
A Novel SAT All-Solutions Solver for Efficient Preimage Computation
�

Bin Li
Department of ECE

Virginia Tech.
Blacksburg, VA, 24061

Michael S. Hsiao
Department of ECE

Virginia Tech.
Blacksburg, VA, 24061

Shuo Sheng
Mentor Graphics Corporation

8005 SW Boeckman Rd.
Wilsonville, OR 97070

Abstract

In this paper, we present a novel all-solutions preimage
SAT solver, SOLALL, with the following features: (1) a new
success-driven learning algorithm employing smaller cut
sets; (2) a marked CNF database non-trivially combining
success/conflict-driven learning; (3) quantified-jump-back
dynamically quantifying primary input variables from the
preimage; (4) improved free BDD built on the fly, saving
memory and avoiding inclusion of PI variables; finally, (5)
a practical method of storing all solutions into a canonical
OBDD format. Experimental results demonstrated the effi-
ciency of the proposed approach for very large sequential
circuits.

1. Introduction
Preimage and image computations are important opera-

tions in formal verification. Conventional methods for com-
puting images and preimages have relied on Ordered Binary
Decision Diagrams (OBDDs). However, since OBDDs are
very sensitive to the problem size in that the memory re-
quired can grow exponentially with the size of the function,
the resulting BDDs can easily exceed the memory available.
Although methods to improve variable ordering [1, 2, 3]
and partitioning of the OBDDs [4, 5] have been proposed
to reduce memory explosion, they inherently are still lim-
ited by space. To alleviate this problem, methods that are
less vulnerable from memory explosion can be used. Such
methods include automatic test pattern generation (ATPG)
and satisfiability (SAT) solvers. However, because conven-
tional ATPG and SAT solvers are targeted at solving a sin-
gle solution, extending them to solve image/preimage will
require that they return all solutions for a given initial state.
A naive way of solving all solutions is by simply enforcing
the solver to continue the search after obtaining each so-
lution. However, this will result in temporal explosion, in
which exponential time will be needed. Therefore, methods
to overcome these hurdles will be crucial in the success of
an all-solutions ATPG or SAT solver.

SAT solvers and ATPGs have their individual merits.
�
This research is supported in part by NSF Grants CCR-0196470 and

CCR-0305881.

While modern SAT solvers employ conflict-driven learning
[6, 7, 8, 9] to dynamically learn from mistakes, ATPGs use
testability measures and circuit structure to guide the search
[10]. Instead of targeting both ATPG and SAT solvers, in
this paper, we will focus only on SAT to extend it to effi-
ciently solve all solutions.

A previous work has been proposed that combines the
advantages from BDD and SAT/ATPG solvers [11]. A SAT
solver is used to partition the search space first. Then,
BDDs-based methods are applied to obtain all solutions in
each of the subspaces. Note that this approach may still be
limited by the space requirement of individual BDDs. Re-
cently, quantifier elimination combined with a SAT-based
solver has been proposed for symbolic model checking [12].
In a separate approach [13], satisfiability cubes are gener-
ated to narrow the search space. In both of these methods,
a new “block clause” [12] or “satisfiability cube” [13] is
created as soon as SAT solver finds a new solution. The
block clauses (or satisfiability cubes) are added to prevent
the SAT solver from entering the solution spaces identified
so far. In [12] the efficiency comes from maximizing the
cubes by quantification, thus fewer literals remain in the
block clause. For the rest of the paper, we will call this kind
of learning Type-I success-driven learning, since clauses
are added based on successes.

1

3

2

Search Space Search Space

(a) (b)

1 4

5

2

36

7

Figure 1. Effect of Cube Size On Solutions

Figure 1 illustrates why solutions cube sizes can influ-
ence the SAT performance mentioned above. For instance,
in the Figure 1(a), where every cube has its maximal size,
three solution cubes are sufficient to cover the entire solu-
tion space. On the other hand, in the Figure 1(b), if solutions

1530-1591/04 $20.00 c
�

2004 IEEE 272 Proc. DATE 2004

cube size are smaller, potentially many more solutions can
result. Bigger cubes also constrain the SAT-solver better
from entering the solution space again.

