
Constrained ATPG for Broadside Transition Testing
�

Xiao Liu and Michael S. Hsiao
Department of Electrical & Computer Engineering

Virginia Tech, Blacksburg, VA 24061�
liux, hsiao � @vt.edu

Abstract

In this paper, we propose a new concept of testing only functionally testable transition
faults in Broadside Transition testing via a novel constrained ATPG. For each functionally
untestable transition fault � , a set of illegal (unreachable) states that enable detection of � is
first computed. This set of undesirable illegal states is efficiently represented as a Boolean
formula. Our constrained ATPG then incorporates this constraint formula to generate Broad-
side vectors that avoid those undesirable states. In doing so, our method efficiently generates
a test set for functionally testable transition faults and minimizes detection of functionally
untestable transition faults. Because we want to avoid launching and propagating transitions
in the circuit that are not possible in the functional mode, a direct benefit of our method is the
reduction of yield loss due to overtesting of these functionally untestable transitions.

1 Introduction
The stuck-at fault model [1] is insufficient for catching speed-related failures, as more chips are
now more vulnerable to such failures due to higher clock rate, shrinking geometries, longer wires,
increasing metal density, etc. The three most prevalent fault models for delay testings are: transi-
tion fault [2], path delay fault [3], and segment delay fault [4].

A transition fault at a node � assumes a large delay at � such that the transition at � will
not propagate to a flip-flop or primary output within the clock period. The path delay fault model
assumes a small delay at each gate, and the cumulative effect of gate delays along a specific path
from a primary input to a primary output is considered. If the cumulative delay exceeds the clock
period, the chip will fail a test that exercises this particular path. Segment delay fault targets path
segments instead of complete paths. Of these, transition fault is the most practical, and commercial
tools are available for computing such tests. Transition tests have been generated to improve the
detection of speed failures in microprocessors [5] as well as ASICs [6]. In this paper we only
target at the transition fault model.

At each line in the circuit two transitions are possible: slow-to-rise and slow-to-fall. A test
pattern for a transition fault consists of a pair of vectors, � V1,V2 � , where V1 (initial vector) is
required to set the target node to an initial value and V2 (test vector) is required to launch the
appropriate transition at the target node and also propagate the fault-effect to a primary output [2,
12]. The second vector is identical to a test vector that detects the corresponding stuck-at fault on
the node.

In general, (non-scan) functional testing can be impractical for larger circuits in that large test
sets may be required to achieve a desirable fault coverage. As a result, at-speed AC scan testing has

�
This research was supported in part by a grant from Intel Corp., and in part by NSF under contracts CCR-0196470

and CCR-0305881

$17.00 c
�

2003 IEEE 175 Proc. Intl Symp. Defect & Fault Tolerance in VLSI System, Nov 2003

been widely used in the industry to detect delay-induced defects. Compared to functional testing,
scan-based testing for delay faults can decrease the overall ATPG complexity and cost, since both
controllability and observability on the flip-flops are enhanced. Nevertheless, the drawback of
scan-based delay tests lies in two folds: hardware overhead and potential yield loss. In [18],
the author reported that scan-based testing may fail a chip due to the delay faults that do not
affect the normal operation, and thus it is unnecessary to target those functionally unsensitizable
faults. In other words, we want to avoid failing a chip due to a signal transition/propagation that
was not intended to occur in the functional mode. Moreover, a scan test pattern, though derived
from targeting functionally testable transition faults, can incidentally detect some functionally
untestable transition faults if the starting state is an unreachable state.

Several papers [18, 19] have discussed the relationship between functional testing and scan-
based testing. However, from our knowledge, currently there is no quantitative analysis on func-
tional untestable transition faults and scan-based testing. In this paper, we describe a novel con-
strained ATPG algorithm for transition faults. Two main contributions of our work are: (1) the
constrained ATPG only targets at the functionally testable transition faults and minimizes detection
of any identified functionally untestable transition faults; (2) the constrained ATPG can identify
more functionally untestable transition faults than the conventional transition ATPG tools. The
first contribution (the constrained ATPG) enables us to derive transition vectors that avoid the ille-
gal starting states that can detect any of the identified untestable transition faults, while the second
contribution helps us to maximize the state space that we need to avoid. Because we want to
avoid launching and propagating transitions via scan that are not possible in the functional mode,
a direct benefit of our method is the reduction of yield loss due to overtesting of these function-
ally untestable transitions. Our experimental results showed that significantly more functionally
untestable transition faults can be avoided in the final test set.

