
Automatic Design Validation Framework for HDL Descriptions via RTL ATPG
�

Liang Zhang and Michael Hsiao
Department of ECE, Virginia Tech

Blacksburg, VA, 24061, USA�
liang,hsiao � @vt.edu

Indradeep Ghosh
Fujitsu Laboratories of America Inc.

Sunnyvale, CA, 94086, USA
ighosh@fla.fujitsu.com

Abstract

We present a framework for high-level design validation
using an efficient register-transfer level (RTL) automatic test
pattern generator (ATPG). The RTL ATPG generates the test
environments for validation targets, which include variable
assignments, conditional statements, and arithmetic expres-
sions in the HDL description. A test environment is a set of
conditions that allow for full controllability and observability
of the validation target. Each test environment is then trans-
lated to validation vectors by filling in the unspecified values
in the environment. Since the observability of error effect is
naturally handled by our ATPG, our approach is superior to
methods that only focus on the excitation of HDL descriptions.
The experimental results on ITC99 benchmark circuits and an
industrial circuit demonstrate that very high design error cov-
erage can be obtained in a small CPU times.

1. Introduction

Despite of the advances of formal verification methods
(such as equivalence checking, model checking, theorem
proving, etc.) in recent years, simulation remains the primary
approach for design validation, especially at the high abstrac-
tion levels of the circuit. The keys to simulation-based valida-
tion approach are coverage metrics and vector generation al-
gorithms. The most common coverage metrics are statement,
branch and condition coverage adopted from software testing
[1]. In [4], the authors proposed a simulation-based ATPG ap-
proach for design validation, in which the input VHDL code is
first instrumented so that the execution trace can be captured,
then the instrumented VHDL is simulated using a commercial
simulator. The underlying procedure interacts with the simu-
lator via the trace files and tries to generate vectors to maxi-
mize the statement coverage. Another algorithm [9] proposes
a mutant analysis and tries to generate vectors to capture ev-
ery injected mutant. The authors in [10] propose the analysis
of paths for input HDL code. Each path starts from a variable

�
This research was supported in part by NSF grants CCR-0196470, CCR-

0305881, and a grant from Fujitsu Labs of America

definition and ends at usage of that variable. The constraints
are formed from the path and provided to constraint solver
to generate each validation test. The authors in [3] propose
the genetic algorithm (GA) based approach to automatically
generate test programs for microprocessor cores. A gate-level
fault simulator is used to evaluate the fitnesses of generated
test programs and to guide the GA process. The gate-level
implementation must be available for this approach. In [6],
the authors use integer linear programming and boolean satis-
fiability methods to generate vectors that achieve high tag (an
observability-enhanced statement) coverage [7]. Tag cover-
age is a better coverage metric than traditional software cov-
erages in that the propagation of error effects to an observation
point is considered. In [8], authors proposed a deterministic
RTL-ATPG algorithm, which is able to efficiently generate
logic-level stuck-at tests from an RTL HDL description. The
algorithm utilizes a set of 9-valued algebra to perform sym-
bolic justification and propagation to derive the test environ-
ment. Once a test environment is obtained, the precomputed
test vectors can be plugged into the test environment to derive
the complete set of test vectors. In order to more effectively
handle control-intensive circuits, authors in [11] extended the
9-valued algebra to a 10-valued algebra and introduced sev-
eral high-level heuristics to efficiently use finite state machine
(FSM) information to guide the ATPG search process.

While the RTL ATPG algorithm was originally targeted for
manufacturing tests, we have discovered that with some mod-
ifications, the ATPG algorithm can be extended to generate
validation vectors efficiently. The original ATPG targets ev-
ery construct that is synthesized to the structural RTL netlist.
However, for design validation purposes, we only need to tar-
get constructs that directly map to variable assignment, arith-
metic expressions, and conditional constructs at the behav-
ioral level. The RTL algebra has been augmented to handle
embedded counters more efficiently. In addition, in our work,
test environment relaxation is used to help validation of ad-
ditional portions of the design that may be hard to test. As
a result, our approach is superior to the test generation algo-
rithm in [8] and is able to generate more compact validation
vectors. Our approach is very different from the previous ap-
proaches. Most of the previous techniques do not consider

1081-7735/03 $17.00 c
�

2003 IEEE 148 Proc. IEEE Asian Test Symposium, November 2003

the observability issues; instead, they focus on maximizing
the excitation of the potential error sites. Compared to the ap-
proach described in [6], which targets the tag coverage, our
test generation method improves upon the tag simulation pro-
cess and is able to handle much larger designs. Lastly, the
back-end test environment translator has been enhanced with
to maximize the design error detection. As the result, the gen-
erated vectors are more compact and more powerful for design
validation.