Another recent all-solutions SAT solver [14] also adds
solutions into CNF database. However, it uses Espresso to
combine small cubes to form larger ones. In addition, an
unsatisfied clause database is stored at each step to prune
future searched space. Because storage of many temporary
clause database requires large memory spaces, its learning
may be limited.

On the ATPG side, an all-solutions ATPG by using a dif-
ferent type of success-driven learning to prune redundant
search space was recently proposed [15]. Rather than us-
ing the solutions to form block clauses as in [12], cutsets in
the solution space are formed to narrow the search space. A
free BDD is generated at the end, representing the computed
preimage. Because this success-driven learning is different
from [12], we call it Type-II success-driven learning in
this paper.

However, type-II success-driven learning in the ATPG-
context [15] also has its limitations. First, it does not have
conflict-driven learning such as in modern SAT solvers to
learn from mistakes. Second, it does not offer a method
to quantify the primary input (PI) variables from the final
preimage represented as a free BDD.

In this paper, our main contribution is on building an
efficient all-solutions SAT solver for preimage computa-
tion, which we call “SOLALL”. Many novel features are in-
cluded in our framework in order to achieve this very chal-
lenging task. We note that these features can also be ap-
plied on image computation also, although we will focus on
preimage computation in this paper. It uses type-II success-
driven learning rather than “block clauses” [12] or “satis-
fiability cubes” [13] because we would not need to insert
a clause for every unique solution obtained; instead, only
cutsets for solution subspaces are computed and stored. Be-
cause the size of cut sets for type-II success-driven learning
has a direct impact on the overall performance, we propose
a new pruning method that results in smaller cut sets than
those obtained in [15], thus saving additional memory us-
age. Next, we combine type-II success-driven learning with
conflict-driven learning via a marked CNF database to en-
hance its performance. We show that combining conflict-
driven and type-II success-driving learning is a non-trivial
task in this paper. In order to remove the PI variables from
the resulting preimage, SOLALL uses a “quantified jump
back” technique to dynamically remove the PI variables on
the leaves of decision tree. In doing so, the search space that
needs to be explored is also reduced. Finally, we present a
practical method to store all solutions for the preimage into
a canonical OBDD format, which helps us verify the result.
Experimental results demonstrated the efficiency of the pro-
posed approach for very large sequential circuits.

The rest of this paper is organized as follows: Section 2

gives the preliminaries and search space reduction. Section
3 describes the optimized cut sets. Section 4 explains the
method for combining conflict-driven and success-driven
learning. Section 5 provides the practical method for re-
moving PIs. Section 6 demonstrates how to transfer our
result into a OBDD for future verification. Experimental
results are reported in Section 7 and Section 8 concludes
the paper.

2. Preliminaries
Root of

free BDDsatisfy
conflict

A B

a
b h

c
d

g

l

i
j

k

e
f

Sol 1 Sol 2

Sol 3

Sol 4

Sol 5 Sol 6

Sol 7

Sol 7

Search
Space I

Search
Space II

Non-Chronological
Backtracking

Jump

Figure 2. Conflict/Success-Driven Learning

In recent years, conflict-driven learning [6] has been
added to enhance SAT solvers’ performance. An example
is shown in Figure 2 to briefly illustrate the basic concepts
of conflict-driven learning [6]. In this figure, when the SAT
solver encounters a conflict at node � , after performing con-
flict analysis (which indicates the conflict is introduced by
an error decision at node �), the SAT solver then backtracks
directly to node � rather than the previous-level node � . This
is termed non-chronological backtracking [6]. The SAT
solver obtains a conflict clause from that conflict by a traver-
sal of the implication graph and adds it into CNF database.
Conflict clauses can allow the SAT solver to avoid future
conflicts (when it enters the same conflict space again) and
allow for backtracks sooner.

