
Design, Automation, and Test in Europe (DATE) Conference, 1998, pp. 577-582

State Relaxation Based Subsequence Removal
for Fast Static Compaction in Sequential Circuits

Michael S. Hsiaoy and Srimat T. Chakradharyy

yDepartment of Electrical and Computer Engineering, Rutgers University, Piscataway, NJ
yyComputer & Communications Research Lab. NEC USA, Princeton, NJ

Abstract

We extend the subsequence removal technique to pro-
vide signi�cantly higher static compaction for sequen-
tial circuits. We show that state relaxation techniques
can be used to identify more or larger cycles in a test
set. State relaxation creates more opportunities for
subsequence removal and hence, results in better com-
paction. Relaxation of a state is possible since not all
memory elements in a �nite state machine have to be
speci�ed for a state transition. The proposed tech-
nique has several advantages: (1) test sets that could
not be compacted by existing subsequence removal
techniques can now be compacted, (2) the size of cy-
cles in a test set can be signi�cantly increased by state
relaxation and removal of the larger sized cycles leads
to better compaction, (3) only two fault simulation
passes are required as compared to trial and re-trial
methods that require multiple fault simulation passes,
and (4) signi�cantly higher compaction is achieved in
short execution times as compared to known subse-
quence removal methods. Experiments on ISCAS89
sequential benchmark circuits and several synthesized
circuits show that the proposed technique consistently
results in signi�cantly higher compaction in short ex-
ecution times.

I Introduction
Test application time (TAT) is proportional to the number of
test vectors in the test set, and TAT directly impacts the cost
of testing. Thus, shorter test sequences are desired. Two
types of compaction techniques exist: dynamic and static
compaction. Dynamic techniques perform compaction con-
currently with the test generation process and often require
modi�cation of the test generator. Static test sequence com-
paction, on the other hand, is a post-processing step to test
generation. Static techniques are independent of the test gen-
eration algorithm and they require no modi�cation of the test
generator. Even if dynamic compaction is used during test
generation, static compaction can further reduce the test set
size obtained after test generation.

Several static compaction approaches for sequential circuits
have been proposed [1, 2, 3, 4]. Recent proposals include
overlapping and reordering of test sequences obtained from
targeting single faults to achieve compaction [1, 2]. These ap-

�
This research was conducted while M. Hsiao was at NEC USA

proaches cannot be used on test sequences produced by ran-
dom or simulation-based test generators. Static compaction
based on vector insertion, omission, or selection has also been
investigated [3]. These methods require multiple fault sim-
ulation passes. They eliminate vectors from a test without
reducing the fault coverage that can be obtained using the
original test set. When a vector is to be omitted or swapped,
the fault simulator is invoked to make sure that the fault cov-
erage is una�ected by the alteration to the test sequence. Very
compact test sets were achieved at the expense of prohibitively
long execution times.

A fast static compaction technique for sequential circuits
based on removing subsequences was reported recently [4].
This approach is based on two observations: (1) test sequences
traverse through a small set of states that are frequently re-
visited, and (2) subsequences corresponding to cycles may be
removed from a test set under certain conditions. If test sets
have few or no states that are re-visited, then the subsequence
removal algorithm performs poorly.

A Motivation
Consider a test set T that has no state that is re-visited.
Therefore, the test set has no cycles. Obviously, the subse-
quence removal algorithm reported in [4] will not be able to
compact the test set. However, by using state relaxation, one
can identify a subsequence that may be removed. For exam-
ple, assume that the test set T transfers a �nite state machine
from state Sinitial to Sfinal without repeating any states. If
Tsub is a subsequence of test set T that transfers the �nite
state machine from state Si to state Sj , states Si and Sj must
be di�erent since the test set has no cycles. It is possible that
not all speci�ed values in state Si are essential to reach state
Sj using subsequence Tsub. Therefore, state Si can be relaxed
by unspecifying the non-essential bits in state Si. Similarly,
not all bits in state Sj need to be speci�ed in order to transfer
the machine to state Sfinal. Without loss of generality, let us
assume that Si and Sj are 10110 and 00100, respectively.
If state Sj can be relaxed to X01X0, then the �rst and the
fourth state bits (ip-op values) are unspeci�ed. State relax-
ation ensures that if Tsub is removed from the test set, it will
still be possible to transfer the machine to the state Sfinal

