faults allows us to
reduce the coefficients necessary for BIST. State relaxation is performed
on the compacted test sequences to reduce the spectral noise further. Since
we are targeting only a very small number of characteristic faults, the ex-
ecution times for computing the spectra are greatly reduced. Our experi-
mental results show that our new method can achieve high BIST coverage
with both lower computational efforts and storage, with very few charac-
teristic faults.

1 Introduction
Built-in-self-test (BIST) is playing an increasingly important role in VLSI
testing. As the operating speed in modern VLSI technology increases, it
becomes more difficult for test equipments to keep pace with the growing
speed. Furthermore, BIST is a promising solution for testing embedded
cores in the SOC environment, whose testabilities are greatly reduced due
to limited accessibility.

Many BIST schemes have been proposed in literature. Pseudo-random
test pattern generator (TPG) in the form of a linear-feedback-shift-register
(LFSR) has been widely used. Weighted pseudo random TPG [3, 4] takes
into consideration the subset of random-pattern-resistant faults to yield
better results than random methods [3, 4, 5, 6]. The basic idea for weighted
pseudo random is to bias the probability at each input based on the infor-
mation gathered on the circuit. The weights can be obtained by using
counter-based schemes [7], performing bit-fixing [8], or employing LFSR
with good starting seed and feedback polynomial [9, 10, 11]. Many hard-
ware pattern generators [6] often round-off optimal weights, hence pro-
ducing patterns that are sub-optimal for certain circuits at a much lower
computational cost.

While (weighted) pseudo-random BIST architecture may not provide a
satisfactory fault coverage in reasonable pattern length (especially for se-
quential circuit), deterministic BIST techniques attempt to solve this prob-
lem by storing deterministically-generated test patterns. However, the cost
associated with the storage of the pre-calculated test patterns may be high
if there is a large number of patterns.

An embedded controller or processor on an SOC makes it possible for
the processing unit to generate patterns to test the rest of the chip [12, 13,
14, 15, 16]. This alleviates the need for additional hardware such as LFSRs
to test the other embedded cores/peripherals, and by employing efficient
algorithms, it is also possible to reduce storage.

In [17], temporal correlation was found to exist within test sets, and this
information allows for the application of spectral techniques to ATPG [18].
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In [16], spectrum-based BIST technique was proposed for SOCs with em-
bedded processor. It generates vectors by using the spectral characteristic
of each embedded core. To do this, it views each core as a digital system
that is described by input-output system, described as functions of time.
Any such function can be represented and reproduced in the time-domain,
using its frequency-domain spectrum. The approach uses Hadamard trans-
form to compute the spectral information of digital circuits. As noise-free
signals are desired to capture the spectral characteristic of the signal, static
test set compaction is employed to remove any unnecessary vectors and
thus filter some of the unwanted noise. As a result, a test sequence can be
described by the corresponding spectral coefficients, and it preserves the
fault detection criterion. At this point, self-testing becomes the problem
of determining the spectrum of the circuit under test (CUT).

In this paper, we address the problem of refining the spectrum of the
CUT, by picking a small set of “characteristic faults” from the circuit and
employing state relaxation. Unlike [16], where spectral information is ex-
tracted from the entire fault set, only a very small number of the faults is
used in this work. In essence, the set of characteristic faults can be viewed
as representative faults of the entire circuit. In [19], test cubes are com-
puted for hard faults such that many other easy faults can be detected si-
multaneously; however, only combinational circuits are considered. State
relaxation [20] is performed on the compacted test sequences of the char-
acteristic faults to further reduce noise. We present efficient algorithms on
selecting characteristic faults.

The remainder of the paper is organized as follows. Section 2 gives an
overview and motivation for the new spectral BIST. Section 3 explains the
algorithm of computing characteristic faults and its application to BIST.
Section 4 discusses the details of state relaxation. Section 5 reports the
experimental results, and Section 6 concludes the paper.

2 Overview and Motivation
Previously, spectrum-based BIST [16] has shown the important role spec-
tral information can play. The spectral information it uses is extracted
from the compacted test set for all detected faults. Because wider spectra
contain more noise, pruning the spectra to rid the noise will help. Gen-
erally, sequences that detect hard faults frequently can detect many other
faults. Based on this observation, we propose to focus on obtaining the
spectral information for only the more difficult faults.

Our work begins with the test set that detects only the � latest detected
faults. We perform relaxation on this test set to relax any unnecessary input
bits to don’t-care values (X’s); the relaxed test set still ensures detection
of the � faults. The relaxed sequence essentially removes additional noise
from the original sequence, and the non-relaxed input bits in the relaxed
sequence form the basic spectrum and are sufficient to traverse the state
space such that the � hard faults are still detected. Surprisingly, many
of the input bits can be relaxed. The states traversed may not be fully
specified due to the don’t cares in the input sequence. Furthermore, if
detection of these � faults also detects a vast majority of the remaining
faults, the derived spectrum can be viewed as the representative spectrum
for the entire circuit. Following this assumption, our goal is to extract the
spectrum from a very small fault set, and this spectrum is able to represent
the characteristic of the circuit. As in [16], we employ signal processing
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techniques to extract the spectral information and generate spectral BIST
vectors. In addition, in our scheme, state relaxation is performed on the
compacted test set for the � faults to reduce noise prior to extraction of
spectral information.