Conventional SAT solvers will stop as soon as they find
the first solution �����	� at node
 . If it continues to search the
rest of the space, it can obtain all solutions given enough
time. However, because many solutions can overlap, it is
possible that different decisions in the decision tree can lead
to the same search space. Using the same example shown
in Figure 2, the entire search space � under point � can be
the same as search space �� under point � . We can avoid
re-exploring the search space �� by noting that the search
state is the same, and simply add a pointer linking � to �
[15]. Identification of the equivalence of space � and �� is
performed by computing a cut set in the circuit each time
a new decision is made. Because the cut set under point
� is identical to the cut set under point � , we can safely
conclude that the solution space for point � will be identical
to that under � . The added pointer between � and � is
termed jump. All solutions that result from this process can

273

simply be stored in a pruned graph that each leaf has either
a solution or conflict. This graph is essentially a free BDD.
This is why we call it type-II success-driven learning, as the
learning is invoked by noting regions that contain solutions
(successes).

2.1. Static & Dynamic Search Space Reduction

Similar to [16], structural information embedded in the
CNF can be used to enhance the variable selection. With the
help of this inherent structural information, we just need to
justify variables that belong to the corresponding Objective
Cone. An Objective Cone for a given objective is the fan-
in cone from the target objective (primary output and next
state variables). If there are several objectives, we can easily
merge all the objective cones into one region.

Objective

x1

x2

x3

x4

x5

x6

x7

A

B
C

D

E
X-Path

E
dge 2

Edge 1

Circuit

Search
SpaceValued

Area

Objective Cone
{C,D,E}

Killed
Unvalued

Area

Cut set

Potential
Decision
Variables

Figure 3. Decision Variables and Cut Set

Regions ��� , � , ��� in Figure 3 together form the ob-
jective cone for the objective shown. Variables �	� , ��
 , ...
�	� are the only PI and FF (flip-flop) decision variables that
need to be considered. � � and �� can be ignored, leaving
some variables within regions � � , ��� unspecified. Because
the objective cone is computed a priori, we call this space
reduction process static analysis.

In addition to reducing the size, not every variable in the
Objective Cone needs to be valued. Suppose ��� and �	� have
already been valued, and all variables in area � have been
implied, then we do not need to justify area � (even though
� is also in the objective cone). In essence, the individual
solutions in area � will not affect the other areas ��� , ��� in
the objective cone and the solution cubes we have obtained
have already covered the solutions in � . The existence of
areas such as � depends on current variable values, and it
may change during the searching procedure. Thus, we call
this space reduction process dynamic analysis.

3. Proposed Cut Set Reduction

The observation that the same solution subspace (con-
tains multiple solutions) can be reached multiple times
prompted the use of type-II success-driven learning [15].
A cut set for the search state is stored so that it can check
if the current search subspace has been reached before. In
[15], each cut set is composed of (1) all unvalued PIs and
FFs at the end of X-paths (a path of unvalued variables from
the objective (� �
 ��� in Figure 3)), and (2) the frontier of

all valued gates in the objective cone (� �
 �� in Figure 3).
Note that there must exist X-paths from the each valued
node at the frontier to the target objective.

In a circuit with a target objective, we will show that
the frontier valued nodes in the objective cone (� �
 ��) is
sufficient to uniquely identify the search subspace. The fol-
lowing discussion is used to illustrate our proposed cutset
reduction.
Definition 1 The space containing all feasible solutions is
called the search space for a given problem.

Definition 2 If a set of valued variables can satisfy all
clauses for a given CNF formula, then that set of valued
variables is a candidate solution for this problem. The
candidate solution can be represented as a vector, �� � , con-
sisting of the valued variables.

Definition 3 An unjustified gate is a gate whose output
value is specified but is not justified by its input values.

Observation 1 At any given time during our search pro-
cess (before the objective is satisfied), all gates other than
the objective gate are either justified or un-valued, and the
objective gate is the only unjustified node.