using the modi�ed sequence. Removal of a subsequence Tsub
means that vectors Vi : : : Vj�1 will be removed from test set
T . Stated di�erently, the relaxed Sj now covers state Si, and
the subsequence Tsub has created a cycle that may be removed
to achieve compaction. Note that the last vector (vector Vj)
of subsequence Tsub is still part of the test set. Relaxation of



states can be computed e�ciently using the support-set algo-
rithm [5]. Support-sets can be computed in linear time and
space complexity, thus making the relaxation approach very
feasible. If the test set has cycles, then state relaxation can
be used to �nd larger cycles. The size of a cycle is the number
of vectors in the subsequence causing the cycle.

B Contribution of present work
Our new proposal for static compaction has several advan-
tages. Test sets that could not be compacted by existing sub-
sequence removal techniques due to absence of cycles can now
be compacted. The size of cycles in a test set can be sig-
ni�cantly increased by state relaxation, and removal of the
larger sized cycles leads to better compaction. Our proposal
requires only two fault simulation passes as compared to trial
and re-trial methods that require multiple fault simulation
passes. Signi�cantly higher compaction is achieved in short
execution times as compared to currently known subsequence
removal methods. Experiments on ISCAS89 sequential bench-
mark circuits and several synthesized circuits show that the
proposed technique consistently results in signi�cantly higher
compaction in short execution times when compared with
known subsequence removal methods [4].

The remainder of the paper is organized as follows. Section
II introduces the terminology and de�nitions used in this work.
Sections III describes state relaxation and Section IV outlines
the static compaction algorithm and discusses limitations of
the proposed approach. Experimental results are reported in
Section V, and Section VI concludes the paper.

II De�nitions
Given a test set T consisting of n vectors V1 : : : Vn, we rep-
resent the subsequence from the ith vector to the jth vector
(0 � i � j � n) of T as T [Vi, Vi+1, ..., Vj ]. Here, Vi and Vj

are the ith and jth vectors in the test set T , respectively.

De�nition 1: A recurrent subsequence (Trec) transfers a �-
nite state machine from a given initial state to the same state.

Essentially, Trec re-visits the initial state of the �nite state
machine. This subsequence is responsible for traversing a cycle
in the state diagram of the �nite state machine.

De�nition 2: A recurrent subsequence is an inert subse-
quence (Tinert) if no faults are detected within the subsequence
during fault simulation (with fault dropping).

Inert subsequences can be removed from the test set with-
out adversely a�ecting the fault coverage under certain con-
ditions [4].

Flip-ops that are assigned the don't care value of X are
considered to be unspeci�ed. If state Si is partially speci-
�ed, then an exhaustive set of states can be obtained by enu-
merating unassigned values of Si. For example, state X01 is
partially speci�ed and it represents two states 001 and 101.

De�nition 3: State Sj covers state Si if the group of states
represented by Si are a subset of states represented by Sj .

For example, consider two states S1 and S2 that are rep-
resented by bit vectors X01 and 00X, respectively. State S1
does not cover state S2 since state S2 represents two states
000 and 001 and state S1 does not include the state 000. If
states S1 and S2 are fully speci�ed, then S1 covers S2 only
when S1 and S2 are identical.

A ip-op is relaxed if its value is changed from 0 or 1 to a
don't care value X.

De�nition 4: Consider states Si, Sj and their relaxations
SR
i , S

R
j . State SR

j strictly covers the relaxed state SR
i if SR

j

covers unrelaxed state Si.

