Forward Image Computation with Backtracing ATPG and
Incremental State-Set Construction ”

Kameshwar Chandrasekar
ECE Department, Virginia Tech
Blacksburg, VA 24061

kamesh@vt.edu

ABSTRACT

Image computation is a fundamental step in formal verifica-
tion of sequential systems, including sequential equivalence
checking and symbolic model checking. Since conventional
Reduced Ordered Binary Decision Diagram (ROBDD) based
methods can potentially suffer from memory explosion, there
has been a growing interest in using Automatic Test Pattern
Generation (ATPG) / Boolean Satisfiability (SAT) based
techniques in recent years. While ATPG has been successful
for computing pre-image, image computation presents a very
different set of problems. In this paper, we present a novel
backtracing-based ATPG technique for forward image com-
putation. We carefully alter the ATPG engine to compute
the image cubes and store them incrementally in a Zero-
Suppressed Binary Decision Diagram (ZBDD). In order to
improve the efficiency of image computation, we propose
three heuristics: (i) gate-observability based decision selec-
tion heuristics to accelerate ATPG, (ii) search-state based
learning techniques supported with a proof for correctness,
and (iii) on-the-fly state-set minimization techniques to re-
duce the size of computed image set. Experimental results
on ISCAS ’89 and ITC ’99 benchmark circuits show that we
can achieve orders of magnitude improvement over OBDD-
based and SAT-based techniques.

Categories and Subject Descriptors
B.6.3 [Logic Design]: Design Aids—uverification

General Terms
Verification, Algorithm

Keywords
Image computation, ZBDDs, Model Checking, ATPG

*This work is supported in part by NSF Grants 0196470,
0098304, and 0305881

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

GLSVLS'05, April 17-19, 2005, Chicago, lllinois, USA.

Copyright 2005 ACM 1-59593-057-4/05/0004 ...$5.00.

2564

Michael S. Hsiao
ECE Department, Virginia Tech
Blacksburg, VA 24061

hsiao@vt.edu

1. INTRODUCTION

Symbolic methods are widely used for formal verification
of hardware systems. At the core of these formal methods,
there is an image /pre-image computation step that performs
state space traversal. In essence, computing image/pre-
image requires the computation of the set of all next/previous
states that can be reached from a given set of states in one
cycle. Traditionally, Reduced Ordered Binary Decision Di-
agrams (ROBDD) were used, since they are canonical and
can be efficiently manipulated. However, these methods suf-
fer from potential memory explosion for large circuits and
are generally suitable for only small and medium-sized cir-
cuits. Due to the increasing complexity and growing size
of designs, several alternatives to ROBDD based methods
have received attention in recent years.

In[1, 27], non-canonical structures such as Reduced Boolean
Circuit (RBC) and Boolean Expression Diagrams (BED)
are integrated with SAT solvers to perform efficient variable
quantification for image/pre-image computation. The tran-
sition relation of the circuit is represented as an RBC/BED
and the authors propose efficient quantification rules for spe-
cific sub-structures. However, in general, the length of the
formulas may grow exponentially in size due to naive quan-
tification. In [12], SAT solvers are integrated with BDDs to
perform image computation. The transition relation of the
circuit is represented in Conjunctive Normal Form (CNF).
The quantification of the variables is performed during solu-
tion enumeration. The SAT solvers are used to provide a dis-
junctive decomposition of clauses and later BDDs are used
to solve the end problems. This technique was improvised in
[11, 13], where the inactive clauses are avoided dynamically
and efficient variable selection heuristics are proposed.

In [18], an efficient pre-image computation technique is
proposed for symbolic model checking using a pure SAT
solver. The transition relation is represented as a CNF and
variable quantification is performed during solution enumer-
ation. After each solution is found, the state-cube is en-
larged by re-building the implication graph to prune a larger
search space. This technique was further improved in [16] by
using a justification procedure on the circuit for state-cube
enlargement. In [19], an approximate image is computed us-
ing the interpolants derived from refutation proofs of unsat-
isfiable CNF instances. This approximate image can be used
to restrict the search space during SAT based unbounded
model checking. In [25], an ATPG engine is used for pre-
image computation. The transition relation is represented
as a Boolean circuit and an ATPG engine is invoked to enu-
merate all the solutions that represents the complete pre-