This observation can be explained as follows. Initially,
the objective variable is specified but unjustified because
all nodes in the objective cone have not been valued. Be-
cause we select the variables according to the constructed
circuit structure (explained in Section 2), we will always
start selecting from the PI and FF variables; consequently,
any newly valued variable � will always be justified. Al-
though � may imply other variables to take on a certain
value, the implied variables are also justified by � due to
the method with which we select our decisions. Therefore,
at any time before the entire CNF is satisfied, only the vari-
able corresponding to the objective gate is unjustified.
Lemma 1 Only the un-valued PIs and FFs at the end of
the X-paths from the objective can determine whether the
objective can be satisfied.
Proof: We will prove this by contradiction. Based on Ob-
servation 1, the objective variable can be the only unjusti-
fied variable during the search process before a solution is
found. Further, there exist a frontier corresponding to the
current valued PI and FF variables. In order to advance this
frontier, at least one of the PI and FF variables at the end
of X-paths from the objective must be valued. If a valuation
on all the PI and FF variables at the end of the X-paths from
the objective neither satisfies the objective nor causes a con-
flict, then there must still exist at least one X-path from the
objective node to a PI or FF. But since all PIs and FFs that
lie on X-paths in the objective cone have been valued, there
can no longer exist any more X-paths from the objective
node to a PI or FF, thus a contradiction. �
Proposition 1 The search space at any point during the
search process needs to include only those nodes with at
least one X-path to the objective.

274

This proposition follows from the fact that if a node, � ,
does not have an X-path to the objective gate, then any value
on � will not propagate to any node that can affect the tar-
get objective node. Using Figure 3, region � is the current
search space, if variables in region � have been valued.
Lemma 2 Let region

�
denote the search space obtained

from Proposition 1. Any CNF clause that does not contain
at least one variable in region

�
can be removed from the

CNF database without changing the search space for the
target objective.
Proof: If a clause, � , contains no variables in

�
, then �

must not be associated with any gate within
�

. Thus, there
does not exist any X-path between any variable in � to the
objective node. �
Lemma 3 If the first variable in a CNF clause is not in-
side region

�
, this clause can be removed from the CNF

database without changing the search space for the target
objective.
Proof: Because all clauses are created based on the circuit
structural information, there is always a variable in each
CNF clause that indicates the output variable for a gate.
The variables in a clause is arranged such that the output
is placed as the first literal. If the output of the gate is not
within region

�
, it will not have a path to the objective since

it is not in the objective cone. �
Theorem 1 The frontier of all valued nodes inside the ob-
jective cone can uniquely determine the search space.
Proof: We will prove this by contradiction. Suppose there
are two different search subspaces

�
and

���
for the same

frontier � such that
���� ��� . Let a variable �
	 � but

���	 ��� . Because �	 � , there must exist an X-path ��� from
� to the objective � . Because ���	 ��� , there must not exist
an X-path, ��� , from � to the same objective � in the same
circuit. However, since we know that there exists at least
one X-path ��� from � to � , � must also belong to

� �
as well,

thus a contradiction. �
Based on Theorem 1, the cutsets (frontiers) we obtain for

the search subspaces can be significantly smaller than those
obtained in [15].

4. Combined Learning
While conflict-driven learning in state-of-art SAT solvers

can be very powerful, conflict-driven learning cannot di-
rectly combine with type-II success-driven learning in an
all-solutions SAT solver. This is because the knowledge
learned by conflict-driven learning can interfere with the
computation of the cut sets for the search subspaces. We
will use Figure 4 to illustrate this.

In Figure 4 (a), the cut set and decision variables are ob-
tained after a subset of variables has been valued. It is pos-
sible that later, as shown in Figure 4 (b), that the solver en-
ters the same search space again. However, this time it may
have learned more knowledge (implications) from conflict-
driven learning via the added conflict clauses (shown by the

Objective

X-Path

Circuit

Objectiv
e cone

Objective
X-Path

Circuit

Implied by
conflict
clauses

Valued
Area

Valued
Area

(a) (b)

Objectiv
e cone

Figure 4. Conflict Clauses Effecting

circle within the objective cone). Consequently, the cut sets
that correspond to the same search space may no longer
match any more with the previously computed cut set. This
can significantly impair the success-driven learning.