Note that while automatically deriving validation vectors
at the RTL, we are validating on the implementation circuit,
which may be a buggy circuit. Nevertheless, this fact can add
advantages to our work in the following scenarios:
(i) If a golden RTL model is present, then from the model the
test vectors may be derived and used to compare output re-
sponses from an implementation.
(ii) The test vectors obtained from an implementation can be
applied to its executable behavioral specification (if available)
and will produce different outputs when the bugs are excited
and propagated in the implementation. (We assume this sce-
nario in this framework)
(iii) The vectors may be used to validate the logic-level cir-
cuit derived from an RTL description if formal equivalence
checking fails (ie., the RTL description and the gate level im-
plementation are structurally different). Thus, automatically
generated validation test benches at the RTL can aid the veri-
fication process to a large extent.

The rest of paper is organized as follows: Section 2
presents an overview of our design validation framework.
Section 3 describes our validation vector generation algo-
rithm. Section 4 reports the experimental results, and Section
5 concludes the paper.

2. Design Validation Framework

Figure 1 shows the overview of our design validation
framework. First, the input HDL description (either VHDL or
Verilog) is compiled into an internal structural RTL represen-
tation based on Assignment Decision Diagrams (ADD) [2].
Then, the ATPG procedure generates the validation tests and
reports the achieved tag coverage. The HDL test bench wrap-
per is generated to facilitate the simulation. Next, a commer-
cial HDL simulator is invoked to simulate the validation vec-
tors. Finally, the responses are captured and compared against
the responses from the specification by the checker program.

2.1. Validation Metrics

In order to measure the thoroughness of the validation, we
adopted into our framework the Observability-Based Code
Coverage (OBCC or tag coverage)[7]. The OBCC is supe-
rior to classical software testing coverages (such as statement
and branch coverage) in that it incorporates observability as
well as controllability information into the simulation. The
basic strategy of OBCC is the efficient computation of tag

TAG Coverage

VHDL/Verilog
Implementation

ADD−based
RTL Representation

HDL Testbench
Generator

Validation Vector
Generator

Responses
Output

Commercial HDL
Simulator

SPECS

Responses
OutputStatement

Branch/Condition
Coverage

error
design

detected

AgreeDifferent
confidence

good

of design

Checker

Front−end
compiler

Figure 1. Overview of the design validation flow

Table 1. � calculus for an adder
Adder b b- � b+ � b+U b+?

a a+b a+b- � a+b+ � a+b+U a+b+?
a- � a+b- � a+b- � a+b+? a+b+? a+b+?
a+ � a+b+ � a+b+? a+b+ � a+b+? a+b+?
a+U a+b+U a+b+? a+b+? a+b+? a+b+?
a+? a+b+? a+b+? a+b+? a+b+? a+b+?

coverage. The tag is introduced in OBCC as a mechanism
to extend standard coverage metrics so that the observability
can be computed. A tag is defined as a symbol placed at a
given location, which can be used to represent the presence of
an incorrect value. First, the tags are injected at variable as-
signment statements and branch conditions, then the tags are
propagated based on a set of calculus rules for supported prim-
itives. We augmented original tag calculus with unsigned (U)
tag. Table 1 shows the augmented tag calculus for an adder.
The + � represents a positive tag, while - � denotes a negative
one. The ? means that tag may be killed as the result of oper-
ation during execution. A tag is declared to be observed only
when either + � ,- � , or U has been successfully propagated to
at least one PO.

3. Validation Vector Generation Algorithm

The core of our validation framework is an efficient RTL
ATPG tool, which generates the validation vectors for a given
HDL description. The justification and propagation of con-
trollability and observability objectives are carried out sym-
bolically using a set of 10-valued RTL algebra. The 10-valued
RTL algebra, first proposed in [8], then extended in [11], in-
cludes following symbols:

149

� Cg (general controllability) is the ability to control a vari-
able to arbitrary value.