image. In order to prune the search-space, success-driven
learning that avoids re-searching overlapping solution sub-
spaces was introduced. Success-driven learning was further
augmented in [4, 5] to prune larger search-spaces. However,
ATPG based pre-image computation techniques are devoid
of inbuilt conflict-driven learning that is inherent in SAT
solvers. In [2], success-driven learning was integrated into a
SAT-solver to take advantage of both success-driven learn-
ing and conflict-driven learning. In a recent approach for
SAT-based model checking in [17], the transition relation is
represented by an AND-INVERTER graph and efficient so-
lution enumeration is performed by a specialized SAT solver.
After obtaining each solution, the state-cube is enlarged by
specifying the unspecified inputs and it is demonstrated to
prune a larger search-space.

It should be noted that some of the above techniques, [2,
4,16, 17, 18, 25], are specific to pre-image computation and
cannot be directly extended to compute the image. While
pre-image computation can be very useful, the pre-image
space may potentially contain many unreachable states. On
the other hand, all the states that are traversed during image
computation from a legal initial state are guaranteed to be
reachable. In this regard, we focus on image computation
for sequential circuits using an ATPG engine. The novel
features of this work are as follows:

1. We propose a novel backtracing-based ATPG for for-
ward image computation. The image cubes are incre-
mentally stored in a Zero-Suppressed Binary Decision
Diagram, instead of adding them one by one.

2. We use a new decision selection heuristic and search-
state based learning technique for the purpose of image
computation.

3. We use cube minimization techniques ‘on-the-fly’ to
reduce the size of the final state-set ZBDD.

Experimental results on ISCAS ’89 and ITC ’99 benchmark
circuits show that we can achieve orders of magnitude im-
provement over OBDD-based and SAT-based techniques.

The rest of the paper is organized as follows. We intro-
duce the preliminaries of image computation and ZBDDs in
Section 2. In Section 3, we illustrate the novel image com-
putation technique that stores the image cubes incremen-
tally in a ZBDD. In Section 4, we propose new heuristics to
improve the efficiency of the image computation technique.
Experimental results for large ISCAS '89 and ITC ’99 cir-
cuits are presented in Section 5. We conclude the paper in
Section 6.

2. PRELIMINARIES

2.1 Image computation

Given a Transition Relation T(X,l,X’) and a set of initial
states §(X), the image of X) can be computed by,

Image(X') = E|X,i T(Xa l 1X’) : SX)

where,
e X represents initial state elements
o | represents primary inputs
o X' represents next state elements

255

to the present state flip-flops (5,6,7).

Essentially, the above equation can be used for image com-
putation using formula manipulation, where the state sets
and the transition relation are efficiently represented. We
explain an image computation technique using the circuit
structure in the following example. Consider the ISCAS89
circuit s27 shown in Figure 1. Gates 1,2,3,4 are the primary
inputs, 5,6,7 are the present-state flip-flops and 5',6',7' are

the next state flip-flops. The primary inputs (outputs) and

present (next) state flip-flops are together called as inputs
(outputs) to the circuit, when the meaning is clear from the
context.

Figure 1: Image computation for s27 - 000 state

Let us compute the image for the initial state 000 using
a naive technique. First, we assign the initial state values
Then, we have to
assign all possible values at the primary inputs (1,2,3,4).
For each possible assignment at the primary inputs, we logic
simulate the circuit and store the values obtained at the
next-state flip flops (5',6’,7’) as an image cube. For example,

when we assign 0000 at the primary inputs, the next state

values is 000. After enumerating the 16 possible values at
1,2,3,4 in this naive technique, the following image cubes
are obtained in the above example: 000,001,100,101,010. It
should be noted that we may obtain the same cube multiple

times in this technique, albeit, the final solution set gives the

complete image. We refer the reader to [10, 12, 22, 23] for
existing BDD/SAT based image computation techniques.

2.2 Zero-suppressed BDD (ZBDD)

—— 1-branch
0-branch

sets:
{a, b}
{a, c}
{b, c}

Figure 2: ZBDD

In [15], Minato introduced ZBDDs to represent sets of
combinations compactly and perform set operations efficiently.

Sets of combinations S= {{a,b},{a,c}, {b,c}} are represented
in a ZBDD as shown in Figure 2 (A). Each path from the
root to TERMINAL-1 represents a set in the ZBDD. A 1-
edge from a node denotes the presence of the element in
the set and a 0-edge denotes its absence. If the variables
in the ZBDD are linearly ordered, then it is called an or-
dered ZBDD. Otherwise, it is a general ZBDD. An excel-
lent tutorial on ZBDDs is available at the website [21], and
ZBDD algorithms have been implemented in publicly avail-
able CUDD [26] and Extra [20] packages.