Note that SR
j may or may not cover SR

i . For example, let
SR
j be X01 and SR

i be 00X. Clearly SR
j does not cover SR

i . If
Si was 001 before relaxation, then SR

j covers Si. Therefore,
SR
j strictly covers SR

i .

De�nition 5: A relaxed recurrent subsequence Trelaxed rec

transfers a �nite state machine from state SR
i to state SR

j

such that SR
j strictly covers SR

i .

De�nition 6: A relaxed inert subsequence Trelaxed inert is a
relaxed recurrent subsequence where no faults are detected
within the subsequence during fault simulation (with fault
dropping).

Given a state Si, its relaxation can be computed by deriving
support sets [5]. Support sets can be used to compute the set
of ip-op values in the present state that are su�cient to
produce the desired next state for any given input vector.

III Main Idea
Consider the ISCAS89 sequential benchmark circuit s27
shown in Figure 1. This circuit has four primary inputs (G1,
G2, G3 and G4), one primary output (G17) and three ip-
ops (G5, G6 and G7). Let inputs to the circuit be repre-
sented by the vector < G1, G2, G3, G4 >. State of the
sequential circuit is given by the vector < G5, G6, G7 >. If
the initial state of the circuit is 110 and we apply an input
vector 1X10, the circuit produces an output value of 1 and
transfers the circuit to the state 100. Logic simulation shows
that the same next-state and primary output value can also
be obtained if the initial state of the machine were any one
of the following three states: 100, 101 or 111. This exam-
ple clearly shows that for a given input vector, there may be
several initial states that will transfer the sequential circuit to
the desired next-state and primary output values. The set of
initial states for the example can be represented succinctly by
the state vector 1XX. This state is the relaxation of all four
initial states.

State relaxation provides a signi�cant advantage during
fault simulation. A fault e�ect at a ip-op with relaxed value
cannot be propagated to any primary output or ip-op be-
cause a value of 0 or 1 on a relaxed ip-op has no impact
on primary outputs or next-state values. Consider again the
example circuit s27 of Figure 1. We cannot propagate a fault-
e�ect on the relaxed ip-op G7 to the primary output or ip-
ops, because a controlling value G16 = 0 blocks propagation
of fault e�ect to the primary output or ip-ops G5 and G6,



G5

G6

G7

G8 G9

G10

G11

G12

G13

G14

G15

G16

G17
11

0 X

X

1

0

1 0

0

0

0

1

0 1

1

0

G1

G4

G2

G3

Figure 1: ISCAS89 sequential benchmark circuit s27.

and a controlling value of G3 = 1 prevents propagation of
fault e�ect to the ip-op G7.

Ideally, one should consider states for relaxation in reverse
order of their appearance during logic simulation of test set T .
This maximizes the number of relaxed ip-op values. Con-
sider a test set T [V1; :::; Vn] and let Si (1 � i � n) be the
present state of the machine when vector Vi is applied. States
can be relaxed in the order Sn : : : S1 to maximize relaxed val-
ues. Since next-state values on ip-ops determine the extent
of relaxation possible for the present state, it is useful to re-
lax state Sj �rst before considering all preceeding states Si,
1 � i < j. The cost of memory storage for reverse order re-
laxation, however, would be extremely high. This will require
storage of logic values of signal values for all vectors in test
set T . An alternative and less expensive approach would be
to relax states in the same order as they are visited during
logic simulation of test set T . This means that each state is
relaxed with respect to the fully-speci�ed next-state, because
the next-state has not yet been relaxed. Iterative relaxation
of states over the entire test set several times can further re-
duce the number of ip-ops in the support sets. The �rst
iteration relaxes each state with respect to the fully-speci�ed
next-states, the second iteration further relaxes every state
by computing corresponding support sets with respect to the
already relaxed successive states computed in the �rst itera-
tion, and so on. Iterative relaxation of states is not performed
in our implementation to reduce execution times. Although
optimal support sets are not computed in our implementa-
tion, our experimental results show that minimal support sets
based on the successive fully-speci�ed states are su�cient to
signi�cantly compact test sets.

