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ABSTRACT
We propose a new dynamic method of abstraction, which can be ap-
plied during successive steps of the model checking algorithm to fur-
ther reduce the model produced by traditional static abstraction meth-
ods. This is facilitated by information gathered from an analysis of the
proof of unsatisfiability of SAT-based bounded model checking prob-
lems formulated on the original design. The dynamic abstraction ef-
fectively allows the model checker to work with smaller abstract mod-
els. Experiments on several industrial benchmarks demonstrate that
dynamic abstraction can significantly improve both the performance
and the capacity of typical abstraction refinement flows.

Categories and Subject DescriptorsB.5.2[Design Aids]:Verification

General Terms: Design, Verification

Keywords: Abstraction Refinement, Model Checking, SAT

1. INTRODUCTION
The application of model checking has traditionally been hampered

by the commonly knownstate explosionproblem. Abstraction refine-
ment has recently emerged as a promising technology that has the po-
tential to alleviate this problem.

The basic idea ofabstraction refinement[7] is to verify the property
at hand on a simplified version, orabstraction, of the given design.
The abstraction is generated such that whenever a property passes
on the abstract model, it is guaranteed to pass on the original design
as well. However, when a property fails on the abstract model, the
produced counter-examples must be checked to see if they are true
counter-examples on the original design. If not, the model checking
process is iterated with another abstract model which approximates the
original model more closely. The new abstract model can be obtained
either by refinement, which embellishes the current abstraction with
more details from the original design [2, 5, 12] or by re-generating a
more detailed abstract model from the original design [6, 11]. Usually
the challenge in abstraction refinement is to construct as small an ab-
stract model as possible so that the model checker can handle it easily.
At the same time, the abstract model should retain sufficient details so
that the model checker can prove the property.

Previous work on abstraction refinement based model checking uses
static abstractionin that the abstract model produced by the abstrac-
tion step is never modified by the downstream model checker. In this
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work we make the key observation that when a property is checked
on a circuit model, there may be state elements that arepartially ab-
stractable, i.e., while a state element is necessary in the proof of the
property, it may actually be required only in certain time-frames in the
proof. For example, some latches in the design are solely present for
initialization purposes.

We use this observation to develop a new method, we call itdynamic
abstraction, whereby the initial abstract model of the design-under-
verification isfurtherabstracted during successive image computation
steps of the model checking phase. Dynamic abstraction provides a
more aggressive yet accurate abstraction methodology, effectively al-
lowing the core model checking algorithm to work on smaller abstract
models. Information regarding the dynamic abstractability of different
latches is deduced from an analysis of the unsatisfiable core of SAT-
based BMC problems formulated on the concrete model. The main
contributions of this paper are the following:

• We introduce and develop the notion of the dynamic abstraction,
which is orthogonal to static abstraction, which has traditionally
been used in abstraction refinement frameworks.

• We propose two techniques for implementing dynamic abstrac-
tion in the context of a SAT-BMC based abstraction framework,
which currently uses a BDD-based model checker.

Experiment of our initial implementations on large industrial designs
demonstrates the effectiveness of proposed dynamic abstraction. How-
ever, it is important to note that the notion of dynamic abstraction goes
beyond these specific implementations.

2. RELATED WORK
Abstraction refinement algorithms can be broadly classified into two

categories: 1) counter-example driven and 2) counter-example inde-
pendent. Counter-example driven methods [1, 4, 5, 10, 12] typically
work by iteratively refining the current abstraction so as to blocka
particular false counter-example encountered in model checking the
abstract model. The refinement algorithm could use a combination of
structural heuristics and/or functional analysis based on SAT or BDDs.
Recent papers [2, 9] enlarged the scope of the refinement by blocking
multiple false counter-examples from the abstract model.

Counter-example independent abstraction refinement was introduced
in [11] and also independently discovered in [6]. The basic idea is to
perform a SAT-based BMC [3] for the property, up to some depthk,
on the original design and then generate the abstract model based on
an analysis of theproof of unsatisfiability[15] of the BMC problem.
Since the abstraction preserves latches and gates that are included in
the proof of unsatisfiability of the BMC problem, it guarantees that the
abstract model does not have any counter-examples up to depthk. If
needed, successive abstract models can be generated by solving BMC
problems of increasing depths. The use of BMC to concretize abstract
counter-examples was first proposed in [5]. Bjesseet al. [1] proposed



an enhancement of the concretization in that the concrete error trace
dose not have to be in the same length as the abstract counter-example.
Li et al. [8] proposed a new search strategy for the SAT solver so that
the proof of unsatisfiability will generate smaller abstract models.

