
7th IEEE Asian Test Symposium, 1998, pp. 452-457

Partitioning and Reordering Techniques for
Static Test Sequence Compaction of Sequential Circuits

Michael S. Hsiaoy and Srimat T. Chakradharyy

yDepartment of Electrical and Computer Engineering, Rutgers University, Piscataway, NJ
yyComputer & Communications Research Lab. NEC USA, Princeton, NJ

Abstract

We propose a new static test set compaction method based on
a careful examination of attributes of fault coverage curves.
Our method is based on two key ideas: (1) fault-list and test-
set partitioning, and (2) vector re-ordering. Typically, the
�rst few vectors of a test set detect a large number of faults.
The remaining vectors usually constitute a large fraction of
the test set, but these vectors are included to detect relatively
few hard faults. We show that signi�cant compaction can be
achieved by partitioning faults into hard and easy faults. This
signi�cantly reduces the computational cost for static test set
compaction without a�ecting quality of compaction. The sec-
ond technique re-orders vectors in a test set by moving se-
quences that detect hard faults to the beginning of the test set.
Fault simulation of the newly concatenated re-ordered test set
results in the omission of several vectors so that the compact
test set is smaller than the original test set. Experiments
on several ISCAS 89 sequential benchmark circuits and large
production circuits show that our compaction procedure yields
signi�cant test set reductions in low execution times.

I Introduction
Since cost of testing is directly proportional to the number
of test vectors in the test set, short test sequences are desir-
able. Reduction in test set size can be achieved using static
or dynamic test set compaction algorithms. Dynamic tech-
niques [11-14] perform compaction concurrently with the test
generation process and often require modi�cation of the test
generator. Static compaction techniques, on the other hand,
are employed after the test generation process. Thus, static
techniques are independent of the test generation algorithm
and do not require modi�cations to the test generator. In
addition, static compaction techniques can further reduce the
size of test sets obtained after dynamic compaction.

Several static compaction approaches for sequential circuits
have been proposed [1-10]. Some of these approaches [1, 2]
cannot reduce test sets produced by random or simulation-
based test generators. Static compaction techniques based
on vector insertion, omission, or selection have been investi-
gated [3]. These techniques require multiple fault simulation
passes. The fault simulator is invoked whenever a vector is
omitted or swapped to make sure that the fault coverage is
not a�ected. Vector restoration techniques [6, 7] aim to re-
store su�cient vectors necessary to detect all faults. Fast

�
This research was conducted while M. Hsiao was at NEC USA

static test set compaction based on removing recurrence sub-
sequences that start and end on the same or similar states
has been reported recently [4, 5]. Though fast, these test sets
are not as compact as those achieved by algorithms that use
multiple fault simulation passes.
Figure 1 shows two typical fault coverage curves. The

curve with a small dip is associated with test sets that are
composed of random vectors followed by vectors generated
using automatic test pattern generators (ATPG's), while the

y%

x %x % 21 Test vectors

Random vectors

ATPG vectors

Fault Coverage

Figure 1: Typical Fault Coverage Curves.

curve without the dip is associated with test sets composed
of solely ATPG vectors. In either case, the fault coverage in-
creases rapidly for the �rst few vectors and eventually levels
o�. During the
at region, a large number of vectors are re-
quired to detect very few additional faults. We formalize this
observation using two parameters x and y. The �rst x% of
the vectors detect y% of the faults. For example, it is possible
that the �rst 10% of the vectors in the test set detect 90% of
the faults. We also observed that faults detected during the
quick rise of the fault coverage curve are also usually detected
by vectors generated during the
at region of the curve. Our
empirical observations lead to two questions:

1. Since the majority of the test set ((100 � x)% vectors)
is used to detect a few hard faults ((100 � y)% detected
faults), can we reduce the execution time by compacting
the test set with respect to only the hard faults?

2. If we re-order the test set by placing vectors comprising
the last w% of the test set to be at the beginning of the
test set, how much of the y% easily detectable faults will
still be detected by the re-ordered w% vectors?

The �rst question motivates us to consider fault-list and
test-set partitioning for static compaction. We attempt to
compact the test set by only considering the hard faults. This
substantially reduces the cost of fault simulation because only
a few faults have to be considered during multiple fault sim-
ulation passes. Also, computationally expensive static com-
paction techniques that have been proposed in the past can
now be re-examined, since test-set and fault-list partitioning
can greatly reduce the fault simulation cost.