� C0 (controllability to zero) is the ability to control a vari-
able to the value 0.

� C1 (controllability to one) is the ability to control a vari-
able to the value 1; i.e., ”000...01”.

� Ca1 (controllability to all ones) is the ability to control
the variable to all ones; i.e., ”111...11”.

� Cq (controllability to a constant) is the ability to control
the variable to any fixed constant.

� Cz (controllability to the Z value) is the ability to control
the variable to high-impedance Z.

� Cs (controllability to a state) is the ability to control the
state variable to a particular state.

� Cp[a,b] (controllability to a particular range) is the abil-
ity to control the variable within the range of [a,b].

� O (observability) is the ability to observe a fault at a vari-
able.

� O’ (complement observability) is defined for single-bit
variables only. It signifies the zero/one fault.

Figure 2 shows the test generation flow. First, a preprocessor
builds a validation target list for the circuit, which includes all
condition, arithmetic, and assignment constructs. Next, the
ATPG iterates through the list and generates the test environ-
ment for each target. If the test environment cannot be ob-
tained for a given validation target, the ATPG tries to generate
the relaxed test environment for it. After the test environment
generation stops, the back-end translator is invoked to gener-
ate the validation vectors from the test environments.

N

N

Y

Y

N

Y

Generate target list

to validation vectors
Translate TEs

END

All targets tried

?

?

Try relaxed

for next target

TE found

Test Envir.

TE found

Save Test Envir.

Generate Test Envir.
RTL representation

?

Figure 2. Test Generation Flow

3.1. Test Environment Generation

The test environment is a set of conditions that allow con-
trollability and observability of the validation target. Each test
environment can be viewed as a symbolic path which starts
from the PIs, traversing through the target site, and reaches at
one or more POs or observable variables. The test environ-
ment generation process, as shown in Figure 3, is essentially
searching for a sufficient symbolic path, through which the
excitation objectives can be delivered to the target site, and
error effect can be propagated to the PO.

generate_test_environment() {

}

 while(select_symbolic_path() == TRUE) {
inject_symbolic_propagation_objectives();
inject_symbolic_excitation_objectives();
if (justify_all_objectives()==TRUE) {

 exit();
}

}

save_test_environment();

Figure 3. ATPG Algorithm

Consider the VHDL description and its structural RTL
in Figure 4 as an example to illustrate the above algorithm.
Assume that RST, ina and inb are PIs, and out is the only PO

If RST = 1 then

a := 1;

b := 1;

c := 1;

i := 1;

out := 1;

elsif clk'event and clk = 1 then

i := i + 1;

if (i = 2) then

a := ina - 7;

b := inb;

elsif (i = 3) then

c := a * b;

elsif (i = 4) then

out := c;

endif;

endif;

x

-

a

#1

#7
ina

b

#1

inb

i = 2 ?

c

#1

i = 3 ?

OUT

i = 4 ?

#1

M3

M1
 M2

M4

M5

CTL1

CTL2

CTL0
CTL0

M0

RST=1 ?

RST=1 ?

RST=1 ?

#1

M6

i

+

#1

RST=1 ?

M7

Figure 4. Sample VHDL Code and Structural
RTL

for the circuit. Suppose that the multiplier M3 is our current
validation target. Our algorithm executes as follows:

1. Find the shortest propagation path
���������	��
��

�
���������
.

2. Propagation constraints of (CTL1,1,C1) and
(CTL2,2,C1) are injected. The first objective means a
C1 algebra at time frame 1 is needed on signal CTL1.

150

3. Excitation objectives of (a,0,Cg) and (b,0,Cg) are in-
jected at the inputs of M1. The objectives mean algebra
Cg is needed on both signal a and b at time frame 0.

4. Justify all objectives via a branch-and-bound search.

5. All objectives are justified. The test environment is gen-
erated as shown below.

(RST,-2,C1);
(RST,-1,C0);
(ina,-1,Cg);
(M0 ,-1,Cg): (ina,-1,Cg);
(M1 , 0,Cg): (M0 ,-1,Cg);
(a , 0,Cg): (M1 , 0,Cg);
(inb,-1,Cg);
(M2 , 0,Cg): (inb,-1,Cg);
(b , 0,Cg): (M2 , 0,Cg);
(RST, 0,C0);
(RST, 1,C0);
(RST, 2,C0);

Note that the test environment contains all justified algebra on
the PIs and Cgs on internal nodes. The fan-in nodes are also
included in test environment for the internal nodes.