All of the above works share two common features: 1) the abstrac-
tion step is algorithmically distinct from the model checking phase,
and 2) The abstraction is purely structural and has no temporal com-
ponent,i.e. the same structural abstraction is used for each image com-
putation step in BDD-based model checking.

Our dynamic abstraction can be distinguished from all previous ab-
straction algorithms based on these two aspects. Our method first
analyzes the temporal behavior of various latches. Then, based on
the analysis it dynamically abstracts away a set of latchesduring the
course of the model checking. A key point is that dynamic abstraction
can be applied in addition to any traditional abstraction method.

3. PRELIMINARIES
In this paper, we only consider model checking of invariantsAGp,

wherep is a boolean expression of the given circuit model. The cir-
cuit can be represented asM = 〈T(X,Y,W), I(X)〉, whereW the set
of inputs,X the set of present state variables,Y the set of next state
variables,T(X,Y,W) the transition relation, andI(X) the set of ini-
tial states. M has a set of latchesL = {l1, l2, . . . , lm}. xi andyi are
the present state and next state variable corresponding to latchl i . The
transition relationT can be represented as:

T(X,Y,W) =
∧

i∈{1...m}
Ti(X,yi ,W)

Ti(X,yi ,W) = yi ↔ ∆i(X,W) is the transition relation of latchl i .
Given a subset of latchesLabs that we would like to abstract away

from the design, the abstract model can be constructed by cutting
open the feedback loop of latchesLabs at their present state variables
Xabs.The abstract model can then be represented asM̂ = 〈T̂(X̂,Ŷ,Ŵ),
I(X̂)〉 , whereŴ = W∪Xabs, X̂ = X−Xabs, Ŷ = {yi : xi ∈ X̂}.

The basic framework for abstraction refinement in our current im-
plementation is similar to the one developed in [11] and [6]. A simpli-
fied version of the algorithm used in [11] is shown in Algorithm 3.1.

1: k = InitValue
2: if SAT-BMC(M, p,k) is SAT then
3: return “found error trace”
4: else
5: Extract proof of unsatisfiability,P of SAT-BMC
6: M′ = ABSTRACT(M,P )
7: end if
8: if MODEL CHECK(M′, p) returnsPASS then
9: return “passing property”

10: else
11: Increase boundk
12: gotoStep 2
13: end if

Algorithm 3.1: Abstraction Refinement Using SAT-BMC

A k-step BMC problem on the original model can be formulated
by unrolling and replicating the transition relationT, k times. Letv
be a variable inT, andv1,v2, . . . ,vk denote thek instantiations ofv
in the unrolled BMC problem. If the BMC problem is unsatisfiable
(property holds on the original model), the SAT solver, such as [15],
can produce aproof of unsatisfiability(POU) for it. The POU (denoted
by P in the sequel) is essentially a small subset of CNF clauses from
the original formula, which preserves (proves) the unsatisfiability of
the original formula. The POU can be scanned to identify a set of
latchesLabssuch that for eachl ∈ Labs the variablesl1, l2, . . . , lk do not
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Figure 1: Latch-based Unsatisfiability Analysis

appear in any clauses of the POU. These latches can then be abstracted
away using aforementioned approach. The rationale is that since these
latches provably do not contribute to the property check in the first
k time-frames, they might be irrelevant in deciding this property for
unbounded behaviors as well.

The model checking algorithm employed in Algorithm 3.1 (Step 8)
may use a variety of methods, such as BDD-based symbolic model
checker , SAT-based induction or BMC. Algorithm 3.2 shows pseudo
code for a symbolic invariant checking algorithm using BDDs. Here
B denotes the states that violatep andSC denotes currently reached
states. The core operation is the image operationImg, which computes
the states reachable in one step, via the transition relationT, from the
current statesSC, whereImg(Y)≡ ∃X,W. SC(X)∧T(X,Y,W).