ZBDDs are used in [18] to store the pre-image clauses.
Each clause is added one by one to a ZBDD to compress
its size. In this paper, we construct a general ZBDD incre-
mentally during image computation to represent the image
state cubes.

3. BASIC IMAGE COMPUTATION

In general, an ATPG engine attempts to generate an as-
signment that satisfies a given objective. This leads to a
straight-forward application in pre-image computation as
seen in [4, 5, 25], where the target next state-set is natu-
rally set as the objective. In their setup, the primary inputs
are chosen as decisions and circuit search-states are used for
learning. The input assignments generated in the decision
tree represent the complete pre-image set. This cannot be
directly extended for image computation due to the follow-
ing reasons:

1. Image computation is not symmetric to pre-image com-
putation. In pre-image computation, exploring all pos-
sible assignments at the inputs is equivalent to explor-
ing the complete search-space for all variables in the
circuit. This is not true for image computation, if we
explore all the possible assignments at the outputs.

2. A circuit represents a many-to-one mapping from in-
put assignments to output assignments. Hence, it is
not possible to set the target initial state as the objec-
tive and make outputs as the only decisions.

3. In order to benefit from search-state based learning
similar to [4, 5, 25], it is necessary to choose the inputs
as decisions and logic simulate the circuit i.e., we need
a PODEM-like ATPG.

In this section, we explain a new procedure to perform
PODEM like ATPG-based image computation. The basic
procedure is outlined in Algorithm 1, where variables are
quantified and a ZBDD is incrementally built that represents
the complete image set.

Initially, a multi-level Boolean Circuit that represents the
initial state set is constructed. This circuit is appended to
the circuit-under-verification that represents the transition
relation. The unspecified present-state flip-flops and pri-
mary inputs are chosen as decisions for the ATPG engine.
After choosing each decision, the initial state circuit is also
logic simulated to verify if we are still in the initial state
space (care space). This is analogous to the use of don’t-
care space to constrain the search as in [14], but we use the
care space instead of the don’t care space. To choose a de-
cision, we backtrace from an unspecified next state flip-flop
through an X-path and pick a circuit input. Then, simi-
lar to PODEM, we logic simulate starting from the decision
using an event driven mechanism. The next-state flip-flops

256

Algorithm 1: Image Computation

1 computeImage(){
2 if (lbelongsTolnitState()) then
/*present state assignment ¢ initial state */
3 return TERMINALOQ ;
end
4 if (allNztStatesSpeczﬁed{)) then
/*found an i mge cube *
5 return TERMINALLI ;
end

/*choose an unspecified i nput */
6 < decision,value >:= backt raceTol nput () ;

7 | ogi cSi nul at e (decision,val) ;

8 nxt_states) := get SpecNxt St ates () ;
9 znodel := conput el nage () ;

10 | ogi cSi mul at e (decision,!val) ;

11 nxt_statesl := get SpecNxt St ates () ;
12 z nodel := conput el mage () ;

/*reset the input */

13 | ogi cSi mul at e (decision, X) ;

14 znode:= bui | dParti al Zbdd (nxt_states0, z_node0,
nxt_statesl,z nodel) ;

15 return z_node ;

}

that are specified in that decision level are noted. This is
done recursively until all the next state flip-flops are spec-
ified, i.e., a fully-specified image cube is obtained. Then,
the decision is flipped (enforce a backtrack) and the other
branch of the decision tree is explored similarly. Finally, a
partial ZBDD is stored for the next state flip-flops specified
at each decision level.

z_node 1-branch

O—branch

z_n deO N
i \ Z_| nodel E

Figure 3: Partial Image ZBDD

A simple mechanism to construct the partial ZBDD at one
recursive call of Algorithm 1 is as follows: Let next-state val-
ues {x1,x2,...} be specified for decision:=val and {yl,y2,...}
be specified for decision :=!val. The partial ZBDDs z_node0
and z_nodel are constructed earlier in computel mage() during
previous recursive calls to the algorithm. Since we construct
the ZBDD in a bottom-up fashion, the resulting partial im-
age ZBDD can be constructed as shown in Figure 3. Basi-
cally, the image cubes are added as sets to the ZBDD. After
exploring all inputs assignments in such a fashion, this will
incrementally lead to a ZBDD that represents the complete
image at the end of ATPG.

