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Abstract

Testing of embedded cores is very difficult in SOC
(system-on-a-chip), since the core user may not know the
gate level implementation of the core, and the controllabil-
ity and observability of the core are limited by other cores
and the user defined logic surrounding the core. One sim-
ple but expensive method to solve this problem is to add
a wrapper around each core in the SOC, and shift in/out
every bit at the core input, output, and possibly its inter-
nal state. An approach to remove part of these wrappers
using controllability and observability evaluation via ran-
dom inputs is proposed at the high level (i.e. no gate-level
information needed). To achieve better results than the
random input vectors, genetic algorithm is used in this
paper to justify the test patterns provided by the core de-
signer. Several high level benchmarks are experimented
and results show that with the test patterns generated by
the genetic algorithm, both the wrapper size and the test
application time are further reduced, while the fault cov-
erage of each core is improved.

I Introduction
The design time for today’s chips is becoming longer due
to the increasing size and complexity of circuits. To cut
down the design time, third party cores can be used, re-
sulting in what is known as a system-on-a-chip (SOC)
design. However, since the gate level information is not
available to the core user, conventional ATPG is not ap-
plicable, and testing of these cores becomes a challenging
task [1, 2].

One basic approach to solve this problem is to route
primary inputs and primary outputs of the SOC to core’s
I/O’s using multiplexers [3]. But this scheme is limited
by the number of primary I/O’s of the SOC against the
number of core I/O’s and may not help testing the UDL
(User Defined Logic) around the core. Another solution
is the use of isolation ring, or the wrapper [4–7]. In using
isolation ring, a flip-flop is added to each core input and
output, and all the added flip-flops are connected in series.
In this way, with only a few entries from the SOC primary
I/O, we can route the PI’s to the wrapper and provide all
the test vectors needed by the core and shift out all the
results generated by the core. The disadvantage of this
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technique is that it will result in high hardware and test
application time overhead. Another possibility for this is
to use a TAMBUS, which is a bus routed to every core
I/O’s in the chip [6, 8, 9]. Similar to the wrapper, TAM-
BUS can provide full controllability and observability to
all the cores. However, the width of the TAMBUS may be
limited to fully covered cores with large number of I/O’s.

In a recent work [10], a method is developed to eval-
uate the controllability and observability for core inputs
and outputs at the high level (i.e. no gate-level informa-
tion needed). Based on these evaluations, some of the
core I/O’s can be quickly removed from the wrapper as
well as from the TAMBUS, so that both the area and
performance overhead will be reduced. Furthermore, it is
made sure that the resulting cores in the SOC are still
fully testable by performing a validation check.

Since these testability evaluations are all based on
pseudo random input vectors, the fault coverages may re-
sult in an decrease (up to 10%) after the removal of the
wrappers for some cores that are hard to reach. To avoid
this, we propose to generate intelligent patterns by a ge-
netic algorithm instead. In doing so, justification of core
vectors is no longer a hit-or-miss situation; rather, we are
able to intelligently search for each justification vector.
As a result, both the wrapper size and test application
time are reduced, with the fault coverages for the core’s
improved.

The remainder of this paper is organized as follows.
Section II gives the preliminaries on controllability and
observability evaluation. Section III shows how to gener-
ate a test set which can justify as many test patterns of
each core in the SOC as possible using genetic algorithms.
We validate this approach in section IV by getting the
fault coverage of each core. In section V we present the
results of both the evaluation and the validation. Finally,
we conclude the paper in Section VI.

II Preliminaries
When full wrappers are used in a SOC, the size of a full
wrapper is the number of inputs plus the number of out-
puts of the corresponding core. The test application time
and area overhead are proportional to the size of core
I/O’s. So if we can justify the entire test set for a core
from the primary inputs of the SOC and can observe the
core outputs through some existing logic to the primary



outputs of the SOC, then the wrapper would not be nec-
essary, resulting in both test application time and area
reduction. For example, in Figure 1, if we can justify the
test set for core 2 via core 1, and if we can propagate any
faulty value generated at the output of core 2 through core
3 or core 5, we can eliminate the wrapper around core 2.