The second question is in regard to vector re-ordering. Re-
ordering of test vectors for sequential circuits must be done
carefully because detection of a fault in a sequential circuit
requires a speci�c sequence of vectors. Vector re-ordering is
e�ective if vectors that detect hard faults also detect other
faults. Both coarse and �ne-grain re-ordering are explored.

The contribution of this work is two fold. First, the com-
putational cost for static test set compaction is substantially
reduced by careful fault-list and test-set partitioning. Second,
re-ordering of vectors is shown to be very e�ective in reducing
the test set size. Signi�cant compactions have been obtained
very quickly for large ISCAS89 sequential benchmark circuits,
several synthesized circuits, and production circuits.

The remainder of this paper is organized as follows. Section
II describes the main ideas behind partitioning and vector
re-ordering. Section III explains the compaction algorithm.
Section IV presents experimental results. Finally, Section V
concludes the paper.

II Main Ideas
Given a test set T , a subsequence of the test set is represented
as T [vi, vi+1, ..., vj], where vi and vj are the i

th and jth vec-
tors in the test set T , respectively. The set of faults detected
by a subsequence T [vi, : : :, vj] is denoted as Fdet[vi, : : :, vj].

Let us consider a test set T with n vectors. Assume that
this test set T detects a total of f faults. If a static compaction
algorithm requires m fault simulations, then the worst case
time required for multiple fault simulation passes is propor-
tional to m�n� f single-vector logic simulations. Since n is
the original test set size and is a �xed number, one can only
reduce the cost of compaction by reducing m, f , or both.

A Test-set and fault-list partitioning

The compaction process using partitioning is illustrated in
Figure 2. We begin by splitting the test set T into two sub-
sequences T [v1, : : :, vi] and T [vi+1, : : :, vn]. Let r be the
ratio of total number of detected faults f to the number
of detected faults by the second partition T [vi+1, : : :, vn]:
r = f

Fdet[vi+1;:::;vn]
. If we compact the test set with respect to

only Fdet[vi+1, : : :, vn] (Step 1 of Figure 2), the computational
cost can be reduced to m�n� (f=r). If r is large, signi�cant
savings in computational time can be achieved. For example,
if 90% of the detected faults are detected quickly in the �rst
test set partition (conversely, only 10% of detected faults in
the second partition), then the time required for multiple fault
simulation passes can be reduced by an order of magnitude.

After Step 1, it is possible that the compacted test set
Tcompact may not detect all faults, since only a subset of faults
were considered during compaction. A possible solution is to

Compacted Test Set

T[v ... v]i1
T[v ... v]ni+1

Original Test Set

Compacted Test SetT[v ... v]i1

T[v ... v]i1

T[v ... v]ni+1

T[v ... v]i1

Compacted Test Set

Step 1: Compaction of the second test set partition

Step 2: Combination with the first test set partition

originally detected by this subsequence may
May not need entire subsequece since faults

be detected by the compacted test set already

compaction with respect to faults
detected in

Append compacted test set

after

Option 1:

Option 2:

Figure 2: Test Set Compaction Using Partitioning.

combine Tcompact and the �rst subsequence T [v1, : : :, vi] (Step
2 of Figure 2). This ensures that all f faults are detected.

We perform static compaction with respect to only a frac-
tion of the faults. Therefore, the computational cost would
be less than a method that considers all faults. However,
one would expect less compact test sets since only a subset of
faults are considered for compaction. Nevertheless, our exper-
iments show that both computational cost and the quality of
compaction are bene�ted by partitioning.

B Re-ordering of vectors

Another valid question that stems from the shape of the fault
coverage curve illustrated in Figure 1 is whether sequences
that detect hard faults can also detect many other, easier
faults. In other words, if the sequence of vectors that detect
hard faults is copied to the beginning of the test set, can some
vectors in the modi�ed test set be omitted?