4. EFFICIENT IMAGE COMPUTATION

In this section, we propose optimization techniques to im-
prove the efficiency of basic image computation algorithm.

4.1 Decision selection heuristics

Several heuristics have been proposed in ATPG litera-
ture in choosing better decisions. These techniques aimed
at detecting a fault and hence were mostly dependent on
the testability measures of the circuit. Some of the popu-
lar techniques include [3, 6, 9, 24], where the difficulty of
justifying/propagating a gate value is measured as control-
lability /observability measure. A recent decision selection
heuristic for an all-solutions ATPG was proposed in [5] that
considers the connectivity of variables to choose a decision.
However, their technique specifically targets pre-image com-
putation, where both solutions and conflicts can occur de-
pending on the objective chosen.

In the case of image computation, our main idea is to ef-
ficiently explore all possible assignments at the inputs, and
we backtrack only when the next state flip-flops are com-
pletely specified. Note that there is no specific objective in
the case of image computation. We consider the following
two factors to derive a decision selection heuristic:

1. If we always choose a decision that restricts the input
assignment to the initial state space, then there will
never be conflict-terminals, and we need not backtrack
unnecessarily during ATPG.

2. If a small set of inputs can simply specify all the next-
state flip-flops, then we can reach an image cube quicker
in the decision tree. This can potentially reduce the
depth of the decision tree.

Based on these two observations, we propose the following
decision selection heuristic:

o If the output of the initial-state circuit is unspeci-
fied, we backtrace through the initial state circuit and
choose a decision. This will help, albeit does not guar-
antee, to choose the input assignments that are within
the initial state space.

o If the output of the initial-state circuit is specified, we
backtrace in the original circuit using the observability
measures of each gate. Since we want to specify the
next-state flip-flops using minimum number of input
assignments, it is desirable to choose an input that can
easily propagate its value to the next state flip-flop.

In our method, we use the observability measures pro-
posed in SCOAP [9] with a slight modification. For the sake
of completeness, we explain how the observability measures
are derived. For image computation, we are only interested
at observing the input values at next-state flip-flops. For
the next-state flip-flops, we assign the observability values
as 0. For the primary outputs, we assign very high values
(theoretically infinity) as their observability values. Then
the observability values at the input of each gate is derived
level by level based on equations proposed in [9]. For exam-
ple, the observability at the input of an AND gate depends
on the sum of the observability of its output and controla-
bility of its other inputs to 1. Based on these measures, we
backtrace through a gate with least observability measures
and finally select an input as a decision.

257

4.2 Search-state based learning

ATPG based techniques largely depend on learning tech-
niques that help to accelerate their performance. We show
that the search-state based learning techniques, initially pro-
posed in [8, 25] and later analyzed and enhanced in [4, 5],
can be construed for image computation as well.

Let the logic decomposition of the circuit after each de-
cision be called a search state for the ATPG. It should be
noted that we are exhausting all 2" input assignments in a
decision tree fashion. Each branch in the decision tree cor-
responds to a search state in the circuit. This search state
can be uniquely represented by a cutset of gate values in the
circuit as shown in [5, 25]. These cutsets were used to iden-
tify equivalent search-states and the corresponding sub-tree
was shared in the final pre-image.

In the case of the image computation discussed in the pre-
vious section, we store a ZBDD as the resulting image. We
do not have a decision tree as such. However, it is not hard
to see that we can share sub-ZBDDs and take advantage
of search-state based learning. Similar to [5, 25], we store
the cutsets, but instead of decision tree nodes we store the
ZBDD nodes that correspond to the cutset. When the same
cutset/search-state occurs again during ATPG, we simply
link that ZBDD node instead of re-searching the search-
space corresponding to that logic decomposition of the cir-
cuit. In order to formally define this technique we propose
the following theorem:

THEOREM 1. If two equivalent cutsets are obtained using
Algorithm 1, then the corresponding partial ZBDDs gener-
ated thereafter will be isomorphic, for a given ATPG.