InvariantCheck(M〈T, I〉, B)
1: SC = /0; SN = I ;
2: while SC 6= SN do
3: SC = SN;
4: if B∩SC 6= /0 then
5: return “found error trace”;
6: end if
7: SN = SC∪ Img(SC);
8: end while
9: return “no bad state reachable”;

Algorithm 3.2: Symbolic Invariant Checking

4. DYNAMIC ABSTRACTION
Given an original circuitM and the propertyP= AGp, let us assume

that a SAT-BMC problem onM of depthk has been solved and there
is no counter-example. Further, suppose that the SAT solver generates
a POUP for this problem. Figure 1 is a graphical representation of
the POU from a 40-step SAT-BMC problem on a real circuit example.
For each latch (plotted for 40 representative latches on the y-axis) the
plot shows the time-frames at which the corresponding instantiation of
the latch variable involves in the POU of the SAT-BMC problem. The
latches have been sorted on the y-axis for better readability of the data.
Given a latch variablel ∈ L, we can define theredundancy index(RI),
ρ(l) of l , with respect to the proofP , as follows:

DEFINITION 4.1 (REDUNDANCY INDEX). The redundancy index
ρ(l) of latch l with respect to the proof of unsatisfiabilityP is the small-
est time-frame index such that for all time-frames j,ρ(l)≤ j ≤ k, there
does not exist a clause with variable lj in P .



For example, in Figure 1 the points markedA(14,15) andB(27,32)
show that the latch 15 has a RI of 15, while the latch 32 has a RI
of 28. Simply put, the redundancy index is the earliest time-frame
after which the given latch stops participating in the POU of thecor-
respondingBMC problem. The situation depicted in Figure 1 is quite
typical for a large variety of benchmarks we have experimented with.
Large number of latches are not used in all time-frames of the POU.
Moreover, some latches areonlyused in the first few time-frames.

At each step of image computation we can define acandidate setof
latches which is essentially a set of latches whose redundancy index is
no greater than the index of the current image computation step.

DEFINITION 4.2 (CANDIDATE SET). The candidate set of
latches for iteration j of image computation in Algorithm 3.2 is de-
fined asC j = {l i : l i ∈ L,ρ(l i)≤ j}

For example, in Figure 1 the candidate set at time-frame 15 consists
of the first 15 latches,i.e., C15 = {l1, l2, . . . , l15}. A modified version
of Algorithm 3.2, incorporating dynamic abstraction is given below.

InvariantCheckDynamicAbstract(M〈T, I〉, B)
1: SC = /0; SN = I ;
2: while SC 6= SN do
3: Labs = CHOOSE ABSTRACTION LATCHES(L);
4: T = ABSTRACT TR(Labs,T);
5: B = ∃Xabs. B;
6: SC = SN;
7: SC = ∃Xabs. SC;
8: if B∩SC 6= /0 then
9: return “found error trace”;

10: end if
11: SN = SC∪ Img(SC);
12: end while
13: return “no bad state reachable”;

Algorithm 4.1: Symbolic Invar. Checking with Dynamic Abstraction

In Algorithm 4.1Xabs are the present state variables corresponding
to the latchesLabschosen for abstraction, ABSTRACT TR abstracts the
chosen latches from theT using the approach described in Section 3.
The operation CHOOSE ABSTRACTION LATCHES may use different
heuristics to choose a subset of thecandidate latchesC j of the current
iteration for abstraction. Since the dynamic abstraction is developed
from an analysis of the POU of thek-step SAT-BMC problem, the
following proposition about the Algorithm 4.1 is true.

THEOREM 4.1. Algorithm 4.1 will not find any counter-example to
the given property in the first k steps of image computation.

The proof of of this theorem is along the lines of the main result in
[11] Indeed, the static abstraction can be viewed as a special case of
dynamic abstraction, since if we restrict our abstraction to latches with
redundancy index ‘0’, the Algorithm 4.1 becomes the conventional
static abstraction-based invariant model checking.

4.1 Latch Selection Heuristic
A key component of Algorithm 4.1 is the latch selection heuristic

CHOOSE ABSTRACTION LATCHES. This decides which latches, out
of the current candidate set, should be abstracted at a given image
computation step. This heuristic can have a significant bearing on the
overall performance of the algorithm.