The overall framework for extracting the spectral characteristics is pre-
sented in [16], however, characteristic faults were not identified. In this
paper, by starting with random vectors, we first filter the random test set
using static compaction for the � latest detected faults (not the whole de-
tected fault set). Then, state relaxation is applied to the compacted test se-
quence to further reduce any additional embedded noise. The spectral co-
efficients are extracted from this relaxed, compacted test sequence through
Hadamard transform, where the predominant Hadamard components are
identified. New vectors are added to the test set based on the extracted
spectrum. This process iterates until the stopping criterion is reached. At
the end of this process, only the spectral characteristics for the � faults in
the iteration where highest fault coverage was reached are collected and
stored, and those � faults are called characteristic faults. The final spec-
trum is used to generate BIST vectors in the SOC. Note that in our process,
the spectral coefficients from one iteration will be used by BIST. This is
different from [16], where the coefficients from an iteration are appended
to the final set if there is an increase in fault coverage.

3 Computation of Characteristic Faults
Instead of targeting the entire fault list to extract spectral information, we
want to find “characteristic” faults within the fault set. Characteristic faults
should have the property that a test set which detects them is also able
to detect many other faults in the circuit. For this reason, the spectrum
corresponding to the characteristic fault set is a representative spectrum
for all the faults.

Because sequences that detect hard faults generally detects many other
faults as well, our aim is on identifying the set of hard faults such that de-
tecting them will maximize detection of the rest of the faults in the circuit.
To do so, we modify the spectral ATPG process [16] in which the cor-
responding target faults in each iteration are associated with the derived
spectrum. For instance, when the spectrum is extracted for the � last-
detected faults in iteration i, the new vectors to be generated are simulated
and the set of faults, ��� detected by these new vectors are recorded. The
set � � indicates the set of faults that have similar spectral characteristics as
the � representative faults. In the next iteration, we would likewise com-
pute ������� . The � faults in the � th iteration corresponding to the largest
fault set �	� is chosen to be the characteristic fault set.

The characteristic-fault extraction algorithm is outlined below:


���
random test vectors;� ��������� ������� ��

;
while (not

�������
) and (i � max iteration)

fault simulate

 � ; � = � last-detected faults;! � "
 � filtered for

 � ;# � =
! � relaxed;

perform Hadamard Transform on
# �

to obtain spectral coefficients $ � ;% � = new vectors generated using coeff. $ � ;
��� = faults detected by

% � ;
if � �'& �������

characteristic fault set =
 � ;

�������  � � ;
i++;
if no improvements in 3 consecutive iterations

done = 1;

The above algorithm is simple to follow and we will show in exper-
iments that it is also efficient in getting the characteristic fault set that
achieves high fault coverages.

4 State Relaxation
4.1 Review of Support Sets
A test vector is fully specified if all inputs are specified to 0 or 1 (i.e., no
input assumes a value of ( ). Test vectors that contain ( ’s are said to be
partially specified. A support set (SS) for a primary output ) is any set of
signals (including primary inputs) that satisfy all the following conditions:

1. All signals in the set assume a logic value 0 or 1.

2. The primary output ) is a member of the set.

3. The logic value on any signal (except PIs) in the support set is
uniquely determined by values of other signals in the SS.

In the case of multiple primary outputs, condition 2 is modified to require
that each of the POs be included in the support set. Likewise, support sets
can also be computed for sequential circuits, where condition 2 is modified
to include any next state variable * that satisfies the following condition:
+ Next state variable * that is at a logic value 0 or 1.

The support signals for a gate are the smallest subset of required signal
that uniquely determine the current logic value of the gate. For example,
consider an AND gate , that has two inputs - and . . Suppose , =1, then
both - , . must be 1 and be support signals for , . If , =0, - =1, and . =0,
then support signal is simply - since the value on , is uniquely determined
by signal - . In case that , =0, - =0, . =0, - , . are at level v( - ) and v( . )
respectively, and v( - ) & v( . ), we will use the following criteria:
+ If one of the possible support signals of the gate has already been

included in the support set of the circuit, then this signal is selected
as the support signal of the gate;

+ Otherwise, we choose a support signal at the lowest level;

In this case, if - is already in the support set of the circuit, then - will be
the only support signal for , ; otherwise, . will be the support signal of ,
because . is at a lower level.