PrOOF. If two equivalent cutsets are obtained, then the
logical decomposition of the circuit will be the same for both
the cutsets. This will lead to a sub-circuit. Thereafter, the
ATPG engine targets to compute the complete image of that
sub-circuit. This image will be stored as a partial ZBDD.
Since the sub-circuits are identical, the partial ZBDDs will
be isomorphic. [l

4.3 On the fly state-set minimization

All image/pre-image computation techniques generally suf-
fer from solution explosion problem, which in turn leads to
temporal explosion to obtain all the solutions and memory
explosion to store them. The search-state based learning
in ATPG helps to avoid the solution explosion problem by
reusing previously explored search spaces and sharing par-
tial ZBDDs. In order to reduce the size of the ZBDD further,
we take advantage of two simple minimization techniques:

1. Subsumption:
V1..Vi—1.Vi.Vig1..Vn + V1..Vic1.Vig1...Vn = V1...Vi—1.Vig1...Vn

2. Cube minimization:
V1..Vic1.ViVig1..Vn + Vi Vis1.ViVig 1.V = V1..Vis1.Vig1...Vn

Although these are simple rules, they are very effective in
reducing the state set since a lot of such structures occur
during ATPG-based image computation. For illustration,
we show the cube minimization technique in the ZBDD in
Figure 4. In our implementation, we check for these struc-
tures while constructing the ZBDD in a bottom up fashion.
For the Figure 4, ZA and ZB are considered to be minimized.
It should be noted that we check only two levels to perform
this minimization. Hence, the method is not complete, but

Table 1: Image computation for ISCAS ’89 & ITC ’99 circuits

Circuit | #FF | #gates SAT BDD Basic ATPG Efficient ATPG
#enum | Time(s) || #nodes | Time(s) || #enum | #nodes [Time(s) || #matches | #nodes | Time(s)
51196 18 575 823 0.13 404 0.02 3187 7776 0.13 805 2326 0.08
51269 37 634 4339 0.3 8423 0.1 9501 55K 0.36 1309 8071 0.11
51512 57 887 6144 0.57 74 0.13 27724 56154 0.23 34 87 0.03
59234 228 5866 24 0.14 6179 1.8 63 934 0.03 14 362 0.03
53271 116 1728 - T.0 1380 0.8 - M_O - 196 866 0.06
53384 183 1937 - T_O 322 0.5 - M_O - 60 144 0.03
55378 179 3042 - T_O 1M 54.7 - M_O - 1528 6495 0.34
538417 | 1636 24K - T_O 3893 17.6 - M_O - 24 1692 0.1
538584 | 1452 20K 66 0.51 11K 10.1 66 2131 0.06 8 1637 0.06
bll 31 770 64 0.01 55 0.02 64 153 0.02 7 27 0.02
bl4 245 11K - T_O - T.0O - M_O - 32 215 0.04
bl5 448 9K 1 0.23 734 11.8 1 451 0.03 1 451 0.03
b17 1415 32K 1 0.86 2735 263.6 1 1417 0.06 1 1417 0.06
b20 490 20K - T_O - T.0O - M_O - 34 460 0.06
b22 735 30K - T.0 - T_O - M_O - 34 805 0.07

Note: a) T_O - Time Out (1800s)

it is sound. In other words, our minimization is correct but
all the cubes that can be minimized are not essentially min-
imized in the state-set ZBDD. It is easier to detect all such
cubes if we have an ordered ZBDD. It should be noted that
we can convert the general ZBDD into an ordered ZBDD
and detect all the cubes that can be minimized. But, this
will lead to an extra overhead that will generate a ZBDD
with lesser cubes and not necessarily smaller size.

—— 1-branch
e ==~ 0-branch

ZB

Figure 4: Minimization of ZBDD nodes

5. EXPERIMENTAL EVALUATION

The suite of techniques discussed in Sections 3 and 4 were
implemented in C++ and integrated into a PODEM-like
ATPG engine. We aimed at computing the one-cycle im-
age for the all-zero initial state of large ISCAS89 and ITC99
circuits. Note that different initial states could easily be
used instead of the all-zero state. We conducted the exper-
iments on a Pentium 4, 3GB RAM machine, running the
Linux Operating System. We compare the basic ATPG and
the efficient ATPG with SAT and BDD techniques. The
time limit was set to 1800 seconds and memory limit was
set to 1 million nodes. For comparison with a SAT-based
technique, we modified MINISAT [7] to compute the image
for sequential circuits. After each solution is obtained, an
enlarged blocking clause is added to constrain the solution
state space until the complete search space is explored. Then
we use the inbuilt compute_reach command of VIS [10] with

258

b) M_O - Memory Out (1M nodes)

dynamic variable ordering option to compute the one-cycle
image for sequential circuits using BDDs.