3.2. Test Environment Translation

A generated test environment must be translated into vali-
dation vector(s) to be applicable to the design. Table 2 high-
lights partial results as the procedure proceeds. Suppose we
need to apply 11 and 4 at the two inputs of the multiplier. First,
all algebra except the

��
at PIs are translated. For the above

test environment, only the value of RST is determined at this
step, as shown from the columns under the heading ”STEP
I”. Secondly, the value 11 is plugged into (a,0), then follow-
ing the trace

�������	�
�

� � � ��� ���
�
�
�� � � � �	��� � �
�
�� �
� � �
��� � �
�
�� � ����������� � �
�

�

the value can be propaga-
tion backward to the PI. The value may need to be adjusted
when propagated through certain types of RTL constructs.
For example, the value 11 is propagated from (a,0) through
(M0,-1) without any adjustment. However the 11 on (M0,-1)
implies the 18 at (ina,-1), since M0 is a subtracter, and the
other operand is constant 7. Similarly the 4 can be plugged
in (b,0,Cg) and value can be propagated to the (inb,-1). The
translation results are recorded in columns under ”STEP II”.
Finally, all unspecified PIs are filled with the random numbers
to form the fully specified test vectors. The last three columns
show the final test vectors.

3.3. Test Environment Relaxation

If the complete test environment cannot be derived using
the above algorithm, the ATPG relaxes the controllability con-
dition and repeats the algorithm to generate a relaxed test en-
vironment. The benefit of test environment relaxation can be
illustrated by following example.

Table 2. Test Environment Translation

Time STEP I STEP II STEP III
Frame RST ina inb RST ina inb RST ina inb

-2 1 x x 1 x x 1 0 5
-1 0 x x 0 18 4 0 18 4
0 0 x x 0 x x 0 1 0
1 0 x x 0 x x 0 3 8
2 0 x x 0 x x 0 9 3

1. ����� � �"!$#
2. ����� � �&%'#
3. ����� �(�)!$#

Suppose statement 1 is the correct implementation, while
statements 2 and 3 are erroneous versions. With complete test
environment for statement 1, we can fully control the values
of
�

and
!
. In other words, by enforcing the values of

�
and!

to be different from any other signals, the erroneous values
computed for � in statements 2 and 3 can be guaranteed to be
different from correct one. The errors will be propagated to
PO by the test environment and the design error will be cap-
tured.

Now suppose that the ATPG cannot find a complete test
environment for statement 1, it produces a relaxed version in-
stead. This relaxed test environment does not guarantee full
controllability over the operands, the detection of statement 3
can still be assured as long as the value of

!
is not zero. How-

ever, the relaxed test environment should not replace the com-
plete test environment always, since it can only conditionally
detect error in statement 2. The detection is contingent upon
values for

!
and

%
be different.

3.4. Techniques to Maximize the Error Detection
In the previous example, if back-end translator accidentally

sets the value of
!

equal to the value of
%
, the generated vali-

dation vectors will not detect the erroneous implementation of
statement 2. To remedy this problem, while translating the test
environment, the ATPG keeps a list of values that have been
assigned to the signals and enforces exclusiveness of signal
values as much as possible so that the signal substitution er-
rors will be detected.

For the relational operations, we maximize the error detec-
tion by plugging 3 properly selected values into test environ-
ment. The signal values can be determined as follows:

1. If the value of one input signal is fixed to * , then apply 3
values of * � � , * , and * � � to the other input signal.

2. If no input is fixed, first select a unique value to one in-
put, then follow step 1 for the other input.

For example, in validating the condition
���,+ �-�

, we need
to check for (1) the correct use of ”greater-than” operator here,
and (2) value 3 is the correct boundary of the condition. In
other words, we need to differentiate it from the following

151

implementations, where * stands for any value, and
�

stands
for any value but 3:

����� * � , � ���� * � , � ��� * � , ����� * � , and
��� + � �

Following the above mentioned rules, we know that 4, 3, and
2 need to be plugged into the generated test environment for
signal a to obtain 3 different validation sequences. Although
none of the 3 sequences can individually detect all the bugs,
collectively they can capture all bugs. Note that, from the tag
coverage [6] point of view, requiring all three validation se-
quences on

� � + � �
is an overkill because for each condition

(or statement), two sequences are sufficient to capture both
positive and negative tags on it. As the result, the [6] can-
not guarantee the error detection associated with operational
operators.