The most aggressive approach would be to perform dynamic ab-
straction forall latches in the current candidate set and at the earliest
possible time as indicated by the redundancy index (RI) of each latch.
However, this approach suffers from several drawbacks. The following
issues drive the choice of this heuristic:

1. How often to abstract latches:Since the dynamic abstraction
is implemented via quantification of next-state variables, from
the transition relation, the overhead can be significant. Thus, a
good heuristic should limit the abstraction to a few image com-
putation steps.

2. Extrapolating unbounded behavior from ρ(l): In abstraction
based on POU of ak-step SAT-BMC we are trying to extrapolate
unbounded behavior of a latch, with respect to the given prop-
erty, based on its bounded behavior. Intuitively, a latch that was
active only in the first few steps of the BMC (i.e.has a small RI),
e.g., latch l2 in Figure 1, is more likely to be inactive beyondk
time-steps than one which was active up tok−1 or k−2 steps
(i.e.has a large RI),e.g., latchl38 in Figure 1.

3. Size and depth of the reachable state space:Abstraction of
latches comes at the cost of enlarging the set of permissible be-
haviors of the circuit. This can potentially enlarge the reachable
state space, result in larger BDDs for the reached state represen-
tation and/or increase the depth of the reachability computation.
This factor should be considered by the latch selection heuristic.

With the above criteria in mind, we have developed and tested sev-
eral heuristics for CHOOSE ABSTRACTION LATCHES and found the
following two to give a reasonable trade-off between overheads and
abstraction power. Several other richer variants of these are possible
and could be the subject of future research.
Heuristic 1: Dynamically abstract just once atdδ ·ke time-steps, (where
0 < δ < 1), and abstract all latches in the candidate set at this point.

The philosophy behind this heuristic to minimize the overheads of
abstraction by doing it only once (issue 1 above) and being aggressive
by choosing all candidates for abstraction.δ is kept fairly low to in-
crease the likelihood of the latches being redundant for future image
computations (in agreement with issue 2 above). Empirically, we used
δ = 0.2 in our experiments.
Heuristic 2: Before the start of model checking analyze the proofP
and gather a set of latchesS = {l : l ∈ L,ρ(l) ≤ δ · k}. Every r steps
of image computation, compute the set of latchesN not in the support
set of current reached state set BDD. If|S ∩N | ≥ τ abstract all latches
in the setS ∩N . Repeat every r image computation steps.

The intuition behind the using of the setN is that the removal of
such latches is less likely to cause a blow-up in the current step of
image computation. This ties in with issue 3 discussed above. Empir-
ically, we used parameter settings ofδ = 0.2, r = 2, τ = 10 for our ex-
periments but the heuristic is not sensitive to these particular settings.
Qualitatively,Heuristic 1is based on an aggressive one time applica-
tion of dynamic abstraction whereasHeuristic 2is a more conservative
and controlled application of dynamic abstraction. This distinction is
born out by the experiments discussed in Section 5.

4.2 Handling Counter-examples
Our current implementation uses the counter-example independent

refinement. Whenever a counter-example is found in the abstract model
(line 9 of Algorithm 4.1) SAT-BMC is used to check if it is a true
counter-example on the concrete model. If it is not a true counter-
example, then we repeat the abstraction process with a deeper un-
rolling for SAT-BMC as shown in Algorithm 3.1. Otherwise, an error
trace is returned to the user. Note that the effectiveness of proposed dy-
namic abstraction is unaffected by the underlying refinement scheme.

5. EXPERIMENTAL RESULTS
We have implemented the proposed dynamic abstraction algorithm

as well as the static abstraction algorithm of [6, 11] within the VIS
framework [13]. Our framework first abstracts a static model using an
iterative abstraction loop. The POU extraction is based on the algo-
rithm of [15] and it has been extended to report the redundancy index



Pass/ Concrete Model Static Abstraction Dynamic Heuristic I Dynamic Heuristic II
Problem cex leng. # PIs # FFs # Gates # FFs Time(s) # FFs (diff.) Time(s) # FFs (diff.) Time(s)