The results are reported in Table 1. The circuit name,
number of flip-flops and number of gates are reported in
Columns 1, 2 and 3, respectively. Columns 4 and 5 report
the number of solutions and time taken by the SAT-based
technique. Columns 6 and 7 report the size of the solution
set and time taken by BDD based technique. The number
of solutions, size of solution set and time taken by the basic
ATPG are reported in Columns 8, 9 and 10. The same re-
sults are reported for our proposed ATPG in Columns 11,
12 and 13. We count each search-state match as an enumer-
ation, since we backtrack at that point. It can be seen that
the proposed ATPG with enhanced heuristics consistently
outperforms all other techniques. The basic ATPG aborts
in many cases, such as s5378, s38417, b20 and b22, since
the number of ZBDD nodes exceeds the pre-set limit. It is
seen in Column 12 that the size of solution-set is reduced
by several orders of magnitude because of the optimization
techniques proposed in Section 4. On the other hand, the
SAT based technique aborts for these large circuits because
they lack the circuit knowledge and try to specify all the
variables in the CNF. Due to the lack of structure in the
CNF, it is difficult to learn from equivalent search-states in
SAT. For small circuits, such as s1196, s1269 and s1512, the
time taken by SAT and ATPG are almost the same. But for
larger circuits, ATPG with optimization techniques clearly
outperforms SAT. The BDD based techniques perform very
well for medium sized circuits and are able to complete for a
few large ISCAS circuits such as 5378, s38417, 38584, due
to partitioning and dynamic variable ordering. However, in
these cases, the solution-set is represented in a more com-
pact manner by the general ZBDD. This is mainly because
the BDD in VIS follows a linear order, whereas our gen-
eral ZBDD trades-off space for canonicity. The BDD based
technique spends a lot of time in finding a suitable variable
order for these large circuits and this leads to Time-Out for
circuits such as b14, b20 and b22. In fact, VIS could not
finish constructing the transition relation for b14 which has
11,000 gates. The ATPG technique, on the other hand, di-
rectly computes the image on the Boolean circuit structure
and does not need a separate representation for the transi-
tion relation.

6. CONCLUSION AND FUTURE WORK

We have proposed a novel image computation technique
using an ATPG engine which constructs the image set on-
the-fly as a general ZBDD. We used observability based de-
cision selection heuristics to choose an input decision that
can propagate quickly to the next state flip-flop. In ad-
dition, search-state-based learning is incorporated into the
ATPG engine to avoided searching repeated spaces. A proof
for correctness has also been provided. Finally, we use sim-
ple minimization techniques to reduce the size of the image
ZBDD. Experimental results show that we can achieve sev-
eral orders of magnitude improvement in both space and
time over SAT and BDD based techniques for a number of
large ISCAS 89 and ITC 99 circuits. Possible directions for
future work include converting the image ZBDD into a Re-
duced Boolean Circuit (RBC) and developing an iterative
framework for fixed point computation. Such a framework
would help in promoting the proposed ATPG-based tech-
nique to check properties in Symbolic Model Checking.

7. REFERENCES

[1] P. A. Abdulla, P. Bjesse, and N. Eén. Symbolic
Reachability Analysis based on SAT-solvers. In
Proceedings of Tools and Algorithms for Construction
and Analysis of Systems, pages 411-425, 2000.

Bin Li, M. S. Hsiao and S. Sheng. A Novel SAT
All-solutions Solver for Efficient Preimage
Computation. In Proceedings of Design, Automation
and Test in Europe, pages 272277, 2004.

F. Brglez. On Testability of Combinational Networks.
In Proceedings of International Symposium on Circuits
and Systems, pages 221-225, 1984.

K. Chandrasekar and M. S. Hsiao. ATPG-based
Preimage Computation: Efficient search space pruning
with ZBDD. In Proceedings of High-Level Design
Validation and Test Workshop, pages 117-122, 2003.
K. Chandrasekar and M. S. Hsiao. Decision Selection
and Learning for an ‘all-solutions ATPG engine’. In
Proceedings of International Test Conference, pages
607-616, 2004.