IV Compaction Algorithm
A ip-op has a fault e�ect if it has a di�erent Boolean (0 or
1) value for the good and faulty circuit. If a ip-op has a
value of 1 (0) in the good circuit and a value of 0 (1) in the
faulty circuit, then this combination of values are represented
as D (D).

Consider an inert subsequence Tsub. This subsequence may

be removed from the test set without any reduction in fault
coverage under certain conditions [4]. If fault-e�ects on ip-
ops before and after the application of the inert subsequence
are identical (see Figure 2(a)), then we can safely remove the
subsequence. However, it is possible that fault e�ects before
and after the application of the subsequence may di�er (see
Figure 2(b)). Further analysis is required before the subse-
quence can be removed. For example, consider a ip-op that

Logic
Comb.

. . D D . .S j

. . D D . .

Logic
Comb.

S i

Su
bs

eq
ue

nc
e

(a) Fault-effects entering and
exiting subsequence are identical

fault-free states identical

faulty states differ

S j

Logic
Comb.

Su
bs

eq
ue

nc
e

S i

Logic
Comb.

. . D 0 . .

. . 1 D . .

(b) Fault-effects entering and
exiting subsequence are different

Figure 2: Fault-e�ects entering/exiting a subsequence.



has no fault e�ect before the application of the subsequence
but it exhibits a fault e�ect after simulation of the subse-
quence. Removal of the subsequence is possible if it can be
established that the fault e�ect cannot be propagated to a
primary output by the remaining vectors in test set T . Other
special cases are discussed in [4].

A recurrent subsequence can be removed if it satis�es (1) all
conditions speci�ed for an inert subsequence, or (2) faults de-
tected within the subsequence can also be detected elsewhere
in the test set T . The basic subsequence removal algorithm is
described below:

basic subsequence removal()
/* FIRST FAULT SIMULATION PASS */
Collect recurrent & inert subsequences
/* SECOND FAULT SIMULATION PASS */
For each subsequence Tsubi collected

If any of the removal criteria satis�ed
Remove Tsubi from the test set

The algorithm consists of two passes. The �rst fault simu-
lation pass is used to identify and collect inert and recurrent
subsequences. The second fault simulation pass checks to see
if inert and recurrent subsequences satisfy all conditions spec-
i�ed for the removal of the subsequences. The two-pass algo-
rithm has signi�cant storage savings since faulty states have to
be recorded only in the second pass. Faulty states are recorded
only at the boundaries of each inert or recurrent subsequence.

Consider a subsequence Tsub consisting of vectors Vi : : : Vj .
Let Si be the initial state of the machine when vector Vi is
simulated during logic simulation of the subsequence. If we
consider the case illustrated in Figure 3, the subsequence Tsub
is not a recurrent subsequence since the initial state Si (1011)
di�ers from the �nal state Sj+1 (0110) of subsequence Tsub.
Assume that state relaxation allows the �rst ip-op of state
Si and second ip-op value of state Sj to be relaxed (i.e.,
relaxation of these ip-ops indicate these ip-op values are
not necessary to reach the corresponding next-states Si+1 or
Sj+1, respectively). Note that the relaxed state SR

j strictly
covers relaxed state SR

i since the unrelaxed value of the �rst

State relaxation

1111

0110

1011

jState S

j+1State S

State S i
vector V

vector V

vector V

vector Vi-1

i

j-1

j
0110

1X11

X011

Relaxed state S
R
j

Relaxed state S R
i

V

V

V

i-1

Vi

j-1

j

0110j+1S

S i 1011

V

V

i-1

j

Subsequence removal

Figure 3: Removal of a relaxed subsequence.

ip-op in Si is 1. If Tsub were to be removed from the test
set, state Sj+1 is still reachable by applying vector Vj+1 when
the present state of the circuit is Si instead of Sj .