We solve this problem by a marked CNF database. All
original clauses are marked at the beginning. Conflict-
driven learning is performed on the entire database (marked
and unmarked clauses); however, the conflict-induced
clauses are never marked. By using only the marked clauses
for cut set computation and next decision variable selection,
the cut sets corresponding to the current search space will
always be the same without being interfered by the interme-
diately implied values.

5. Remove PIs From Preimage
In preimage computation, we only want the FFs in our

final solution, and the PIs should not be included in the
preimage. In other words, two different solutions that differ
only in the PI variables can be viewed as the same solution.
In SOLALL, we select decision variable by favoring FFs
over PIs. Thus, the variables near the top of the decision
tree will belong to FF variables, while PIs are always lower
in the decision tree.

Root of
free BDD

satisfy

conflict

search spaces
only have PI

Figure 5. Quantified Jump Back

For example in Figure 5, the variables inside the gray re-
gions denote PI variables. Then, as soon as one solution is
found that involves at least one PI variable, the solver can
jump out of the corresponding gray area, and directly con-
tinue to search starting from the earlier FF variable. We call
this Quantified Jump Back(QJB), which is similar with the
work in [12]. However, QJB can further reduce the search
space because not all solutions in the gray region needs to
be fully explored for the preimage. In addition, it allows
for the removal of PI variables on the leaves of the decision
tree to save memory, and reduce total number of solutions
as well.

QJB may not guarantee that all PIs will be quantified
because some PIs may be implied early on by some FFs.

275

Root of
free BDD

PI : {1,2,3,4,5}
FF: {6,7,8,9,10}

6

7

9

{5,8}

8

9 10

{1,10}

10

{4,9}

{3,4,7}

{5} {1,9}

QJB QJB QJB QJB QJB QJB QJB QJB

Root of
free BDD6

7

9

{8}

8

9 10

{10}

10

{9}

{7}

{9}

Satisfy
Conflict

(a)

(b)

Figure 6. Remove PIs from Free BDD

In order to remove these implied PIs, we use the following
approach: decision variables are stored in the BDD nodes,
while implied variables are stored on the edges of the BDD.
For example, in Figure 6, there are ten variables. Variables
1 to 5 are PIs, 6 to 10 are FFs. Since FFs have the high-
est priority, a free BDD for the preimage should only store
FF variables � ��� �� � ����� ��� � . In Figure 6 (a), decision to the
left branch of node 6 implies ����� � � . Decision to the right
branch of node 6 implies �
�� �	� � . These implied variables
are associated with their corresponding edges. Now we can
simply remove implied PI variables on the BDD edges with-
out changing the free BDD structure. (Note that the implied
FF variables are still on the edges.) Those PIs in gray leaves
are only those that have not been implied earlier, and via
QJB they can be easily removed from the BDD. The final
free BDD without PIs is shown in Figure 6 (b). Clearly, the
total number of solutions is the same for both (a) and (b) of
the figure.

6. Convert Free BDD to an OBDD

So far, all solutions computed are stored into a free BDD.
Ordered BDD (OBDD) is a BDD in which variables on ev-
ery path follow the same variables order. Although the size
of an OBDD can be larger than a free BDD, OBDDs have
many nice properties such as allowing the comparison of
two preimage BDDs, etc. However, converting a free BDD
into an OBDD is known to be a NP-hard problem.

In this work, we propose a simple and practical method
to obtain an OBDD from the result of SOLALL. Given a
variable order, SOLALL can be forced to select next deci-
sion variable accordingly. Finally, decision variables on all
paths in the free BDD now have the same variable order.
The free BDD we obtain in SOLALL can easily be con-
verted into an OBDD using the following three-step pro-
cess. Each step can keep the total solutions number un-
changed.

 Step 1: In Figure 2, Since cut-set at � is the same as
the cut set at � , we can simply copy all the sub-trees

under cut set A to cut set B by converting the free BDD
to a tree-like BDD.
 Step 2: In the tree BDD, there may still exist implied
variables on the edges of the BDD. These implied vari-
ables are pushed down to their corresponding position
based on a given variables order. This is done recur-
sively by pushing the variable down one level at a time.
 Step 3: Finally, we convert the implied variables on
the edges into BDD nodes. Since variables have been
ordered in step 2, this BDD is the final OBDD.