The rest of the paper is organized as follows. Section 2 gives an overview of the three dif-
ferent scan-based transition test application techniques and explains the motivation of this work.
Section 3 presents an implication engine we developed to identify a subset of the functionally
untestable transition faults. Section 4 proposes a new constrained ATPG algorithm targeting at
only functionally testable faults and simultaneously avoiding the functionally untestable transition
faults. Section 5 reports our constrained ATPG results, and compares them with a conventional
transition ATPG engine. Finally, Section 6 concludes the paper.

2 Background: scan-based transition fault testing
Transition tests can be applied in three different ways: Enhanced-Scan [11], Skewed-load [7]
and Broadside [8].

For enhanced-scan transition testing, two vectors (V1, V2) are scanned in and stored in the scan
FFs simultaneously. Enhanced scan transition test has two primary advantages: higher fault cover-
age and lower test data volume. Enhanced-scan gives better fault coverages than both skewed-load
transition test and broadside transition test because there is no dependency between the two vec-
tors in enhanced-scan test pattern. In addition, compact transition tests can be achieved to reduce
the test data volume and application time for enhanced scan [21]. However, one drawback of the
Enhanced-scan testing is that a hold-scan design [11] is needed. Although the hold-scan model
has been used in some high-performance circuits, such as microprocessors, the area overhead and
the additional routing requirement for control signal still limit the hold-scan cell model from wide
use in the ASIC community. Moreover, because any state combination for V1 and V2 is possible,
many untestable faults are detected.

For skewed-load transition testing (also called last shift) [7, 9, 10], an N-bit vector is loaded by
shifting in the first N-1 bits, where N is the scan-chain length. The last shift clock is used to launch

176

the transition. This is followed by a quick capture. For skewed-load testing, only one vector is
stored for each transition pattern in tester scan memory; the second vector is a shifted version of
the stored vector. Therefore, skewed-load testing is constrained by the correlation of the bits in the
test pattern based on scan chain ordering. Figure 1 shows a simple example where the slow-to-fall
on line � is untestable in Skewed-load testing. To detect the slow-to-fall fault on line d, we need

d

e

g

a

b

c

0

0

0

0

x

0

Shift
d slow−to−fall

14

Figure 1: Untestable Fault in Skewed-load

to set the second vector V2=000 to detect the d s-a-1, therefore the initial vector must be 00X, the
previously shifted version V2. However, this V1, 00X, is unable to initialize the line � to logic 1.
Since 000 is the only vector that can detect the d s-a-1 fault, thus d slow-to-fall is untestable in
skewed-load testing. Based on this observation, skewed-load may miss some functionally testable
faults because of the data dependency between the two vectors, resulting in undertesting of the
functionally testable faults.

For broadside transition testing (also called functional justification) [8], the first vector is
scanned in and the second vector is derived as the circuit response to the first one. For broad-
side testing, after the first vector is scanned in and applied to the circuit, two clock cycles need to
be pulsed: the first to launch the transition and the second to capture the circuit response. PI/PO
changes would be made simultaneously with the first clock pulse if necessary [22]. Because it
requires neither hold-scan design nor skewed shifting, this has been widely applied for transition
testing. In this paper, we will consider the Broadside model only.

All three scan-based testing methods can suffer from yield loss due to a chip failing on detection
of functionally untestable transition faults. In general, we can relate the functional test and the
various scan-based tests in terms of their untestable transition faults as depicted in Figure 2. In

untestable
Broadside

s@

Functional

untestable

Red

Skewedload
untestable

Figure 2: Functional testing vs. Scan-based testing

this figure, the circle at the center depicts the set of redundant stuck-at fault set in the circuit,
while each of the outer circle/oval represents the fault set that cannot be detected by a particular
test method, Based on this relationship, some observations can be made:

1. For every redundant stuck-at fault in the circuit, there must be at least one corresponding
functionally untestable transition fault, which is clearly untestable by any test method.

177

2. All scan-based test methods will incidentally detect some functionally untestable transition
faults, because either the states they scan in may be functionally unreachable or the state
combination is not functionally possible.

3. If a transition fault is untestable by the Broadside model, it will be definitely untestable in
the function mode. Conversely, every functionally testable transition fault will be detectable
under broadside testing.