Again, consider a test set T [v1, ..., vn] that detects f faults.
If we create a new test sequence by copying the subsequence
T [vk, : : :, vn], 1 � k � n, to the beginning of the original test
set T (see Figure 3), then all f faults are still detectable by
the modi�ed test sequence, Tnew[vk, : : :, vn, v1, : : :, vn], since
the original test set is a subset of the modi�ed test sequence.
There are now (n � k + 1) + n vectors in the modi�ed test
set. Clearly, at least n � k + 1 vectors can be omitted from
the modi�ed test set. However, it is possible that more than

T[v ... v]nk

T[v ... v]nk

Original Test Set
Reordered Test Set

Original Test Set

Some vectors here may be omitted

Figure 3: A Reordered Test Set.

n� k + 1 vectors can be dropped by omitting vectors at the
end of the modi�ed test set. For example, consider two faults
fy and fz that are detected by the original test set T [v1, : : :,
vn]. Let us also assume that faults fy and fz are detected
after vectors vm and vn, respectively. Here, vn is the last
vector in the test set and m < n. Suppose there exists a
k, m < k < n, such that subsequence T [vk, ..., vn] detects
only one fault fz, then re-ordering T [vk, ..., vn] vectors to the
beginning of the test set yields the modi�ed test set T [vk , ...,
vn, v1, ..., vn]. Figure 4 illustrates this scenario. For this
example, the subsequence T [vm+1, ..., vn] at the end of the
modi�ed test set now becomes unnecessary. This subsequence
detects only fault fz and the fault is already detected by the
newly re-ordered vectors. The modi�ed test set is T [vk , ...,
vn, v1, ..., vm], with (n � k + 1) +m vectors. Since k > m,
the new test set size can be less than the original test size n.
For example, if k =m+3, then the compacted test set is two
vectors smaller than the original test set.

f detected herey
Sequence sufficient to

detect fault fz

T[v ... v]nk

m k nOriginal Test Set

nkT[v ... v]

m1T[v ... v]

Reordered Test Set

Original Test Set

Figure 4: A Shorter Reordered Test Set.

Computing the exact k for the last detected fault fz may
be computationally expensive. Instead, we can simply pick
an arbitrary k and re-order the subsequence T [vk, ..., vn] to
the beginning of the test set. Fault simulation of the mod-
i�ed test sequence will determine whether some vectors can
be removed. This process can be repeated until every vector
in the original test set has been re-ordered. The size of the
subsequence being re-ordered plays a signi�cant role in deter-
mining the amount of possible compaction. If the re-ordered
subsequence consists of 5% of vectors in the test set, then it
would take at most 20 passes to �nish re-ordering of all the
vectors in the original test set. On the other hand, if the re-
ordered subsequence consists of only 1% of the vectors, then
up to 100 passes of fault simulation may be required. More
compaction is achievable with smaller re-order sizes, but at a
higher cost of fault simulation. Note that if a large number
of vectors are omitted during the �rst few passes, the total
number of passes required can be less than the maximum.

III Test Set Compaction Algorithm
Test-set partitioning involves splitting of the test set into two
subsequences T [v1, . . . vi] and T [vi+1, . . . vn]. These subse-
quences imply a fault-list partition. Only faults detected by
the second subsequence are considered for compaction. The
speci�c value of i (1 � i � n) has a signi�cant impact on the
execution time and quality of the resulting compacted test
set. This value can be determined in several ways:

1. Choose a value for i such that the subsequence T [vi+1,
. . . vn] has a pre-determined number of vectors, or

2. Choose a value of i such that the subsequence T [v1,
. . . vi] detects a pre-determined number of faults, or

3. Choose a value for i based on a pre-determined number
of vectors and faults.

The value of i can also be chosen using more elaborate
methods. There are advantages and disadvantages of each
choice. If we split the test set based on a pre-determined
number of vectors, then we run into the risk of fewer detected
faults by the �rst subsequence. This can result in less sav-
ings in computation costs. On the other hand, if we partition
by including a su�cient number of vectors in the �rst sub-
sequence so that a pre-determined percentage of faults are
detected, then the �rst subsequence can have too many vec-
tors, resulting in a less compact test set. Finding the optimal
value of i may be as di�cult as the compaction problem itself.
In our present work, we have chosen the value of i based on a
pre-determined percentage of faults that have to be detected
by the �rst subsequence.

The size of subsequences considered for re-ordering has a
signi�cant impact on the execution time and compaction qual-
ity, as explained in the previous section. In general, coarse-
grain (more vectors) re-ordering may be better for large test
set sizes, since �ne-grain re-ordering can require a large num-
ber of fault simulation passes, and the computing resources
required can be prohibitive. However, �ne-grain re-ordering
can lead to good compaction. Therefore, we develop a hybrid
approach. We �rst reduce the test set quickly using coarse-
grain (subsequence of 5% test size) re-ordering. Then, we
switch to �ne-grain (subsequence of 1% test size) re-ordering
to further reduce the test set. This two-step re-ordering has
proven to be e�ective for many circuits.