P1 Pass 330 1158 5155 264 133 204 (-60) 97 221 (-43) 114
P2 Pass 401 1896 8910 257 936 218 (-39) 189 240 (-17) 550
P3 Pass 405 1951 8577 266 187 243 (-23) 141 252 (-14) 172
P4 Pass 671 2735 11381 271 68 211 (-60) 149 249 (-22) 68
P5 Pass 1015 2971 10044 286 474 216 (-70) 260 276 (-10) 441
P6 Pass 1020 3039 10060 277 360 224 (-53) 92 254 (-23) 141
P7 Pass 1981 5407 18193 245 322 222 (-23) 190 227 (-18) 169
P8 Pass 1950 5468 19161 224 1198 184 (-40) 265 201 (-23) 769
P9 Pass 1943 5644 19189 268 89 234 (-34) 87 247 (-21) 79
P10 Pass 3490 8998 27297 293 563 221 (-72) 85 269 (-24) 270
P11 60 308 746 3837 123 687 81 (-42) 156 87 (-36) 690
P12 36 289 654 4823 170 30704 160 (-10) 1747 170 (0) 30632
P13 29 289 654 4826 201 >24h (27) 168 (-33) 28711 196 (-5) >24h (27)
P14 ? 356 1644 7408 115 >24h (13) 93 (-22) >24h (26) 109 (-6) >24h (13)
P15 Pass 82 432 1740 146 7062 121(-25) 3185 135(-11) 5604

Table 1: Results: Static Abstraction and Proposed Dynamic Abstraction

(RI) for each latch. The downstream model checker has been modified
to take RIs of latches as inputs. It then further abstracts the statically
abstracted model on the fly using proposed latch selection heuristics.
We use CUDD for the BDD-based computation, andZCHAFF [14] as
the SAT solver for BMC. We tested our tool for safety properties on
different modules from four real-life industrial designs.

All experiments were run on 1.5 GHz Pentium 4 Linux machines
with 1G RAM. The time-out limit is set to 24 hours.The results are
reported in the Table 1. The second column shows if the property is a
passing property or the length of the shortest counterexample. A ques-
tion mark was shown for P14, since all methods timed out on it. Col-
umn 6 shows the number of latches in the statically abstracted model.
Column 7 is the cumulative CPU time, which includes both abstrac-
tion and model checking time. Columns 8 and 10 report the number
of latches in the final dynamically abstracted model for Heuristics 1
and 2 as well as additional latches abstracted with respect to the static
abstraction method. For example, the static abstraction is able to ab-
stract a model with only 224 latches for property P8, for which the
concrete model has 5468 latches. Dynamic heuristic 1 is able to fur-
ther abstract 40 more latches away, while dynamic heuristic 2 is able
to abstract 23 more latches. The reported time in column 9 and 11
are also cumulative CPU times. For time-out cases, we also report the
number of completed image computation steps. For example, for P14,
dynamic heuristic 1 is able to compute 26 steps of images within 24
hours, while static abstraction and heuristic 2 can only finish 13 steps.

We can see that proposed heuristic 1 is extremely powerful in re-
ducing the overall runtime, even though the number of additional ab-
stracted latches may not be very significant. For example, with only 10
additional latches abstracted away for P12, it achieves over an order of
magnitude speed-up compared to the pure static abstraction approach.
However, as discussed in previous section, aggressive abstraction may
potentially slow down the subsequent model checking. In our experi-
ment, dynamic heuristic 1 does experience occasional slow-downs. As
explained in the previous section, heuristic 2 is a more conservative
and controlled application of the dynamic abstraction. It consistently
outperforms the pure static abstraction for all cases significantly.

6. CONCLUSIONS
In this paper we have presented a method for performing dynamic

abstraction within a framework for abstraction-refinement based model
checking. The dynamic abstraction is applied during successive image
computation steps of the model checking algorithm and can be applied

in addition to traditional static abstraction methods. It is facilitated by
information gathered from an analysis of the proof of unsatisfiability
of SAT-based BMC problems formulated on the concrete model. We
also proposed two strategies for realizing the dynamic abstraction. Our
experiments on several large industrial designs demonstrate that pro-
posed techniques can improve the performance of abstraction refine-
ment based model checking by up to an order of magnitude compared
to the state-of-the-art static abstraction refinement methods.
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