4. Skewed-load can potentially miss some functionally testable faults due to the correlation
between the vector and its shifted version.

5. Some of the untestable transition faults in Broadside may be detectable in skewed-load test,
and vice versa.

3 Functionally untestable faults identification
In general, functionally untestable transition fault identification in sequential circuits is of the
same complexity as sequential ATPG, which is of exponential complexity in terms of the size of
the circuit. In this section, we describe a novel untestable transition fault identification method by
combining a transition fault implication engine and Broadside ATPG.

In [23], a method for identifying untestable stuck-at faults in sequential circuits by maximizing
local conflicting value assignments has been proposed. The technique first quickly computes a
large number of logic implications across multiple time-frames and stores them in an implication
graph. Then the algorithm identifies impossible combinations of value assignment locally around
each gate in the circuit and those redundant stuck-at faults requiring such impossibilities.

For identifying functionally untestable transition faults, in addition to searching for the impos-
sibilities locally around each gate, we also check the excitability of the initial value in the previous
time frame. Thus, the implication engine in [23] can be extended to quickly identify a large set of
untestable transition faults in the circuit.

Although the transition fault implication engine helps us in identifying a large number of
untestable transition faults in the circuit, it may be incomplete (i.e., not all untestable transition
faults are identified). To avoid the high cost of calling a functional-mode sequential ATPG to
identify the other untestable transition faults, we use a two-time-frame Broadside ATPG instead.
As we discussed before, if a transition fault is untestable in Broadside testing, then it is definitely
untestable in the function mode as well. So the transition fault implication engine and broadside
ATPG can be combined to estimate the total number of functionally untestable transition faults.
This saves us from having to invoke a full sequential ATPG. Figure 3 gives us a graphical illus-
tration. In this figure, the outer rectangle represents the total number of functionally untestable

S3S1S2

U

Figure 3: Approximation of Functionally Untestable Transition Faults.

transition faults in the circuit, and region S1 contains the redundant stuck-at faults identified by
stuck-at fault implication-based method [23]; region S2 contains the untestable transition faults by
our new transition fault implication engine and S3 is the set of untestable transition faults identified
by the Broadside ATPG, which is typically more complete than S2 for most of the benchmarks
tested. Note that the new implication-based method may identify some functionally untestable

178

faults that ATPG misses, and vice versa. The union of S1, S2, and S3 can give us a close approxi-
mation of the functionally untestable transition faults within the circuit.

4 Constrained ATPG For broadside testing
In this section, we describe how we formulate the illegal states as a formula and use it to speed
up the ATPG process to generate effective test vectors that avoid functionally untestable transition
faults. A side benefit is that it also helps us to identify the functionally untestable faults (region
S3 in Figure 3) for broadside testing.

As we described in Section 2, broadside vectors consists of initial state S1, primary input
vectors PI1 and PI2. The intermediate state in the second time-frame is derived directly from S1
and PI1. PI2 in the second time-frame is independently applied. In our broadside ATPG, we unroll
the sequential circuit to two time-frames and attempt to generate a vector, which consists of state
inputs (S), primary inputs in the 1st time frame (PI1) and primary inputs in the 2nd time frame
(PI2). We denote a test vector V � in the unrolled circuit as (S � ,PI1� ,PI2�).

4.1 Problem formulation
Given the set of functionally untestable transition faults, ��� , we want to make sure that the vectors
generated will not incidentally detect any fault in ��� . A naive approach is to fault simulate the
faults in � � whenever a vector is obtained, and the ATPG engine would backtrack if some faults
in ��� are incidentally detected. However, this naive approach can be computationally expensive.
To reduce the expense, instead of focusing on ��� , we project each fault in ��� onto the state space
to identify subspaces that will detect them. Subsequently, the ATPG only needs to avoid searching
in the identified subspaces. We note that any state � that can detect any fault �
	���� would be an
unreachable state, since fault � would otherwise be functionally detectable.

X1 X2

B
U

FFE
R

s

PIs+Scanned FFs

POs+Scanned FFs

Figure 4: Broadside ATPG

Figure 4 illustrates our broadside testing model. In this model, let us consider the detection of
the slow-to-rise fault on line � , (We use �� and ��� to represent line � in the first and second
time-frame respectively.) We need to satisfy the following two objectives simultaneously:

1. Excite �� s-a-1 fault in the first time-frame and detect ��� s-a-0 in the second time frame.

2. Avoid detection of any transition faults in � � by making sure the search space does not
overlap with the subspaces that can detect faults in ��� .