The algorithm for vector-re-ordering with partitioning is
shown in Figure 5. The algorithm �rst picks a partitioning
point. Next, coarse and �ne-grain re-ordering is performed

Reorder coarse_grain%

of test test to the beginning

Fault simulate and remove

any vectors at end of

reordered test set

Pick position where

Y% faults are detected

Every vector

re-ordered?

YES

NO

BEGIN
Reorder fine_grain% of

test test to the beginning

Fault simulate and remove

any vectors at end of

reordered test set

Every vector

re-ordered?

Fault simulate and remove

any vectors at end of

concatenated test set

Append first portion of

test test detecting Y% faults

YES

NO

Figure 5: Test Set Compaction Algorithm.

with respect to only (100-Y)% of the partitioned faults. When
the re-ordering is complete, the �rst partition of the vectors
is appended. Fault simulation is again applied to remove any
non-contributing vectors from the �rst partition. If the user
wishes no partitioning, then we simply skip the partitioning
and the concatenation steps in the algorithm, and set Y equal
to 0%.

IV Experimental Results
The proposed static test set compaction algorithm was im-
plemented in C and the program repetitively invoked a com-
mercial fault simulator via system calls. HITEC [15] and
STRATEGATE [20] test sets generated for ISCAS89 sequen-
tial benchmark circuits [17] and several synthesized circuits
[19] to evaluate the e�ectiveness of the algorithms. HITEC is
a state-of-the-art deterministic test generator while STRATE-
GATE is a genetic-algorithms-based test generator that gen-
erates test sets with very high fault coverages. Results for
several production circuits are also reported. All experiments
were performed on a Sun UltraSPARC with 256 MB RAM.
Because our algorithms are computationally inexpensive, our
execution times are still very reasonable even with the over-
head of system calls (overhead involved reading in the circuit,
fault list, set-up of data structures, etc.)
The compaction results are shown in Tables 1 and 2 for

HITEC and STRATEGATE vectors, respectively. Both ta-
bles show the number of faults, the number of vectors in the
original test set, and the number of faults detected by the
test set. For each test set, we generate compact test sets
using two methods. One method compacts the test set by
only considering re-ordering of vectors. Results for this ex-
periment are shown in column No-partition. The number of
vectors in the compact test set are shown in column Vec, the
percentage reduction in test vectors as compared to the orig-
inal test set is shown in column % R, the number of faults
detected by the compact test set is shown in column Det and
the CPU seconds required is shown in column Time. The sec-
ond method uses both partitioning and re-ordering. Results
for this experiment are shown in column Partition.
In our experiments, the partitioning technique splits the

test set such that the �rst subsequence detected 80% of the
detected faults. Therefore, compaction of the entire test set
is done with respect to only 20% of the faults.
Vector-re-ordering is based on a two-step process. First, we

consider subsequences that include 5% of the test set (coarse-
grain re-ordering), followed by the the second step that re-
orders by sizes of 1% (�ne-grain re-ordering) of the test set.
For most circuits, signi�cant reductions in test set sizes

were achieved by vector re-ordering with or without partition-
ing. On average, 35.1% and 41.1% reductions were obtained
for HITEC vectors with and without partitioning, respec-
tively, with a maximum test set reduction of 72.2% for circuit
s35932. Similarly, averages of 46.4% and 48.9% reductions
were achieved for STRATEGATE vectors with and without
partitioning, with maximum test set reduction of 88.4% for
s5378. Compaction quality is slightly better without parti-
tioning, but at a much higher computation cost. The two
tables show that execution times are signi�cantly lower with
partitioning. For smaller circuits, partitioning reduces the

execution time by about 50%. For the larger circuits, the ex-
ecution time is reduced by a factor up to 4.32. Fault coverages
for the compacted test sets are always greater than or equal
to the original fault coverages. For example, in circuit s35932,
the compacted HITEC test set detected more faults. Since
STRATEGATE vectors already provide high fault coverages,
no additional faults were detected after compaction.