The relaxed subsequence removal technique also requires
only two fault simulation passes. In the �rst pass, fault-free
states traversed by the test set are relaxed. This pass also
identi�es relaxed inert and recurrent subsequences. In the
second fault simulation pass, boundary conditions for removal
of each relaxed inert or recurrent subsequences are examined.

A Problem of fault masking
Fault masking can occur when removing a recurrent subse-
quence [4]. It is also possible that removing a relaxed re-
current subsequence will mask a fault. Note that a relaxed
subsequence can mask a fault even when the corresponding
unrelaxed subsequence does not mask a fault. Consider the
example shown in Figure 4, with the subsequence Tsub com-
posed of vectors Vi : : : Vj. A few ip-op values of interest are
shown for states Si and Sj in Figure 4(a). Values of these
ip-ops in the faulty circuit are shown in Figure 4(b). Dur-
ing fault simulation, let us assume the two ip-ops in state
Si have fault e�ects of D and D, respectively. The AND gate
does not exhibit a fault e�ect at this time since fault e�ects at
the inputs of the AND gate mask each other. However, during
the course of simulation of Tsub, it is possible that both ip-
ops have identical fault e�ects of D, resulting in propagating
the fault e�ect across the AND gate in time frame j. In this

State relaxation

. . 1 0 . .

. . 0 0 . .

. . 1 0 . .

jS R
jS

S i RS i

Su
bs

eq
ue

nc
e

(a) Fault-free state relaxation

. . X 0 . .

Subseq. removal

D

jS

S i S i

Su
bs

eq
ue

nc
e

(b) Faut masking after removing subsequence

. . D D . .

. . D D . .

0

Fault is masked

. . D D . .

0

Figure 4: Fault-masking due to state relaxation.



case, the fault e�ects are not masked by the AND gate, and
the fault e�ect produced at the output of the AND gate may
further propagate to a primary output.

State relaxation of state Sj results in the state SR
j shown

in Figure 4(a). Removal of the subsequence Tsub implies that
vectors Vi : : : Vj�1 will be removed. Therefore, vector Vj will
be applied with a present state of Si after subsequence removal
(Figure 4(b)). In the modi�ed sequence, no fault e�ect will
appear at the output of the AND gate due to fault masking.
Although this situation is rare, the fault coverage after test
sequence compaction may be slightly lower.

V Experimental Results

The relaxed recurrent subsequence algorithm was imple-
mented in C. ISCAS89 sequential benchmark circuits [8] and
several synthesized circuits [10] were used to evaluate the ef-
fectiveness of the algorithm. All experiments were performed
on a Sun UltraSPARC with 256 MB RAM. Test sets generated
by two test generators (HITEC[6, 7] and STRATEGATE [11])
were statically compacted. HITEC is a deterministic test gen-
erator for sequential circuits, while STRATEGATE employs
genetic algorithms for generating test vectors.

The compaction results for HITEC and STRATEGATE
test vectors are shown in Tables 1 and 2 respectively. The
total numbers of faults for the circuit are shown in Table 1
only. The original numbers of vectors and fault coverages
are shown for each table, followed by the compaction results
for the previous approach [4] and this work, including fault
coverages after compaction, percent reduction of original test
set sizes, and execution times in seconds. The compaction
schemes involve combined approach of inert-subsequence re-
moval followed by the recurrent-subsequence removal (denoted
as CSR in [4]) for all test sets. The execution times for the
relaxed recurrent-subsequence removal algorithm are slightly
longer than those for the non-relaxed removal algorithm due to
the extra computation needed for support sets and for consid-
ering more candidate subsequences that have become eligible
for removal.