The second objective of avoiding detection of functionally untestable transition faults is key to the
constrained ATPG. We first identify the state subspace that can detect the functionally untestable
transition faults, and this subspace is represented as a Boolean formula. Suppose that the circuit
has � flip-flops ��� ,..., ��� , a formula in conjunctive normal form (CNF) is used to represent the
subspace. A CNF formula over the � binary variables is the conjunction (AND) of � clauses

179

� � ,..., ��� , each of which is the disjunction (OR) of one or more literals, where a literal is the
occurrence of a variable or its complement. Each clause in the formula represents a subspace that
the ATPG must avoid. Therefore, at any given time during the ATPG search, no clause in the
formula should evaluate to false (where each literal in the clause is valued to 0).

The subset of states that can detect any functionally untestable transition fault is obtained as
follows.

1. Run the Implication Engine (TRANIMP) to identify the set of the functionally untestable
transition faults (��� �).

2. Fault simulate with a 5,000 random vector set,
���������

. Remove the easy functionally testable
faults and record any vector in

���������
that detects one or more of the functionally transition

faults in ��� � . Place such vectors in
�
	����������

.
3. For each vector in

�
	�����������
, deduce the illegal state (IS) and negate it to construct the corre-

sponding clause � as a constraint.
4. Combine all the constraint clauses to form the CNF formula � .

Because obtaining the complete set of states that can detect any functionally untestable transi-
tion fault is computationally expensive, we obtain only a subset of states via random simulation,
although this can be compensated by dynamically adding the newly identified illegal states in
ATPG process to the CNF formula � . As a result, there may still exist states outside the subset that
may still detect a functionally untestable transition fault. However, our experiments showed that
the subset is sufficient to significantly reduce the incidental detection of functionally untestable
faults.

Table 1 illustrates an example of how the constrained CNF formula � is constructed from
the set of illegal states. During the random vector simulation, if a vector � � detects one or more
functionally untestable faults identified by the implication engine (TRANIMP), we record the state
variables of � � , deduce the corresponding constrained clause � � from the specified state variables.
For example, in Table 1, three illegal states are reported. The first illegal state is � � ��� ��� ��� � � �����
111XXX. The illegal state subspace can be represented simply as � �! ���" ��� . Negating this
conjunction gives us the clause � �#� ��$ �&% ��$�'% ��$� . This clause essentially restricts any solution
must fall within the subspace expressed by � � . For example, when ��� ��� ���(� , � � would
evaluate to 0, indicating that an illegal state space has been entered. The clauses for the other two
illegal states can be obtained in a similar manner. Finally, the constrained CNF is formed by the
conjunction of all the constrained clauses. Thus, at any time, none of the constraint clauses must
evaluate to 0 to ensure that the search remains outside of any of the illegal state spaces.

Table 1: CNF Formula Construction
Illegal States)+*�� ��,.-0/21 �43 �!)+56/87 ��3��

� � ��� ��� �9� � � ���
1 1 1 X X X � �'� �9$ �:% �9$�;% ��$�
X 1 0 X 1 X � �<� �9$�=% ��� % ��$�
X 0 0 X X 0 � � � � � % � � % � �

� = � � � � � � =(� $ � + � $ � + � $ �)(� $ � + ��� + � $ �)(��� + ��� + ���)

4.2 Constrained ATPG algorithm
Next, we will discuss how the constrained CNF formula � helps us to speedup the ATPG process
(and identify extra functionally untestable faults also). During the ATPG process, we must make
sure that no clause in � ever evaluates to false (ie., all literals in a clause evaluates to false).

180

Whenever we make a decision on a state variable ��� , we apply this decision assignment to all
the constrained clauses in � that contain ��� . Application of this assignment may result in some
unit clauses (a unit clause is an unsatisfied clause with exactly one remaining unassigned literal
left). This remaining literal is called an implication. The implied variable automatically becomes
the next decision variable. We also check whether there is conflict (where one clause evaluates
to false). If there is a conflict, backtrack immediately. A test vector is said to be generated for
a transition fault X if it excites the fault X1 s-a-1 and detects faults X2 s-a-0, also it satisfies the
constrained CNF � .