S. Chang, W. Jone, and S. Chang. TAIR: Testability
Analysis by Implication Reasoning. IEEE
Transactions on Computer Aided Design,
19(1):152-160, January 2000.

N. Eén and N. Sorensson. An Extensible SAT-solver.
In Proceedings of SAT, pages 502-518, 2003.

J. Giraldi and M. L. Bushnell. Search state
equivalence for redundancy identification and test
generation. In Proceedings of International Test
Conference, pages 184-193, 1991.

L. H. Goldstein. Controllability /Observability
Analysis of Digital Circuits. IEEE Transactions on
Circuits and Systems, 26:685-693, September 1979.
The VIS Group. VIS: A System for Verification and
Synthesis. In Proceedings of Computer Aided
Verification, pages 428-432, 1996.

A. Gupta, A. Gupta, Z. Yang, and P. Ashar. Dynamic
Detection and Removal of Inactive Clauses in SAT
with Application in Image Computation. In
Proceedings of Design Automation Conference, pages
536-541, 2001.

[2

—

[3

[

[5]

[7]

[9]

[10]

[11]

259

[12] A. Gupta, Z. Yang, P. Ashar, and A. Gupta.
SAT-based Image Computation with Application in
Reachability analysis. In Proceedings of Formal
Methods in Computer-Aided Design, pages 354-371,
2000.

A. Gupta, Z. Yang, P. Ashar, L. Zhang, and S. Malik.
Partition-based Decision Heuristics for Image
Computation using SAT and BDDs. In Proceedings of
International Conference on Computer Aided Design,
pages 286—292, 2001.

S.-Y. Huang, K.-T. Cheng, K.-C. Chen, C.-Y. Huang,
and F. Brewer. AQUILA: An Equivalence Checking
System for Large Sequential Designs. IEEE
Transactions on Computers, 49(5):443-464, May 2000.
S. Minato. Zero-suppressed BDDs for Set
Manipulation in Combinatorial Problems. In
Proceedings of Design Automation Conference, pages
272-277, 1993.

H.-J. Kang and I.-C. Park. SAT-based Unbounded
Symbolic Model Checking. In Proceedings of Design
Automation Conference, pages 840-843, 2003.

A. Gupta, M. K. Ganai and P. Ashar. Efficient
SAT-based Unbounded Symbolic Model Checking
using Circuit Cofactoring’. In Proceedings of
International Conference on Computer Aided Design,
pages 510-517, 2004.

K. L. McMillan. Applying SAT Methods in
Unbounded Symbolic Model Checking. In Proceedings
of Computer Aided Verification, pages 250-264, 2002.
K. L. McMillan. Interpolation and SAT-based Model
Checking. In Proceedings of Computer Aided
Verification, pages 1-13, 2003.

A. Mishchenko. Extra v 2.0: Software library
extending CUDD. In

hitp://www.ee.pdz.edu/ alanmi/research/extra.htm.

A. Mishchenko. An Introduction to Zero-suppressed
Binary Decision Diagrams. In
hitp://www.ee.pdz.edu/ alanmi/research.

I.-H. Moon, G. D. Hachtel, and F. Somenzi. Border
block Triangular Form and Conjunction Schedule in
Image Computation. In Proceedings of Formal
Methods in Computer-Aided Design, pages 73-90,
2000.

I.-H. Moon, J. H. Kukula, K. Ravi, and F. Somenzi.
To Split or to Conjoin: The Question in Image
Computation. In Proceedings of Design Automation
Conference, pages 23-28, 2000.

S. Seth, L. Pan, and V. D. Agrawal. PREDICT:
Probabilistic Estimation of Digital Circuit Testability.
In Proceedings of Fault Tolerant Computing
Symposium, pages 220-225, 1985.

S. Sheng and M. Hsiao. Efficient Preimage
Computation using a Novel Success-driven ATPG. In
Proceedings of Design, Automation and Test in
FEurope, pages 822-827, 2003.

F. Somenzi. CUDD: CU Decision Diagram Package
2.4.0. In http://visi.colorado.edu/ fabio/CUDD/, 2004.
P. F. Williams, A. Biere, E. M. Clarke, and A. Gupta.
Combining Decision Diagrams and SAT Procedures
for Efficient symbolic model checking. In Proceedings
of International Conference on Computer Aided
Verification, pages 124-138, 2000.

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

23]

[24]

25]

[26]

[27]