The OBDD obtained from the above 3-step process will
preserve the correctness in the original free BDD. The
proofs are lengthy and thus are omitted here.

7. Experimental Results
The proposed SOLALL is written in C++. All our ex-

periments were conducted on 1.7 GHz Pentium 4 PC with
512MB RAM, running RedHat Linux 7.3. The effective-
ness of our proposed method is evaluated for the ISCAS89
sequential benchmark circuits using EG properties involv-
ing conjunction of 10 random flip-flops for circuits larger
than s1423, while conjunction of 5 random flip-flops were
used for the smaller circuits.

In order to compare the efficiency of the two types of
success-driven learning, we build another SAT based solver
with success-driven Type-I, similar to [12], in which quan-
tification on the solution is performed before adding the
block clause into the CNF database. This solver is denoted
as Type I, Our proposed SAT solver is denoted as Type II.

Table 1. Type-I vs. Type-II Learning
Type-I Success + SOLALL (Type-II

Conflict Success + Conflict)
circuit time(s) mem(M) time(s) mem(M)
s344 0.004 1.3 0.002 1.3
s1196 0.002 1.3 0.004 1.3
s1423 64.4 93.2 0.315 3.2
s5378 0.412 4.34 0.033 3.47
s9234 Abort(� 231) � 128 0.054 6.3
s13207 4.02 44 0.027 2.53
s15850 32.4 71.2 0.158 10.0
s35932 Abort(� 141) � 128 0.20 13.0
s38417 Abort(� 136) � 128 0.055 9.23
s38584 Abort(� 204) � 128 0.071 14.1

We report results in Table 1. For each circuit, the exe-
cution time and memory used are reported for each circuit
for both Type-I and Type-II success-driven learning. Note
that conflict-driven learning is also incorporated in both
methods. According to the results, Type-I cannot complete
for several of larger circuit, while our Type-II (SOLALL)
can return all solutions for the preimage of all circuits. In
addition, SOLALL is generally faster and uses less mem-
ory(exclude s1196); in particular, a maximum memory size
of 14.1MB is ever encountered, and less than one second of
execution are needed for all circuits.

276

Table 2. SOLALL vs. Others for s5378
Type-I Success + SOLALL (Type-II

ATPG-based [15] BDD-based [17] Conflict Success + Conflict)
property time(s) mem(M) time(s) mem(M) time(s) mem(M) time(s) mem(M)
1 0.62 10 14.7 27 0.412 4.34 0.033 3.47
2 0.42 10 14.2 27 0.121 14.1 0.08 4.56
3 0.07 10 14.7 27 Abort(� 105.7) � 128 0.141 4.21
4 0.51 10 14.8 27 0.071 2.12 0.026 1.80
5 0.1 10 14.7 27 Abort(� 100.3) � 128 0.245 4.36
6 1.03 10 14.8 27 0.752 4.41 0.093 4.21
7 1.1 10 14.7 27 0.098 3.75 0.004 1.39
8 1.97 10 14.7 27 Abort(� 79.76) � 128 0.168 4.72
9 0.98 10 14.8 27 0.041 2.12 0.021 1.39
10 1.71 10 14.7 27 1.202 4.33 0.027 3.81

Note 1: the BDD-based method was run on 200MHz Sun workstation
Note 2: the BDD-based method could not handle larger ISCAS89 circuits, such as s38417, though not shown here

In the second experiment, we compared SOLALL with
the success-driven learning ATPG engine [15] and a BDD-
based approach [17] for 10 EG properties for circuit s5378.
Table 2 reports the results. Again, execution time and mem-
ory used are reported for each property. Although SOLALL
has not incorporated circuit testability measures, from the
results it can be seen that its execution time is on the same
order with [15], despite that [15] uses sequential implica-
tion learning to prune additional search space. Memory us-
age for SOLALL is also less than [15]. When compared
with BDD-based solver BINGO, SOLALL consistently per-
formed better. However, note that BINGO fails larger prob-
lem instances, as reported in [15], while both ATPG and
SAT-based methods scale much better.