Table 2: Implication on Decision Assignment
)�7
- - 3 ��, � 3�� 1 ��1 * � � ���
5 1�3 �	� ����1�
�� � 3 ��,

� � =1 � * �43
��� =0 � * �43
� � =1 � * �43
��� =0 ���<���� ��� �

Backtrack � � =1 � � ��

Using the constrained CNF formula � shown in Table 1, we explain the implication process on
state variables in Table 2. After assigning � � =1, we apply this assignment to the unsatisfied clauses
containing ��� , no unit clause results, thus no implication can be made on other state variables.
Next, suppose the ATPG makes the subsequent decisions � � =0 and � � =1. Applying these to � still
results in no implication. The next decision made by the ATPG is �2���� . For clause � � , we can
directly imply � � =0 (because to satisfy clause (�0$� + ��� + ��$�)=1, ��� has to be 0). Consequently, after
the direct implication � � =0, clause � � evaluates to 0 because all literals in � � has evaluated to 0.
Therefore, we backtrack to the previous decision and assign � � =1 and continue the ATPG process.

During the ATPG backtrace, an implication stack is dynamically updated to record the impli-
cation list of earlier backtrace choices similar to the algorithm described in [17]. We maintain
two dynamic implication lists: � ����� ��� � for storing the implications that are necessary for setting
X1=0, and ������� ����� for storing implications necessary for setting X2=1. If there is a conflict be-
tween ����� � ��� � and ����� � ����� , then we declare X slow to rise untestable. A conflict is observed
when ��"� � implies ��� � � (� can be either logic 0 or 1). In other words, a transition is not
possible on line X. Otherwise, we try to generate the test vector V for detecting X2 s-a-0. If V can
incidentally excite X1 s-a-1 in the first time-frame as well, we mark X slow to rise as potentially
detected. We simulate the generated test vector V to see whether it detects any identified function-
ally untestable faults in ,if not, we say X slow-to rise is detected. Otherwise, we deduct the illegal
state from vector V and update our CNF formula � , then continue to backtrace to excite X1 s-a-1.
If not successful, we declare X slow to rise untestable.

5 Experimental results
We implemented a constrained broadside ATPG based on PODEM [16] in C++, as well as the
implication-based untestable transition fault identification, also in C++. We further analyzed the
effectiveness of our ATPG algorithm by comparing it with a conventional Broadside ATPG. Ex-
perimental data was collected for full-scan versions of ISCAS89 benchmark circuits on a 2.8GHz
Pentium-4 with 512 MB of memory, running the Linux operation system.

First, Table 3 reports the functionally untestable transition faults identified by using our tran-
sition fault implication engine (TRANIMP). In order to see the effectiveness of the implication
engine, we list the number of functionally untestable transition faults identified while consider-

181

Table 3: Functionally Untestable Faults Identified by Implication(TRANIMP)
circuit � /87�5 , � �� � � ��� � � ��� � � ��� � �
s344 1040 0 47 66 66

s1423 4288 33 387 387 387
s5378 15680 351 3673 3695 3695
s9234 29086 1327 6533 7415 7415

s13207 44130 1303 8900 14530 14540
s35932 103842 9536 11255 11255 11255

ing different number of time frames for sequential circuit. The third column presents the number
of untestable transition faults identified while only one time-frame is considered. The last three
columns show the numbers of functionally untestable transition faults discovered while consider-
ing 3-time-frames, 5-time-frames and 7-time-frames, respectively. For example, in circuit s5378,
one-time-frame implication found 351 functionally untestable transition faults. When the number
of time-frames increases to 7, the number of functionally untestable faults identified increased to
3695.

Several interesting issues to note are listed below:

1. In general, the number of functionally untestable transition faults are much greater than the
number of redundant stuck-at faults in the circuit. This is due to the functional dependency
between the vectors of each test pattern for broadside-testing.

2. The number of identified untestable transition faults increases with the number of time
frames considered in the static implication graph.

3. Except for circuit s13207, the number of identified untestable transition fault saturates when
the number of time frames increases to 7. Therefore, we can expect the number of untestable
transition faults to not increase too much even if the number of time frames continue to
increase.