4. Experiments

We applied our framework to 10 ITC99 [5] benchmark cir-
cuits, as well as GPIO, an industrial general purpose input
output bus controller, on a 2.0 GHz Pentium-4, with 512 MB
RAM, running the Linux operating system. For each VHDL
description, we manually injected 15 to 30 bugs, which in-
clude the most typical design errors, such as missing case
statement, missing signals, wrong signals, wrong variable val-
ues, wrong ordering of nested if statements, wrong operation
types, and etc.

Table 3 shows the circuit characteristics and our RTL
ATPG results. Note that, our framework works on a given
HDL description, and no gate-level implementations are
needed. However, we include the gate-level characteristics
in the table to show the complexities of each design. For
each circuit, the total number of VHDL lines is first reported,
followed by the number of logic gates corresponding to the
VHDL and the number of flip-flops. Then, the number of
validation vectors generated using our RTL ATPG and the ex-
ecution time (on a Pentium 4 2.0 GHz Linux machine) are re-
ported. For example, circuit B11 has 118 lines of VHDL code
and can be synthesized to 397 gates at the gate level, contain-
ing 30 FFs. Using the VHDL alone for our RTL ATPG, 193
validation vectors were generated in only 1.46 seconds.

Note that the test generation times of our method are or-
ders of magnitude smaller than the ones reported in [6] for
similar sized circuits. A direct comparison is not possible as
the circuits used in [6] are not publicly available.

Figures 5 and 6 show the tag coverage and bug coverage,
respectively, for each circuit. Both random validation and our
approach are reported, and the bug coverage is defined as the
ratio of the number of detected bugs to the total number of
injected bugs. For the random approach, 5000 random vectors
were applied to each circuit.

For all circuits, our RTL ATPG outperformed random gen-
eration of validation vectors. In fact, in the five largest cir-
cuits, our method achieved orders of magnitude better results

Table 3. Experiment results of Our Approach
Characteristics Our Approach

Circuit #lines #Gates #FFs #Vectors TGen(s)
B01 110 56 5 192 0.02
B02 70 30 4 77 0.01
B03 141 181 30 653 0.07
B04 102 547 66 165 0.02
B05 332 643 34 255 1.89
B06 128 76 9 49 0.02
B07 92 434 51 104 0.04
B08 89 190 21 100 0.28
B10 167 190 17 337 0.8
B11 118 397 30 193 1.46

GPIO 1002 1720 148 652 2.31

in both tag and bug coverages. Note that since the number of
validation vectors we generated was significantly fewer than
5000, the validation time would be reduced by the same ra-
tio. For example, in circuit B08, with only 100 vectors, we
were able to achieve 93.3% tag coverage in under 1 seconds
of computation, while with 5000 random vectors, only 2.2%
tag coverage was achieved. In terms of simulation time for
validation, 50-fold improvement was achieved. In fact, in-
creasing the random vectors beyond 5000 vectors still would
not be helpful. In this regard, several orders of magnitude
lower validation time can be achieved with our method.

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

b01
 b02
 b03
 b04
 b05
 b06
 b07
 b08
 b10
 b11
 gpio

random

ours

Figure 5. Tag Coverages

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

b01
 b02
 b03
 b04
 b05
 b06
 b07
 b08
 b10
 b11
 gpio

random

ours

Figure 6. Bug Coverages

Figure 7 shows the detailed validation results on the in-
dustrial circuit GPIO. The X-axis is the number of validation

152

vectors applied, while the Y-axis is the coverage of respective
metrics. 30 design errors were injected in this circuit. Note
that GPIO is not randomly validatable, as shown by the curves
for random vectors. Our approach was able to obtain both
high tag coverage as well as high bug coverage. We can also
clearly observe the close correlation between the achieved tag
coverage and bug coverage for both random vectors and vec-
tors generated by our approach. However, the tag coverage
is slightly more pessimistic than the bug coverage in that the
coverage reported is lower. In other words, the actual bug cov-
erage generally is higher than the tag coverage. Nevertheless,
these two coverage metrics track very well with each other.