For most circuits, a signi�cant reduction in test set sizes
was observed. For instance, in circuits s1488 and s1494, reduc-
tions for HITEC test vectors increased from 7.95% to 34.2%
and 8.67% to 42.7%, respectively. For s35932, the reductions
increased from 4.44% to 40.0%! Similar trends are seen for
many other circuits as well. In circuits s1423 and s5378, the
original number of vectors in the HITEC test set are small
with low fault coverages; thus, they were not considered.

Signi�cant reductions are obtained for the STRATEGATE
test vectors, too. For instance, in the s1423 test vectors, the
reductions in test set was 23% higher than the original tech-
nique, which already achieved 38.1%, without decrease in fault
coverage. In circuits s298 and s344, for instance, the relaxed
recurrent-subsequence removal increased test set reductions
from 0% to 7.7% and 8.1% to 25.6%, respectively for these
two circuits.

Note that in some of the compacted test vectors produced
a slightly lower fault coverage than those of the original test
sets. This is due to the fault masking phenomenon. This
problem was also present in the original subsequence removal

compaction technique [4]. Nevertheless, the drop in fault cov-
erages is marginal.

VI Conclusions
A static test set compaction framework based on relaxed
recurrent-subsequence removal has been presented. Signi�-
cant reductions in test set size over previously known tech-
niques are obtained in short execution times. We identi�ed
su�cient conditions for removing subsequences that begin and
end on di�erent fully-speci�ed states, without adversely af-
fecting the fault coverage. As opposed to trial and re-trial
based approaches to static compaction, only two fault simu-
lation passes are required in our compaction technique. As
a result, large test sets and circuits can be quickly processed
by using our technique. Furthermore, the state relaxation
technique is a general approach and can also be used to sig-
ni�cantly augment many recently proposed static compaction
approaches [1, 3, 4, 5, 12].

References

[1] T. M. Niermann, R. K. Roy, J. H. Patel, and J. A.
Abraham, \Test compaction for sequential circuits,"
IEEE Trans. Computer-Aided Design, vol. 11, no. 2,
pp. 260-267, Feb. 1992.

[2] B. So, \Time-e�cient automatic test pattern generation
system," Ph.D. Thesis, EE Dept., Univ. of Wisconsin at
Madison, 1994.

[3] I. Pomeranz and S. M. Reddy, \On static compaction of
test sequences for synchronous sequential circuits," Proc.
Design Automation Conf., pp. 215-220, June 1996.

[4] M. S. Hsiao, E. M. Rudnick, and J. H. Patel, \Fast algo-
rithms for static compaction of sequential circuit test vec-
tors," Proc. IEEE VLSI Test Symp., pp. 188-195, Apr.
1995.

[5] A. Raghunathan and S. T. Chakradhar, \Acceleration
techniques for dynamic vector compaction," Proc. Intl.
Conf. Computer-Aided Design, pp. 310-317, 1995.

[6] T. M. Niermann and J. H. Patel, \HITEC: A test gen-
eration package for sequential circuits," Proc. European
Conf. Design Automation (EDAC), pp. 214-218, 1991.

[7] T. M. Niermann and J. H. Patel, \Method for automat-
ically generating test vectors for digital integrated cir-
cuits," U.S. Patent No. 5,377,197, December 1994.

[8] F. Brglez, D. Bryan, and K. Kozminski, \Combinational
pro�les of sequential benchmark circuits," Int. Sympo-
sium on Circuits and Systems, pp. 1929-1934, 1989.

[9] T. H. Cormen, C. E. Leiserson, R. L. Rivest, Introduction
to Algorithms. Cambridge, MA: The MIT Press, 1990.

[10] M. S. Hsiao, E. M. Rudnick, and J. H. Patel, \Automatic
test generation using genetically-engineered distinguish-
ing sequences," Proc. VLSI Test Symp., pp. 216-223,
1996.

[11] M. S. Hsiao, E. M. Rudnick, and J. H. Patel, \Sequen-
tial circuit test generation using dynamic state traversal,"
Proc. European Design and Test Conf., pp. 22-28, 1997.