Table 4: Effectiveness of Random Vectors On Avoiding Functionally Untestable Faults
� 1 - � 7 1 , � *�, / 5 �!7 � �	� ��, 5000 RandVec Pruned RandVec

� /27
5 , � � /87�5 , �
 � � ��� �
 � � �� � � � �

s344 1040 66 19 907 0 906 134
s1423 4288 387 160 2843 0 1163 3125
s5378 15680 3695 1415 9080 0 0 15680
s9234 29086 7415 1590 9875 0 0 29086
s13207 44130 14542 5306 12186 0 0 44130
s35932 103842 11255 1275 87328 0 49758 54084

Table 4 shows the (lack of) effectiveness of random vectors in avoiding detection of the func-
tionally untestable transition faults. For each circuit, the total number of faults is first reported in
column 2. Column 3 shows the number of functionally untestable faults identified by our implica-
tion engine (TRANIMP), column 4 reports the number of detected functionally untestable faults,
and column 5 reports the coverage of the remaining faults. Then we remove those vectors which
detect at least one functionally untestable faults from the test set and rerun the fault simulation.
The results are reported under the Pruned RandVec columns. Obviously, for the pruned random
vector set, it will not detect any identified functionally untestable faults, as shown in column 6.
Columns 7 and 8 list the number of faults detected and missed by the pruned random vector set,

182

respectively. It is interesting to see that for circuits s5378, s9234, s13207, all random vectors
detect at least one functionally untestable fault! Therefore, if we want to reduce the yield loss
by avoiding overtesting of functionally untestable faults for circuits such as these, random vectors
will not be very effective.

Table 5 reports the results from our constrained ATPG for Broadside testing, and we compare
it with a conventional non-constrained Broadside ATPG engine. We target only the faults that ran-
dom vectors could not detect without incidentally detecting at least some functionally untestable
transition faults. The sizes of these remaining target faults are first listed for each circuit under the
second column. Columns 3 to 6 list the number of detected functionally testable faults, number
of proved functionally untestable faults, number of aborted faults and test generation time for our
constrained Broadside ATPG. The last four columns show the results when non-constrained ATPG
is used. Although the execution time for constrained ATPG is longer than the non-constrained
version, we significantly improve the quality of generated test vectors because the new test set
detects only those functionally testable faults and avoid detecting those functionally untestable
ones. In other words, the vectors generated by the non-constrained ATPG may include some
illegal states and thus detect both functionally testable and functionally untestable faults. For ex-
ample, in circuit s13207, the 27150 faults that the non-constrained ATPG detected included many
of the 22547 functionally untestable faults identified by the constrained ATPG. In addition, the
constrained ATPG algorithm identified significantly more functionally untestable faults than the
non-constrained ATPG. For instance, in circuit s9234, our constrained ATPG identify 8095 func-
tionally untestable faults out of the 29086 remaining potential functionally testable faults, while
non-constrained ATPG only identify 3357 functionally untestable faults. Similarly, the number
of aborted faults with our proposed method is also fewer. For instance, only 573 transition faults
were aborted as opposed to 1396 transition faults in the non-constrained ATPG.

Table 5: Constrained ATPG Vs.Non-constrained ATPG

)�� , � /8-
 39, Constrained ATPG Non-constrained ATPG
� /27
5 , � ��� � � � � ��� � � 1 � 3�� ��� �� � � � � ��� � � 1 � 3	� �
�

s344 134 60 74 0 0.19 83 51 0 0.13
s1423 3125 2406 476 243 1621.65 2485 368 272 463.73
s5378 15680 10871 4270 539 5393.13 12999 2024 657 669.35
s9234 29086 20418 8095 573 8114.77 24333 3357 1396 2915.27

s13207 44130 21526 22549 55 19871.32 27150 16900 80 3148.62
s35932 54084 39952 14123 9 34754.80 39978 14089 17 6179.21

6 Conclusions
We presented a novel constrained broadside transition ATPG algorithm. For each untestable transi-
tion fault, � , identified, we first compute the set of illegal (unreachable) states that enable detection
of � . Then, by formulating the illegal states as a constrained CNF formula in our ATPG process,
we efficiently generated a higher quality test set detecting only those functionally testable faults
and avoid overtesting of functionally untestable ones. The cost for the CNF formula construc-
tion is extremely low, making our formulation very practical. The constrained ATPG allows for
earlier backtrack whenever an illegal state is encountered. In some circuits, significantly more
functionally untestable transition faults have been identified. At the same time, more faults could
be detected without incidental detection of functionally untestable transition faults. With a test
set that reduces launching of transitions that are functionally impossible, we believe our method

183

offers a practical solution to avoid overtesting of these functionally impossible transitions, thus
reducing yield loss.