But in cases that are not as ideal, we may be able to
justify only a part of the whole test set for the core under
test, or we may be able to observe only some core outputs
at the SOC’s output. In such cases we cannot remove
the entire wrapper, but we may still be able to remove
part of the full wrapper, which may still save some test
application time and area, depending on how much can
we remove.

To reduce the size of the full wrapper, we must main-
tain the testability for both the core itself and the UDL
around the core. To achieve this, we evaluate the core
I/O’s in two perspectives. From the input point of view,
we evaluate core inputs by their controllability. From the
output point of view, we evaluate core outputs by their
observability, both at the high level. During our evalua-
tion, we assume that there are multiple cores in the SOC
and evaluation is performed for one core at a time. So
at any time there is only one core under test, (shaded in
Figures 1 and 3). We also assume that the functionality
of the cores are available, which is reasonable because the
SOC integrater has to know how the cores behave in order
to use them properly. We assume all the cores are fully
scanned. Finally, for both the UDL around the core and
the core-under-test, only the RTL information is needed
in our approach. No gate level information for either the
UDL or the core under test is required.

A Controllability evaluation
For each core i in the SOC, let us denote the designer-
provided test set Ti. When evaluating controllability of
inputs of core i (core 2 in Figure 1), we apply the set of
test vectors from the primary inputs of the SOC, and ob-
tain a set of vectors that we can justify at the input of core
i. We call these vectors at the inputs of core i, Si. For any
partial wrapper of size n, we denote the corresponding n
input bits in the wrapper as I = {I1, I2, ..., In}. An ex-
panded set Ei (derived from Si) is used to check whether
all the vectors in Ti can be justified. The expanded set Ei

is built by replacing I1, I2, ..., In of each vector in Si with
don’t-cares, while leaving other bits unchanged. Then we
check whether Ei can cover every vector in Ti by a greedy
approach. If it can, then this partial wrapper can justify
the test set and more input bits may be possibly removed
from it. If it cannot, more input bits should be added
to the partial wrapper until the test set can be justified.
This process is repeated until a minimal partial wrapper is
found. For example, let us consider the designer-provided
test set is Ti = {000, 010, 111}, and the vector set we can
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Figure 1: Controllability Evaluation.

justify at the input of core i directly from the SOC inputs
is Si = {010, 011}. Thus, two vectors in Ti cannot be
fully justified: {000, 111}. For a partial wrapper which
includes only the first bit (I = {I1}), we would get the
expanded set Ei = {x10, x11}. This set can not cover Ti

since the vector 000 is not included in Ei. So we expand
the partial wrapper to I = {I1, I2}, which contains the
first two bits. Now Ei becomes {xx0, xx1}, which can
fully cover all the vectors in Ti. This process is repeated
until no more expansion or reduction is available. The
resulting partial wrapper would be the minimal partial
input wrapper. In our example, we have reduced the full
wrapper of size 3 to only 2 bits. The algorithm for find-
ing the minimal partial wrapper I without reducing the
controllability of the core is shown in Figure 2.

Set I = all core inputs
while (I is still reducible) {

set Ei = φ;
for each vector v in Si {

for j from 1 to n
set the Ith

j bit in v = don’t-care;
put v in Ei;

}
if (Ei can cover Ti)

reduce I;
else

expand I;
}

Figure 2: Controllability Evaluation

B Observability evaluation

The aim of our observability evaluation is to identify a
maximal set of core outputs that can be easily observed at
the primary outputs. The basic idea is to try to propagate
the faulty values of the core to the primary output of the
SOC [11]. To get the evaluation for every single output
of the core, each output must be evaluated separately.

Since the gate level information is not available for the
core, its exact gate-level faulty values are unknown. So
we use random values as the faulty output values (output
of core 2 in Figure 3); that is, we assign a random value to
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Figure 3: Observability Evaluation.

our current processing core output and then apply high-
level fault simulation to the SOC [11].