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

0
 100
 200
 300
 400
 500
 600
 700

(vectors)

Bug cov. - Ours

Tag cov. - Ours

Bug cov. - Random

Tag cov. - Random

Figure 7. Coverages on GPIO

We also ran the vectors generated by our approach with
TRansEDA[12] coverage analysis tool to obtain the statement,
branch, conditional and tag coverages. The results are re-
ported in Table 4. We can see that for most circuits, the three
traditional coverages (statement, branch, condition) are overly
optimistic measures, and that tag coverage is superior in that
it reflects the bug coverage better. In B05, due to large redun-
dancies in both VHDL and gate-level implementations, the
coverages are low. However, in most other circuits, such as
GPIO, the 100% measures would provide little confidence on
the effectiveness of validation vectors. Note that these tradi-
tional coverage metrics are currently used in the industry to
measure the level of design validation and a number of com-
mercial tools exist in this effect.

Table 4. Coverages of Our Approach
Circuit State. (%) Branch (%) Cond.(%) Tag(%)

B01 100 100 98.4 58.3
B02 100 100 100 53.8
B03 100 100 100 90.9
B04 100 100 100 83.8
B05 65.4 61 n/a 41.1
B06 100 100 100 72.1
B07 97.9 97.2 n/a 91.2
B08 100 100 n/a 93.3
B10 94.7 95.3 90 100
B11 85.7 87.9 100 66.7

GPIO 100 100 100 76.6

5. Conclusion

We have presented an automatic design validation frame-
work for HDL descriptions. The core of our framework is
a modified RTL ATPG algorithm, which efficiently generates
the validation vectors. Our approach is superior to existing ap-
proaches that target only the excitation while ignoring propa-
gation of the errors in the design. We also allow for relaxation
of test environments such that additional hard errors may be
detected. Experiments show that our approach is able to gen-
erate high quality validation vectors, which achieve both high
tag coverage and high bug coverage with very low compu-
tational cost. Orders of magnitude improvement in coverage
over random patterns were achieved.

References

[1] B. Beizer. Software Testing Techniques (2nd ed.). Van Nos-
trand Rheinold, New York, 1990.

[2] V. Chaiyakul, D. D. Gajski, and L. Ramachandran. ”High-
level Transformations for Minimizing Syntactic Variances”, In
Proc. Design Automation Conf., pages 413–418, June 1993.

[3] F. Corno, G. Cumani, M. S. Reorda, and G. Squillero.
”Fully Automatic Test Program Generation for Microproces-
sor Cores”, In Pro. Design, Automation and Test in Europe,
pages 1006–1011, 2003.

[4] F. Corno, M. Reorda, G. Squillero, A. Manzone, and
A. Pincetti. ”Automatic Test Bench Generation for Validation
of RT-level descriptions: an industrial experience”, In Proc.
DATE, pages 385–389, 2000.

[5] F. Corno, M. S. Reorda, and G. Squillero. ”RT-level ITC’99
benchmarks and first ATPG results”, IEEE Design & Test of
Computers, 17(3):44–53, July-September 2000.

[6] F. Fallah, P. Ashar, and S. Devadas. ”Simulation vector gener-
ation from HDL descriptions for observability-enhanced state-
ment coverage”, In Proc. Design Automation Conference,
pages 666–671, 1999.

[7] F. Fallah, S. Devadas, and K. Keutzer. ”OCCOM – efficient
computation of observability-based code coverage metrics for
functional verification”, IEEE Trans. Computer-Aided Design,
20(8):1003–1015, August 2001.

[8] I. Ghosh and M. Fujita. ”Automatic Test Pattern Generation for
Functional Register-Transfer level Circuits Using Assignment
Decision Diagrams”, IEEE Trans. Computer-Aided Design,
20(3):402–415, March 2001.

[9] G. Hayek and C. Robach. ”From specification validation to
hardware testing: A unified method”, In Proc. International
Test Conference, pages 885–893, 1996.

[10] C. Paoli, M. Nivet, and J. Santucci. ”Use of constraint solving
in order to generate test vectors for behavioral validation”, In
Proc. High Level Design Validation and Test Workshop, pages
15–20, 2000.

[11] L. Zhang, I. Ghosh, and M. Hsiao. ”Efficient sequential ATPG
for functional RTL circuits”, To appear in Proc. International
Test conference, 2003.

[12] VN-COVER, http://www.transeda.com

153