References
[1] R.D. Eldred “Test Routing Based on Symbolic Logical Statement” Journal ACM,Vol.6 pp.33-36

Jan. 1959.

[2] J. A. Waicukauski, E. Lindbloom, B. K. Rosen, and V. S. Iyengar. “Transition Fault Simulation”
IEEE Design & Test of Computers, 4:32-38, April 1987.

[3] G.L. Smith “Model for Delay Faults based upon Paths,” Intl Test Conf., pp. 342-349, Sept. 1985.

[4] K. Heragu, J. H. Patel, and V. D. Agrawal, “Segment delay faults: a new fault model,” VLSI Test
Symp., pp. 32-39, April 1996.

[5] N. Tendulkar, R. Raina, R. Woltenburg, X. Lin, B. Swanson and G. Aldrich, “Novel Techniques
for Achieving High At-Speed Transition Fault Coverage for Motorola’s Microprocessors Based on
PowerPC Instruction Set Architecture,” IEEE VLSI Test Symposium, 2002, pp. 3-8.

[6] F. F. Hsu, K. M. Butler and J. H. Patel, “A Case Study of the Illinois Scan Architecture,” Intl Test
Conf., 2001, pp. 538-547.

[7] J. Savir and S. Patil “Scan-Based Transition Test” IEEE Trans. Computer-Aided Design of Integrated
Circuits and Systems, Vol. 12, No.8 Aug. 1993.

[8] J. Savir and S. Patil “On Broad-Side Delay Test” VLSI Test Symp., pp.284-290 Sept. 1994.

[9] J. Savir “Skewed-Load Transition Test: Part I, Calculus” Intl Test Conf., Oct. 1992, pp. 705-713.

[10] S. Patil, J. Savir “Skewed-Load Transition Test: Part I, Coverage” Intl Test Conf., Oct. 1992, pp.
714-722.

[11] B. Dervisoglu and G. Stong “ Design for Testability: Using Scanpath Techniques for Path-Delay
Test and Measurement” Intl Test Conf., pp.365-374, 1991.

[12] M. H. Schulz and F. Brglez “Accelerated Transition Fault Simulation,” Design Automation Conf. pp.
237-243, June 1987.

[13] M. H. Schulz, E. Trischler and T. M. Sarfert, ”SOCRATES: A highly efficient automatic test pattern
generation system”, IEEE Trans. on Computer-Aided Design, pp. 126-137, January 1988.

[14] M. H. Schulz and E. Auth, ” Improved Deterministic Test Pattern Generation with Applications to
Redundancy Identification”, IEEE Trans. on Computer-Aided Design, pp. 811-816, July 1989.

[15] H. Fujiwara and S. Toida, ”On the Acceleration of Test Generation Algorithms”, IEEE Trans. on
Computers, pp. 1137-1144.

[16] P. Goel, ” An implicit enumeration algorithm to generate tests for combinational logic circuits”,
IEEE Trans. on Computers, pp. 221-222, March 1981.

[17] I. Hamzaoglu and J. H. Patel, “New Techniques for Deterministic Test Pattern Generation” IEEE
VLSI Test Symposium, 1998, pp. 446-452.

[18] Jeff Rearick, “Too much Delay Fault Coverage is a Bad Thing,” Intl Test Conf., 2001, pp. 624-633.

[19] P. Maxell, I. Hartanto and L. Bentz, “Comparing Functional and Structural Tests” Intl Test Conf.,
2000, pp. 400-407.

[20] J. P. Marques-Silva and K. A. Sakallah ”GRASP: A search Algorithm for Propositional Satisfiabil-
ity” IEEE Trans. on Computers, May 1999, pp. 506-521.

[21] X. Liu, M. S. Hsiao, S. Chakravarty and P. Thadikaran, “Techniques to Reduce Data Volume and
Application Time for Transition Test,” Intl Test Conf., 2002, pp. 983-992.

[22] J. Saxena, K. M. Butler, J. Gatt, R. R, S. P. Kumar, S. Basu, D. J. Campbell and J. Berech “Scan-
Based Transition Fault Testing- Implementation and Low Cost Test Challenges,”Intl Test Conf.,
2002, pp. 1120-1129.

[23] M. S. Hsiao “Maximizing Impossibilities for Untestable Fault Identification” IEEE Design Automa-
tion and Test in Europe Conf., 2002, pp. 949-953.

184