Ideally, by considering only 20% faults during compaction,
we can expect a 5-fold speed up. The �xed overheads from
fault-free logic simulation makes ideal speedups di�cult to ob-
tain. For instance, if fault-free simulation constitutes 40% of
total simulation cost, then the best speed-up we can achieve is

1
(20%�60%)+40% = 1:9. Because greater fractions of the fault-
free simulation are needed for smaller circuits, speedups are
smaller for them. On average, partitioning accelerated the
compaction process by 2.90 times for HITEC vectors and by
3.14 times for STRATEGATE vectors across all circuits.

The size of compacted test sets derived using partitioning
is slightly larger for most circuits when compared to those de-
rived without partitioning. However, the di�erences are often
insigni�cant. There are cases where marginally smaller com-
pacted test sets are achieved by the partitioning case. This
happens when the �rst subsequence in the test set partition
is small.

Close examination of HITEC and STRATEGATE test sets
reveals that a smaller percentage of STRATEGATE vectors
are necessary to detect 80% of detected faults. Therefore,
more compaction were obtained for STRATEGATE vectors.
For HITEC test sets, one can always partition at a lower fault
coverage (e.g., at 60% or 70%) to reduce the number of vec-
tors in the �rst partition, but this can increase the execution
times during compaction. There are always exceptions. For
instance, in the HITEC test set for s444, compaction with
partitioning achieves a signi�cantly more compact test set in
much shorter execution time. This is because the �rst 80% of
the detected faults are also detected by vectors in the second
partition that detects the remaining 20% faults.

We also applied our static compaction method to a few
partial-scanned large production circuits. The number of non-
scanned
ip-
ops ranged from 137 to 995. These circuits have
several non-Boolean primitives, such as tristate bu�ers, bidi-
rectional bu�ers and buses. In addition, they have set/reset

ip-
ops and multiple clocks. Original test sets for these cir-
cuits were derived using a commercial test generator. Com-
paction results are shown in Table 3. For these circuits, it
was not possible to run experiments without partitioning due
to prohibitively long run times. Thus, compaction with parti-
tioning had to be used to reduce the execution times. Signif-
icant reductions in test set sizes have been achieved as com-
pared to the original test set. Furthermore, fault coverages
obtained by the compacted test sets were often higher.

When comparing our approach with existing static test set
compaction algorithms, the amount of reduction in original
test set size, the resulting fault coverages, and execution times
are all of interest. Execution times are di�cult to compare
since di�erent platforms were used (HP 9000 J200 was used
in [4], HP C180 (64-bit processor) for [6, 7], UltraSPARC in
ours, and [3] did not report execution times). Furthermore,

Table 1: Compaction results for HITEC test sets

Ckt Total Original No-Partition Partition

Faults Vec Det Vec % R Det Time Vec % R Det Time

s298 308 322 265 184 42.8 265 105 s 184 42.8 265 74.5 s
s344 342 127 328 51 59.8 328 41.4 s 84 33.9 328 28.6 s
s382 399 2074 312 704 66.6 325 240 s 764 63.2 312 91.5 s
s400 426 2214 352 878 60.3 352 324 s 967 56.3 352 117 s
s444 474 2240 389 826 63.1 389 360 s 516 77.0 389 118 s
s526 555 2258 361 1328 41.2 361 528 s 1328 41.2 361 202 s
s641 467 209 404 114 45.5 404 92.8 s 120 42.6 404 65.0 s
s713 581 173 476 110 36.4 476 92.3 s 129 25.4 476 79.6 s
s820 850 1115 813 882 20.9 813 383 s 810 27.4 813 185 s
s832 870 1137 817 768 32.5 817 400 s 988 13.1 817 202 s
s1196 1242 435 1239 336 22.8 1239 276 s 370 14.9 1239 110 s
s1238 1355 475 1283 338 28.8 1283 295 s 415 12.6 1283 129 s

s1423 1515 150 750 134 10.7 750 270 s 150 0 750 72.1 s
s1488 1486 1170 1444 622 46.8 1444 600 s 798 31.8 1444 304 s
s1494 1506 1245 1453 622 50.0 1453 547 s 862 30.8 1453 286 s
s5378 4603 912 3238 712 21.9 3238 1723 s 662 27.4 3238 825 s
s35932 39094 496 34901 138 72.2 34901 45455 s 138 72.2 35002 15330 s
am2910 2391 2023 2189 1569 22.4 2189 3819 s 1588 21.5 2189 884 s
div16 2147 238 1679 154 35.3 1679 247 s 162 31.9 1679 142 s