If the faulty values can be observed at the primary
output or any of the partial wrapper, which are different
from the fault free values, we assume this output can be
easily observed and can be potentially removed from the
full-size wrapper. For instance, if a number of random
faulty values placed at the output bits of core 2 in Figure
3 can be observed at the primary outputs of the SOC,
then we can remove these bits from the output wrapper
of core2 and assume that they are fully observable. On
the other hand, if no faulty value could be observed after
simulating all the vectors in a given test set, this output is
assumed to be hard to observe and is left in the wrapper.
Figure 4 shows our method of observability evaluation.

For each output bit in core i {
simulate a given test set
and for each vector {

set a random faulty value to the output bit;
high-level simulate to the rest of the ckt;
if (faulty value observed) {

remove this bit from the wrapper;
stop and go to evaluate the next bit;

}
}
// faulty value cannot be observed
leave this bit in the wrapper;

}

Figure 4: Observability Evaluation

C Genetic algorithms
Genetic algorithm (GA) is an adaptive method which can
be used to solve search and optimization problems. In this
paper it is used to justify the test patterns provided by
the core designer from the primary input of the SOC. The
GA framework used in the paper is similar to the simple
GA described in Goldberg [12]. The GA contains a pop-
ulation of strings, also called chromosomes or individuals,
in which each individual represents a test vector at the

primary input of the SOC. A binary coding is used, and
therefore, each character in a string represents the logic
value to be applied to the corresponding PI. The popu-
lation size used depends on the number of PI’s. Larger
populations are needed to accommodate larger number of
PI’s in order to maintain diversity.

Each individual has an associated fitness, which mea-
sures the test vector quality in terms of the number of bits
justified at the input of the core under test. The popu-
lation is initialized with random strings. A high level
simulator is used to compute the fitness of each individ-
ual by measuring the Hamming distance of obtained input
vector for the core with the desired vector. Then the evo-
lutionary processes of selection, crossover, and mutation
are used to generate an entirely new population from the
existing population. Two individuals are selected from
the existing population, with selection biased toward more
highly fit individuals. The two individuals are crossed by
randomly swapping bits between them to create two en-
tirely new individuals, and each character in a new string
is mutated with some small mutation probability. The
two new individuals are then placed in the new popula-
tion, and this process continues until the new generation
is entirely filled. Evolution from one generation to the
next is continued until a test vector found to fully justify
the target test pattern or until a maximum number of
generations is reached. Because selection is biased toward
more highly fit individuals, the average fitness is expected
to increase from one generation to the next. However, the
best individual may appear in any generation.

III Justifying Test Patterns Using GA’s
In testing cores in SOC’s, a major problem is how to jus-
tify the test set provided by the core designer at the in-
put of the core if full-wrapper was not used. Because
there may be multiple cores in a SOC and the gate level
implementation of each core is not available to the SOC
designer, conventional way of justifying the test patterns
via backtracing is not possible. Genetic algorithms on the
other hand, are used to avoid the backtracing and involve
forward simulation only.

In our controllability evaluation procedure, we want
to remove as many core inputs as possible from the full
wrappers. The number of inputs that can be removed
is highly dependent on the number of test patterns we
can justify, and, for those test patterns that cannot be
fully justified, the number of bits that differs between the
justified vector and the target test pattern.

Based on these facts, we select Hamming distance be-
tween the test pattern for the core and the vector justified
at the core input as the fitness in our GA process. And
a smaller Hamming distance implies a higher fitness. For
example, if a target test pattern for the core under test is
{10101}, and when applying a certain vector at the pri-



mary input, we get a {11010} at the input of the core,
then the Hamming distance between these two vectors is
4 (bit positions 2, 3, 4, and 5 differ).

The population size in our GA process is set equal to
4 × √

#PI ′s, i.e. a function of the number of primary
inputs. Thus for SOC’s with a large number of inputs,
there would be a larger population to maintain the di-
versity. An additional technique to maintain diversity is
to mutate each bit in the offspring vectors with a certain
mutation probability, which is 1% in our process.

To generate a new population, first two pairs of vec-
tors from the current population are selected randomly.
In each pair the vector with higher fitness (i.e. less Ham-
ming distant) is selected as the parent vector. Then the
offspring vectors are generated by these two parent vec-
tors and added to the new population. This process is
repeated until the new population is completely filled.
Figure 5 shows the procedure to generate a test set for
the entire SOC.