[12] E. M. Rudnick and Janak H. Patel \Simulation-based
techniques for dynamic test sequence compaction," Proc.
Intl. Conf. Computer-Aided Design, pp. 67-73, 1996.



Table 1: Compaction results for HITEC test sets

Ckt Total Original No-Relax [4] Relax
Faults FC Vec FC % R Time FC % R Time

s298 308 86.0 292 86.0 11.0 0.3 86.0 11.0 0.4
s344 342 95.9 127 95.9 4.72 1.2 95.9 28.4 1.3
s382 399 78.2 2074 78.2 61.5 34.0 78.2 62.0 35.0
s400 426 82.6 2214 82.6 52.9 46.3 82.6 53.8 47.5
s444 474 82.1 2240 82.1 55.2 60.0 82.1 59.0 68.0
s526 555 65.1 2258 65.1 20.4 54.8 65.1 20.4 59.2
s641 467 86.5 209 86.5 27.3 3.7 86.4 35.9 4.0
s713 581 81.9 173 81.9 17.9 3.6 81.7 27.8 3.8

s820 850 95.7 1114 95.5 45.9 58.0 95.6 48.6 68.8
s832 870 93.9 1136 94.0 46.8 70.9 93.7 48.7 80.7
s1196 1242 99.8 435 99.8 1.15 33.6 99.6 22.8 44.5
s1238 1355 94.7 475 94.7 2.32 30.8 93.7 28.0 70.4
s1488 1486 97.2 1170 97.0 7.95 14.0 97.0 34.2 106
s1494 1506 96.5 1245 96.3 8.67 14 96.3 42.7 140
s35932 39094 89.3 496 89.3 4.44 6818 89.3 40.0 9274
am2910 2391 91.6 1973 91.6 0.05 33.5 91.1 4.2 240
mult16 1708 92.6 111 92.6 0.00 1.9 92.6 1.4 9.7
div16 2147 78.0 238 78.0 5.46 7.6 78.0 7.98 12.9

FC: Fault coverage in % Vec: Test set length % R: Percentage of test set length reduced
Time: Execution time in seconds Greatest reductions highlighted in bold

Table 2: Compaction results for STRATEGATE test sets

Ckt Original No-Relax [4] Relax
FC Vec FC % R Time FC % R Time

s298 85.7 306 85.7 0.00 2.3 85.7 7.73 2.5
s344 96.2 86 96.2 8.1 1.2 96.2 25.6 1.4
s382 91.2 1486 91.2 62.2 12.1 91.0 70.5 14.3
s400 90.1 2424 90.1 63.7 20.1 89.9 71.1 24.7
s444 89.5 1945 89.5 60.1 19.9 89.2 67.8 22.8
s526 81.8 2642 81.8 37.0 38.6 81.6 40.2 45.6
s641 86.5 166 86.5 19.3 2.9 86.4 27.7 3.3
s713 81.9 176 81.9 18.2 2.9 81.6 27.7 3.6

s820 95.8 590 95.8 23.2 18.0 95.5 37.0 25.5
s832 94.0 701 94.0 30.0 18.9 93.7 42.8 33.7
s1196 99.8 574 99.5 3.66 22.6 99.1 46.9 34.4
s1238 94.6 625 94.5 8.64 20.0 93.6 49.9 42.8
s1423 93.3 3943 93.3 38.1 72.1 93.3 61.3 213
s1488 97.2 593 97.1 24.1 45.1 97.0 34.2 107
s1494 96.5 540 96.4 13.3 20.7 96.3 22.8 39.8
s5378 79.1 11481 79.1 9.09 673 79.1 10.9 753
s35932 89.8 257 89.8 15.6 5198 89.8 15.6 5211
am2910 91.9 2509 91.9 13.1 105 91.8 63.7 137
mult16 97.5 1530 97.4 68.1 80.2 97.6 73.6 90.3
div16 84.7 3476 84.7 46.9 63.9 84.7 46.9 67.4