Avg 41.1 2937 s 35.1 1013 s

Det: Number detected faults Vec: Test set length Time: Execution time % R: Percent reduction from original test set
Smallest test set sizes/greatest compactions highlighted in bold

we use multiple system calls to a complex commercial fault
simulator which handles multiple clocks, complex gate types,
etc. In terms of reductions in test set sizes among the various
static test set compaction techniques, vector-omission based
compaction [3] generally outperforms other compaction ap-
proaches at high computation costs. However, with fault-list
partitioning described in this paper, the vector-omission tech-
nique may become more feasible for large circuits or large test
sets. Compaction based on recurrence subsequence removal
is very fast, but it produces less compact test sets. Fault-list
and test-set partitioning can decrease the execution time fur-
ther. Finally, both vector-restoration [6, 7] and our proposed
techniques are not constrained by lack of recurrence subse-
quences and can produce compact test sets at less expensive
costs than [3]. One signi�cant feature about our technique
is that the test-set and fault-list partitioning strategy can be
applied to any of the previously proposed vector-omission [3]
and vector-restoration [6, 7] methods to further reduce exe-
cution times. This is an important feature that distinguishes
our technique from the previously proposed methods.

V Conclusions
We have proposed a new static test set compaction framework
using fault-list/test-set partitioning and vector-re-ordering.
Signi�cant reductions in test set sizes have been obtained us-
ing our techniques. Furthermore, the partitioning technique
rapidly accelerates the compaction process and can easily be
used to accelerate existing static compaction algorithms with-
out compromising on the quality of compaction. Compaction
algorithms based on extensive fault simulations can partic-
ularly bene�t from the partitioning technique. Our experi-
ments show that the proposed compaction technique is viable

for large circuits with large test sets.

References

[1] T. M. Niermann, R. K. Roy, J. H. Patel, and J. A.
Abraham, \Test compaction for sequential circuits,"
IEEE Trans. Computer-Aided Design, vol. 11, no. 2,
pp. 260-267, Feb. 1992.

[2] B. So, \Time-e�cient automatic test pattern generation
system," Ph.D. Thesis, EE Dept., Univ. of Wisconsin at
Madison, 1994.

[3] I. Pomeranz and S. M. Reddy, \On static compaction of
test sequences for synchronous sequential circuits," Proc.
Design Automation Conf., pp. 215-220, June 1996.

[4] M. S. Hsiao, E. M. Rudnick, and J. H. Patel, \Fast al-
gorithms for static compaction of sequential circuit test
vectors," Proc. IEEE VLSI Test Symp., pp. 188-195,
Apr. 1997.

[5] M. S. Hsiao and S. T. Chakradhar, \State relaxation
based subsequence removal for fast static compaction in
sequential circuits," Proc. Design, Automation, and Test
in Europse (DATE) Conf., pp. 577-582, Feb. 1998.

[6] I. Pomeranz and S. M. Reddy, \Vector restoration based
static compaction of test sequences for synchronous se-
quential circuits," Proc. International Conference on
Computer Design, pp. 360-365, Oct. 1997.

[7] R. Guo, I. Pomeranz, and S. M. Reddy, \Procedures for
static compaction of test sequences for synchronous se-
quential circuits based on vector restoration," Proc. De-
sign, Automation, and Test in Europse (DATE) Conf.,
pp. 583-587, Feb. 1998.

Table 2: Compaction results for STRATEGATE test sets

Ckt Total Original No-Partition Partition

Faults Vec Det Vec % R Det Time Vec % R Det Time

s298 308 194 265 132 32.0 265 74.3 s 132 32.0 265 63.3 s
s344 342 86 329 48 44.2 329 39.3 s 58 32.6 329 24.4 s
s382 399 1486 364 601 59.6 364 241 s 601 59.6 364 92.8 s
s400 426 2424 383 1033 57.4 383 330 s 1033 57.4 383 133 s
s444 474 1945 424 716 63.2 424 307 s 716 63.2 424 133 s
s526 555 2642 454 1631 38.3 454 470 s 1631 38.3 454 281 s
s641 467 166 404 136 18.1 404 122 s 139 16.3 404 77.4 s
s713 581 176 476 122 30.7 476 109 s 121 31.3 476 77.5 s
s820 850 590 814 525 11.0 814 370 s 559 5.3 814 140 s
s832 870 701 818 564 19.5 818 357 s 607 13.4 818 160 s
s1196 1242 574 1239 277 51.7 1239 243 s 329 42.7 1239 121 s
s1238 1355 625 1282 324 48.2 1282 273 s 339 45.8 1282 136 s