For each core in the SOC {
For each test patter Vi of the core under test {

Generate a vector Pi at the SOC PI’s using GA’s
Add Pi to P ;

}
}

Figure 5: Test generation using GA
As shown in Figure 5, for a given test set at the core

input ({V1, V2, ..., Vs} at the input of Core B in Figure 6),
we need to derive a set of vectors that can justify the in-
put vector set {V1, V2, ..., Vs} for Core B. The GA is called
to justify each test pattern Vi. The resulting vectors Pi

({P1, P2, ..., Ps} in Figure 6) are recorded as the test set
P that we are going to use in our controllability and ob-
servability evaluation. Compared to the random vectors
generated to try to justify the core vectors, this new test
set derived from GA can greatly reduce the number of
bits necessary to shift in via the partial input wrapper
of each core. Consequently, the test application time is
significantly reduced.

IV Validation
In order to validate our results, we must show that after
those input and output bits are removed from the wrap-
per, the testability of each core is not reduced. To do this,
we take gate-level descriptions of the cores being consid-
ered and use a gate level fault simulator and perform fault
simulation within the context of SOC. In doing so, we can
assess the exact fault coverage of every core before and af-
ter the test enhancement.

As described previously, we assume only one core (the
core under validation) is faulty at a time and all other
cores are fault free. The application of the test set ob-
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Figure 6: Justify Vectors for Core B.

tained from Section III at the SOC primary inputs will
result in attaining input bits not included in the wrapper
for the core-under-test. Then, for the inputs included in
the wrapper, we shift in corresponding values to match the
expected test vector provided by the core vendor. Based
on our controllability evaluation method, all the test pat-
terns specified by the core vendor can be justified this
way. Next, we perform fault simulation for the core in
the context of the SOC. The fault is detected if its faulty
value is observed at either the primary output or at any
of the partial output wrappers.

for each fault in core i {
apply the test set obtained from Section III;
for each vector {

if (fault is detected) {
DetectedFaults++;
break;

}
shift in data from the partial input wrapper
if (faulty value observed) {

DetectedFaults++;
break;

}
}

}
Fault Coverage = DetectedFaults

Total Faults

Figure 7: Validation Algorithm
Since we are injecting single stuck-at-faults into the

core, we use the gate level description of each core dur-
ing our validation process. However, this information is
only used when we attempt to show that our evaluation
is effective. It is not necessary in our evaluation process.



High-level fault simulation may be used in place of gate-
level fault simulation. Figure 7 shows the algorithm.

V Experimental Results
We implemented our algorithm in C++, and experi-
ments were conducted on a Sun Ultra 10 workstation with
256MB of RAM for two synthesized benchmark circuits
and two manually constructed SOC’s. The manual SOC’s
are constructed by combining several ISCAS85 and IS-
CAS89 [13] benchmark circuits (Figures 8 and 9). The two
synthesized benchmarks are am2910 and divckt. Am2910
is a microprogram address sequencer, and divckt is a 16-
bit divider.

The results are shown in Table 1. The first two
columns give the names of the SOC’s and the cores. For
each core, the number of inputs and outputs are listed in
the third and fourth columns. Column 5 shows the size of
the test set provided by the core designer. The next two
columns are the results of our controllability evaluation,
using random primary inputs and the test set given by
the GA process, respectively. Column 8 gives the result
of our observability evaluation, i.e. the size of the partial
output wrapper for each core. After the easily control-
lable and easily observable core I/O’s are removed from
the full size wrappers, the size of the partial wrapper in
terms of the percentage of the full wrapper is shown in
columns 9 and 10 for the random and GA approaches,
respectively. The total number of faults of each core is
listed in column 11. Finally, the last two columns give
the gate-level fault coverages with the full size wrappers
and the partial wrappers.