8. Conclusions
We have presented a novel and efficient all-solutions

SAT solver, SOLALL. SOLALL can be applied to effi-
ciently compute preimage. The search space combined
success/conflict-driven learning. In addition, a method for
computing smaller cut sets is proposed. Finally, a practical
method to convert SOLALL results into an OBDD with-
out PIs is given. Experimental results show that SOLALL
is very efficient in returning all solutions and is also very
memory-efficient. Application of SOLALL to large sequen-
tial circuits showed that SOLALL can successfully return
all solution in less than one second. We believe this work
holds potential for formal verification of large-scale sequen-
tial problems.

References

[1] R. Rudell. Dynamic variable ordering for ordered binary
decision diagrams. Proc. ICCAD, pages 42–47, Nov. 1994.

[2] S. Panda, F. Somenzi, and B. F. Plessier. Symmetry de-
tection and dynamic variable ordering of decision diagrams.
Proc. ICCAD, pages 628–631, 1994.

[3] C. Meinel and C. Stangier. Speeding up symbolic model
checking by accelerating dynamic variable ordering. Great
Lake Symp. on VLSI, pages 39–42, 2000.

[4] A. Narayan, J. Jain, M. Fujita, and A. Sangiovanni-
Vincentelli. Partitioned robdds: A compact, canonical and
efficiently manipulable representation for boolean functions.
Proc. ICCAD, pages 547–554, Nov. 1996.

[5] I.-H. Moon, H. H. Kukula, K. Ravi, and F. Somenzi. To split
or to conjoin: The question in image computation. Proc.
DAC, pages 23–28, 2000.

[6] J. P. Marques-Silva and K. A. Sakallah. Grasp: A search
algorithm for propositional satisfiability. IEEE Trans. On
Computers, 48(5):506–521, May 1999.

[7] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and
S. Malik. Chaff: engineering an efficient sat solver. Proc.
DAC, pages 530–535, 2001.

[8] L. Zhang, C. F. Madigan, M. H. Moskewicz, and S. Malik.
Efficient conflict driven learning in a boolean satisfiability
solver. Proc. ICCAD, pages 279–285, Nov. 2001.

[9] E. Goldberg and Y. Novikov. Berkmin: a fast and robust
sat-solver. Proc. DATE, pages 142–149, 2002.

[10] M. Abramovici, M. A. Breuer, and A. D. Friedman. Digital
Systems Testing and Testable Design. IEEE Press, Piscat-
away, New Jersey, 1990.

[11] A. Gupta, Z. Yang, P. Ashar, L. Zhang, and S. Malik.
Partition-based decision heuristics for image computation
using sat and bdds. Proc. ICCAD, pages 286–292, 2001.

[12] K. L. McMillan. Applying sat methods in unbounded sym-
bolic model checking. Proc. CAV, pages 250–264, 2002.

[13] L. Zhang and S. Malik. Towards symmetric treatment of
conflicts and satisfaction in quantified boolean formula eval-
uation. Proc. of 8th Int’l Conf. on Principles and Practice of
Constraint Programming, pages 200–215, Sep. 2002.

[14] H.-J. Kang and I.-C. Park. Sat-based unbounded symbolic
model checking. Proc. DAC, pages 840–843, Sep. 2003.

[15] S. Sheng and M. S. Hsiao. Efficient preimage computation
using a novel success-driven atpg. Proc. DATE, pages 822–
827, Sep. 2003.

[16] A. Gupta, A. Gupta, Z. Yang, and P. Ashar. Dynamic detec-
tion and removal of inactive clauses in sat with application
in image computation. Proc. DAC, pages 536–541, 2001.

[17] H. Iwashita and T. Nakata. Forward model checking tech-
niques oriented to buggy designs. Proc. ICCAD, pages 400–
404, Nov. 1997.

277