A support set is irredundant if no signal in the set can be deleted with-
out violating conditions 2 or 3. A minimum support set has the least cardi-
nality among all possible support sets. It is desirable to compute a support
set for PIs with small cardinality as this leads to a cleaner signal for later
processing. However, attempting to compute the minimum support set for
each input vector is computationally expensive.

By computing the support set for each time-frame of sequential circuit,
both the intermediate state and input sequence can go from fully specified
to partially specified. The procedure below [20] efficiently computes an
irredundant support set, and takes a list of gates / with known logic values.

Procedure COMPUTE SUPPORT SET( / )
support set �  / ;
while ( 0 unsupported gates in / )1 = unsupported gate in / with maximal level;232 = minimal support signals for 1 ;

add support signals 232 to � ;
for all unsupported gates

�
in 2�2

add
�

to / ;
mark 1 supported;

return support set S;

In the above procedure, we assume that the circuit is levelized and the
input vectors have been simulated to determine the value of each gate in
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the circuit. The support sets are, then, computed based on the logic values
for each corresponding vector.

4.2 Relaxation in Sequential Circuit
For sequential circuits, we perform state relaxation in a reversed order,
that is, starting from the last pattern. Let’s consider benchmark circuit
s27 [1] with gate 10 stuck at 0. The original compacted test set ��� for
detecting this fault is � 1011, 1001, 0101, 0111, 0011, 0110 � , where the
fault is detected by the last vector.
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Figure 1: Good/Faulty Circuit Values at Time Frame 5
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Figure 2: Good/Faulty Circuit Values at Time Frame 4
Gate values for both good and faulty circuits are shown in Figures 1

and 2 respectively for vectors 5 and 4. The values are shown in the form
of [good/faulty]. Starting from pattern 5, the constraint list / contains only
the PO which differentiates good circuit and faulty circuit; since pattern #6
(time frame 5) is the last vector, no next state FF is included in / . In this
particular case, the fault is detected by pattern 5 on output gate 18, with
good circuit of logic 0 and faulty circuit of logic 1. Thus, / for this vec-
tor is simply � 18 � . Calling procedure COMPUTE SUPPORT SET() with
this constraint list / , we obtain the support set for good and faulty circuit
respectively, listed below in the levelized fashion. The value ”12[1/0]” in-
dicates that gate # 12 = logic 1 is included as part of support set for the
fault-free circuit, while gate 12 with logic 0 is included in the support set
of the faulty circuit.

Support Set for Good and Faulty Circuits, vec #5
0 5[0/0] 6[1/1] 1[0/0] 4[X/0] 2[X/1]
1 8[1/1] 9[X/0]
2 10[1/1]
3 12[1/0] 13[1/0]
4 14[0/1]
5 15[1/0]
6 16[0/1]
7 18[0/1]

We combine the support sets for good and faulty circuits at level 0 and
split that into two lists /�� and /�� by gate type. /�� consists only PIs and

/�� contains only FFs. PIs and FFs which are not contained in either /��
or /�� can be set to ( . By doing this, we have relaxed the input and state
for the current time frame. In this example, /�� is � 1 4 2 � and /�� is � 5 6 � .
/�� will be used to form the constraint list for the preceding pattern. We
move on to relax pattern 4 the same way by calling the procedure, and this
time, constraint list / will be the list of /�� , which is � 5 6 � . Computing the
support set the same way and we get the following support sets of pattern
4 for good and faulty circuit respectively:

Support Set for Good and Faulty Circuits, vec #4
0 5[0/0] 4[1/1] 7[0/0] 2[0/0]
1 9[1/1]
2 12[1/1] 13[1/1]
3 14[0/0]
4 15[1/1]
5 17[0/0]

The above procedure is repeated until we’ve reached the first vector. in
reversed order. Shown below are the relaxed inputs (from input 1 to 4 in
order) and intermediate states(from FF 5 to 7 in order) for our s27 exam-
ple:

Vec Orig Relaxed Relaxed
# Input Input State
0 1011 XXXX XXX
1 1001 XXXX XXX
2 0101 XXXX XXX
3 0111 0X1X XXX
4 0011 X0X1 0X0
5 0110 01X0 010

5 Experimental Results

We conducted experiments of our approach on both ISCAS89 [1] and
ITC99 [2] benchmark circuits. After computing the characteristic faults
for each circuit, we allowed for a maximum of 70,000 vectors from the
spectral information extracted for the characteristic faults after state relax-
ation. When performing the Hadamard transform, a relaxed ’X’ does not
contribute to the spectrum extraction. Recall that in [16], the final coef-
ficient set stored into the SOC is a concatenation of coefficient sets from
different iterations. Once a new fault is detected in the iteration, the co-
efficient extracted from the whole compacted test set of that iteration will
be included into the final coefficient set. That may result in larger storage
requirement. We will show later in Table 3 how the two schemes differ in
both computational effort and storage requirements. For all circuits, the
number of iterations is set to 20.