For example, for the core s820 in the manually con-
structed SOC2, there are 18 inputs and 19 outputs, and
187 vectors in the provided test set. Using the ran-
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Figure 8: Manually Constructed SOC1.
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Figure 9: Manually Constructed SOC2.

dom inputs, the resulting partial input wrapper size is 14.
When genetic algorithms are applied, the size of the par-
tial input wrapper is reduced to 0, which implies all the
test vectors for this core can be justified directly from the
SOC inputs, and thus all the inputs of this core can be
removed from the wrapper. The size of the partial output
wrapper for this core is 8, which indicates 11 outputs are
observable either at the SOC outputs or at the wrapper
of some subsequent cores, and thus they can be removed
from the wrapper. After the removal, (14+8)/(18+19)
= 59.5% of all the core I/O’s remained in the wrapper
if using random inputs, while only 21.6% would remain if
GA’s were used. The total number of faults in s820 is 850.
The original fault coverage using full wrappers was 100%.
When the partial wrappers were used, the fault coverage
drops to 98.82%, slightly lower than the original. The
slight drop in fault coverage is not due to failing to justify
the core vectors, but due to the optimism in propagation
of faulty effects to SOC outputs. Another example is for
the core REGCNT in benchmark am2910, 6 out of 15
core inputs and 8 out of 12 core outputs are needed in the
partial wrappers using random inputs. When GA’s are
used, only 2 bits are needed in the input wrapper, which
further reduced the total wrapper size from 51.9% of the
full size to only 37.0%. With the partial wrappers, the
fault coverage drops slightly to 88.80% from the original
89.30%. Similar results were observed for other cores in
various SOC’s as well.

It is interesting to note that for cores s208 and s510
of SOC1, no wrapper was needed at all using the GA ap-
proach, resulting in a 72.7% and 61.5% wrapper reduction
when compared to the random approach. In addition, the
resulting fault coverages remained 100% even without any
wrapper. Finally, the execution time of the GA process



Table 1: Results
Input Output Final Wrapper Fault

# core # core # Wrapper Wrapper Size (%) Coverage (%)
SOC Core inputs outputs vec RND GA RND GA Full Partial

REGCNT 15 12 46 6 2 8 51.9 37.0 89.30 88.80
am2910 MUX4 51 12 37 41 27 1 66.6 44.4 100 100

Cntrl 7 10 37 1 1 2 17.6 17.6 94.95 94.95
MUX16A 33 16 16 23 8 11 69.4 38.8 100 100

divckt ALU16 38 17 52 29 3 1 54.5 7.2 98.32 94.45
Cntrl div 3 6 8 1 1 2 33.3 33.3 100 100

c499 41 32 57 0 0 18 24.7 24.7 98.94 98.94
c1355 41 32 91 0 0 3 4.1 4.1 99.49 99.49

SOC1 s208 10 1 39 8 0 0 72.7 0 100 100
s510 19 7 69 16 0 0 61.5 0 100 100
s641 35 24 68 26 6 0 44.1 10.2 100 100
c6288 32 32 40 25 21 0 39.1 32.8 99.56 99.56
c1908 33 25 119 0 0 13 22.4 22.4 99.47 99.47
c432 36 7 49 27 19 5 74.4 55.8 99.24 99.24
s344 9 11 30 0 0 5 25 25 100 100

SOC2 s953 16 23 119 0 0 12 30.8 30.8 100 100
s820 18 19 187 14 0 8 59.5 21.6 100 98.82
s420 18 1 84 16 14 0 84.2 73.7 98.24 98.24
s1238 14 14 205 12 8 0 42.9 28.6 94.76 94.76

for each SOC was less than 20 minutes, and the evaluation
time for each core in any SOC was less than 5 minutes.

VI Conclusion
From this work we observe that there are many easily con-
trollable and easily observable I/O’s in most cores. After
they are removed from the full size wrapper, the total
area and test application time overhead for the DFT can
be greatly reduced. Compared to the random justification
approach, the GA’s can justify many more test patterns
directly at the core inputs, and thus further decrease the
overhead. The validation results show that with the par-
tial wrappers, the fault coverages of the cores remain the
same for most cores, and in a few cases, a slight drop in
fault coverage resulted.
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