s1423 1515 3943 1414 1273 67.7 1414 1950 s 1239 68.6 1414 541 s
s1488 1486 593 1444 481 18.9 1444 688 s 523 11.8 1444 254 s
s1494 1506 540 1453 472 12.6 1453 736 s 494 8.5 1453 258 s
s5378 4603 11481 3639 1347 88.3 3639 3185 s 1340 88.4 3639 2337 s
s35932 39094 257 35100 133 48.2 35100 35486 s 139 45.9 35100 9359 s
am2910 2391 2509 2198 556 77.8 2198 1091 s 635 74.7 2198 396 s
mult16 1708 1696 1665 201 88.1 1665 371 s 184 89.2 1665 167 s
div16 2147 1098 1815 504 54.1 1815 1073 s 483 56.0 1815 372 s

Avg 48.9 2501 s 46.4 796 s

Det: Number detected faults Vec: Test set length Time: Execution time % R: Percent reduction from original test set
Smallest test set sizes/greatest compactions highlighted in bold

Table 3: Results for production circuits

Ckt Gates FFs Total Original Partition
Faults Vec Det Vec % R Det

circuit1 7428 137 8411 2228 6780 1532 31.2 6781
circuit2 6387 130 6976 3190 5992 2059 35.5 5997
circuit3 11784 487 18701 3963 17182 3559 10.2 17287
circuit4 24784 995 36280 3807 34456 2411 36.7 34457

Gates: Number of gates FFs: Number of
ip-
ops Det: Number of faults detected
Vec: Test set length % R: Percent reduction from original test set size

[8] S.K. Bommu, S.T. Chakradhar, and K.B. Doreswamy,
\Static test sequence compaction based on segment re-
ordering and fast vector restoration," Proc. Intl. Test
Conf., 1998.

[9] S.K. Bommu, S.T. Chakradhar, and K.B. Doreswamy,
\Static compaction using overlapped restoration and seg-
ment pruning," Proc. Intl. Conf. CAD, 1998.

[10] S.K. Bommu, S.T. Chakradhar, and K.B. Doreswamy,
\Vector restoration using accelerated validation and re-
�nement," Proc. Asian Test Symp., 1998.

[11] A. Raghunathan and S. T. Chakradhar, \Acceleration
techniques for dynamic vector compaction," Proc. Intl.
Conf. Computer-Aided Design, pp. 310-317, 1995.

[12] S. T. Chakradhar and A. Raghunathan, \Bottleneck re-
moval algorithm for dynamic compaction and test cycles
reduction", Proc. European Design Automation Conf.,
pp. 98-104, September 1995.

[13] S. T. Chakradhar and A. Raghunathan, \Bottleneck re-
moval algorithm for dynamic compaction in sequential
circuits," IEEE Trans. on Computer-Aided Design, vol.
16, no. 10, pp. 1157-1172, Oct., 1997.

[14] E. M. Rudnick and Janak H. Patel \Simulation-based
techniques for dynamic test sequence compaction," Proc.
Intl. Conf. Computer-Aided Design, pp. 67-73, 1996.

[15] T. M. Niermann and J. H. Patel, \HITEC: A test gen-
eration package for sequential circuits," Proc. European
Conf. Design Automation (EDAC), pp. 214-218, 1991.

[16] T. M. Niermann and J. H. Patel, \Method for automat-
ically generating test vectors for digital integrated cir-
cuits," U.S. Patent No. 5,377,197, December 1994.

[17] F. Brglez, D. Bryan, and K. Kozminski, \Combinational
pro�les of sequential benchmark circuits," Int. Sympo-
sium on Circuits and Systems, pp. 1929-1934, 1989.

[18] T. H. Cormen, C. E. Leiserson, R. L. Rivest, Introduction
to Algorithms. Cambridge, MA: The MIT Press, 1990.

[19] M. S. Hsiao, E. M. Rudnick, and J. H. Patel, \Automatic
test generation using genetically-engineered distinguish-
ing sequences," Proc. VLSI Test Symp., pp. 216-223,
1996.

[20] M. S. Hsiao, E. M. Rudnick, and J. H. Patel, \Sequential
circuit test generation using dynamic state traversal,"
Proc. European Design and Test Conf., pp. 22-28, 1997.