Table 1 compares the results among STRATEGATE [21], weighted
random BIST, spectral method [16] and our technique. Note that only
one characteristic fault is used for our technique. In this table, the to-
tal number of faults is first listed for each circuit, followed by the cov-
erage achieved by STRATEGATE. Next, BIST coverages are reported
for ideal weighted random, rounded-off weighted random, [16], and fi-
nally our approach based on characteristic faults. For instance, in circuit
s5378, STRATEGATE generated a test set that detected 3639 faults, ideal
weighted random BIST detected 3127 faults, rounded-off weighted ran-
dom BIST detected 3083 faults, 3596 faults were detected by [16], and
we detected 3611 faults with spectrum for only one characteristic fault!
Likewise, in circuit b12, our technique detected 1648 faults with spec-
tral information using only one characteristic fault, while STRATEGATE,
ideal, rounded-off weighted random BIST, and [16] detected 1488, 663,
636 and 1621 faults, respectively.
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Table 1: Comparison of Fault Coverages
Ckt Total # Faults Detected # Faults Detected by Non-Scan BIST

Faults by STRATEGATE Weighted-Random Patterns Spectral Patterns
[21] Ideal Weights Rounded-off Weights [16] Ours

s382 399 364 329 116 364 357
s400 428 384 306 106 384 376
s526 555 454 95 94 454 442
s713 581 476 476 476 476 476
s1196 1242 1239 1233 1228 1237 1227
s1238 1355 1282 1276 1270 1282 1266
s1423 1515 1414 1319 1167 1414 1414
s1488 1486 1444 1442 1410 1444 1444
s1494 1506 1453 1451 1418 1453 1453
s5378 4603 3639 3127 3083 3596 3611
b01 135 133 133 133 133 133
b04 1346 1168 1168 1168 1168 1168
b08 489 463 461 438 463 463
b11 1089 1003 937 898 1004 1004
b12 3102 1488 663 636 1621 1648

Only one characteristic fault is used under ”Ours” column

From this table, we can see that with only one characteristic fault, our
fault coverages are very close to those obtained by state-of-the-art sequen-
tial ATPG for most circuits. In all circuits except for s1196 and s1238,
the results of our technique either surpass or equal the results obtained for
the ideal weighted random technique. For some hard-to-test circuits such
as s5378 and b12, our technique is able to detect significantly more faults
than the weighted random BIST approach and also outperforms [16], in-
dicating that the spectra extracted by our new scheme are more efficient.
The reason our approach did not perform as well in s1196 and s1238 is
that these two circuits are randomly testable and thus the size of the com-
pacted test set for a single characteristic fault is too small, typically only
5 vectors. Due to this reason, spectral information for the entire circuit
cannot be fully captured by these few vectors.

To increase fault coverage, the immediate thing to do is to increase the
number of characteristic faults. For those circuits which saw a loss in fault
coverage with respect to [16], we increased the size of characteristic fault
set, � , gradually until the fault coverage reaches that of STRATEGATE.
The results are reported for increasing number of characteristic faults in
Table 2. Once the fault coverage reached a desired level, we discontinue
increasing the number of characteristic faults, and a ”/” is placed under that
column. In circuits s1196 and s1238, both of which are randomly testable,
by increasing the number of characteristic faults, the fault coverages im-
proved significantly as expected. For many other circuits, increasing the
number of characteristic faults did not improve the results, since the single
characteristic fault already achieved very high fault coverages.

Table 3 reports the speedup and storage reduction between our tech-
nique and [16]. The time reported is in seconds and the storage reported
is the size of the final spectral coefficient set. Take s382 for example. The
execution time for [16] and ours are 261 seconds and 212 seconds respec-
tively. The speedup is due to the fact that we are filtering/compacting for
the characteristic faults only. The number of spectral coefficients in our
approach is 58, while the size by [16] would require 567. For this small
circuit, nearly 1 order of magnitude reduction in storage is achieved. Re-
sults for s5378 showed that more than 2 orders of magnitude reduction
in storage is achieved, with only 24 spectral coefficients needed for the
circuit.

6 Conclusion
We have presented an effective approach for logic BIST using characteris-
tic faults and spectrum information. We demonstrated that many faults in
a circuit share similar spectral characteristics, which can be captured by a
small number of characteristic faults. By intelligently selecting a small set
of characteristic faults, we are able to spectrally characterize the circuit,
and this information is sufficient in aiding BIST to obtain extremely high
fault coverages. Our technique achieves the same or higher fault cover-
age than previously proposed BIST approaches, while the computational
effort and storage needed are much less since our target changes from the
total detected fault set to only a few target faults. Future work will further
the characterization of the circuit and evaluation of different characteristic
fault sets.
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